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Pareto optimal anonymous mechanisms

Conan Mukherjee*

Abstract

This paper presents a new characterization of “maxmed” mechanisms introduced by

Sprumont [26]. This paper, in a two agent setting, shows that maxmed mechanisms are the

unique Pareto optimal mechanisms among all mechanisms that satisfy anonymity, strate-

gyproofnes, nonbossiness in decision, feasibility and individual rationality.

JEL classification: C72; C78; D71; D63

Keywords: indivisible object allocation, mechanism design, strategyproofness,

1 Introduction

Sprumont [26] studies the important problem of identifying Pareto optimal mechanisms

for the single object allotment problem with money. He obtains a remarkable partial result

by introducing a new class of “maxmed” mechanisms that are the only Pareto optimal

mechanisms in the class of anonymous, non-envious, feasible and individually rational

strategyproof mechanisms. In the present paper, I provide a similar, but independent

characterization of maxmed mechanisms that does not use the axiom of no-envy.1 In

particular, I consider the class of mechanisms that satisfy anonymity in welfare, feasibility,

individual rationality, non-bossiness in decision, and strategyproofness. I identify the

unique Pareto optimal mechanisms in this class as the class of maxmed mechanisms. I

use a two agent setting that can be applied to practical situations like: bilateral trading

over an indivisible object between a buyer and a seller, allotment of a government license

to private buyers, bankruptcy auction of capital assets by lenders etc.

Anonymity is a popular fairness axiom that requires allocations from a mechanism

to any agent be independent of the social identity of the agent, and depend only on

the bid values received by the planner.2 Strategyproofness is a popular strategic axiom

*I am thankful for discussions with Ranojoy Basu and Parikshit De. All remaining errors are mine.
Email: conanmukherjee@gmail.com

1No-envy is a well known fairness notions that imposes strong technical restrictions on the decision
and the transfer functions of a mechanism. It requires that at any state of nature, no agent strictly
prefer the allocation bundle of another agent than her own allocation bundle from the mechanism.

2This axiom has been used by other papers like Ashlagi and Serizawa [2], Hashimoto and Saitoh [14],
Basu and Mukherjee [4] etc. in the related literature.
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that requires mechanims to induce agents to bid their true valuations in the ensuing

message game, while non-bossiness in decision requires that no agent be able to affect

the allocation decision of another agent without affecting her own allocation decision.3

Feasibility requires that the mechanism not be wasteful so that the sum of monetary

transfers never exceed zero, while individual rationality requires that the utility obtained

from the mechanism by any agent always be non-negative.

Four papers that consider the related problem of welfare maximization without im-

posing decision efficiency are: de Clippel, Naroditskiy and Greenwald [6], Drexl and

Kleiner [7], Long, Mishra and Sharma [15], Shao and Zhu [25].4 Like this paper, Drexl

and Kleiner [7] focuses on strategyproof, individually rational and feasible mechanisms in

a two agent setting, and uses a prior distribution to identify the expected aggregate utility

maximizing mechanism. Shao and Zhu [25] obtain similar results as Drexl and Kleiner [7]

without the use of individual rationality, but with a more restrictive distribution of types.

Long, Mishra and Sharma [15], on the other hand, considers a single object allocation set-

ting with more than three agents to study budget balanced and strategyproof stochastic

mechanisms that assign higher allotment probabilities to higher valuation agents. They

identify an optimal stochastic mechanism that gives greatest allotment probability to the

highest valuation agent.5 de Clippel, Naroditskiy and Greenwald [6] present a feasible,

anonymous, strategyproof, individually rational and decision inefficient mechanism that

distributes at least eighty percent of the social welfare generated as number of agents

goes to infinity.

However, the papers that are closest to ours are Sprumont [26], and Athanasiou [3].

As mentioned earlier, Sprumont [26] characterizes maxmed mechanisms for allocating

an object among n ≥ 2 agents using the no-envy axiom. Athanasiou [3] does not use

the no-envy axiom, and presents necessary conditions for Pareto optimality in the same

setting. For n = 2, Athanasiou [3] shows that maxmed mechanisms are Pareto optimal

among all anonymous, strategyproof, feasible and individually rational mechanisms -

but does not prove that there are no other Pareto optimal mechanisms. This paper,

like Athanasiou [3], eschews no-envy, but uses non-bossiness in decision to completely

characterize maxmed mechanisms in the two agent setting.6 In particular, I use the single

3Note that ‘non-bossiness in decision’ does not impose any restriction on transfers of a mechanism
unlike the conventional version of non-bossiness used by Satterthwaite and Sonnenschein [24]. Similar
notions of non-bossiness have been used by Svensson [27], Goswami, Mitra and Sen [9], and Mishra and
Quadir [17]. Basu and Mukherjee [4] shows that any strategyproof mechanism violating non-bossiness
in decision, would also violate the conventional Satterthwaite and Sonnenschein [24] non-bossiness.

4Some other papers investigating the Pareto frontier of mechanisms to allocate indivisible object
with money are: Apt, Conitzer, Guo and Markakis [1], Guo and Conitzer [11], Guo and Conitzer [12],
Ohseto [23], Moulin [18], Moulin [19]. However, all these papers consider decision efficient mechanisms
and hence, limit their study to the class of VCG mechanisms (Vickrey [29], Clarke [5], Groves [10]).

5For the two agent case, the optimal mechanism described by Long, Mishra and Sharma [15] does not
need use of any transfers.

6I show in section 4 that no-envy and non-bossiness in decision are logically independent axioms. In
terms of mathematical restrictions, unlike no-envy, non-bossiness in decision only restricts the allocation
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object characterization of mechanisms using a reserve price object allocation rule, which

was presented in Basu and Mukherjee [4]; and use the additional axioms of feasibility,

individual rationality, and Pareto optimality to characterize the maxmed mechanisms.

Like Sprumont [26], I show that maxmed mechanisms continue to be Pareto optimal in

the class of mechanisms satisfying anonymity, feasibility, non-bossiness in decision and

strategyproofness.

2 Model

Consider a 2 agent model with set of agents N = {1, 2} and an indivisible object. Each

agent i has a private valuation vi ≥ 0 for the object. A mechanism is a tuple (d, τ) such

that at any reported profile of valuations v ∈ RN
+ , each agent i is allocated a transfer

τi(v) ∈ R and a decision di(v) ∈ {0, 1} such that
∑

i∈N di(v) ≤ 1. I follow the notation

where di(v) = 1 implies that agent i gets the object, while di(v) = 0 stands for i not

getting the object. Note that I assume that the object may remain unallocated at some

profile of reported valuations. Define w(v) to be the agent getting the object at any

profile v.7 The utility to agent i with a true valuation of vi at any reported profile

v′ ∈ RN
+ , from a mechanism (d, τ) is given by u(di(v

′), τi(v
′); vi) = vidi(v

′) + τi(v
′). Let

∀ i ̸= j ∈ N , ∀ v ∈ RN
+ , v−i = vj, and define the median of any three real numbers x, y, z

asmed{x, y, z}.
Now, a mechanism may have a peculiar allocation decision rule that allocates the

object to some agent j if she reports some η > 0, irrespective of what the other agent

i ̸= j bids. Alternatively, it may give the object i whenever j reports η, irrespective of

what i bids. Thus, the mechanism may treat an agent i as a dictator, whenever the other

agent reports η. Two examples of such mechanisms are posted-price mechanisms and

option-price mechanisms reported in Hagerty and Rogerson [13], Drexl and Kleiner [8]

and Shao and Zhou [25]. In my setting, the former implies existence of price p̄P such

that for any valuation profile v, d(v) = (0, 1) if and only if v1 ≤ p̄P , v2 ≥ p̄P ; while

the latter implies existence of a price p̄O such that d(v) = (0, 1) if and only if v2 ≥ p̄O.

It is easy to see that in both these cases, if v2 ∈
[
0,min{p̄P , p̄O}

)
, agent 1 becomes a

dictator who must be allocated the good irrespective of what she bids. Hagerty and

Rogerson [13] interpret this dictatorial behaviour as an “essentially negative” feature of

a this mechanism.

One of the ways of eliminating such mechanisms from the purview of study is to

invoke the axiom of agent sovereignty. It is defined in the following manner: every agent

i can change the allocation decision by unilaterally changing her report, if the other agent

j reports a positive value. This ensures that every agent exerts some influence on the

decision function without imposing any constraint on the transfer function of a mechanism.
7I often refer to this agent w(v) as the winner at profile v in the text.
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mechanism allocation decision, irrespective of what other agents are bidding.8

Definition 1. A mechanism (d, τ) satisfies agent sovereignty (AS) if for all i ̸= j ∈ N

and all v ∈ RN
++, ∃ v′i ≥ 0 such that

di(v) ̸= di(v
′
i, vj).

As shown in Proposition 1, I get agent sovereignty in this paper for free as it is implies

by the other axioms defined below.

I also use the following notion of fairness which requires that utility derived from

an allocation by any agent be independent of her identity. Thus, any discrimination

across agents in terms of utilities received from the mechanism must only be in terms

of their valuations for the object. Any mechanism violating this property is likely to be

unacceptable in modern societies built upon the inalienable right to equality.

Definition 2. A mechanism (d, τ) satisfies anonymity in welfare (AN) if for all i ∈ N ,

all v ∈ RN
+ and all bijections π : N 7→ N ,

u(di(v), τi(v); vi) = u(dπi(πv), τπi(πv); πvπi),

where πv :=
(
vπ−1(k)

)n
k=1

.

Now, I define a popular strategic axiom in the independent private values setting,

strategyproofness, which eliminates the incentive to misreport valuation for each agent

by making it a weakly dominant strategy to reveal her true valuation in the ensuing

message game.

Definition 3. A mechanism (d, τ) satisfies strategyproofness (SP) if ∀i ∈ N , ∀vi, v′i ∈ R+,

∀ v−i ∈ RN\{i}
+ ,

u(di(vi, v−i), τi(vi, v−i); vi) ≥ u(di(v
′
i, v−i), τi(v

′
i, v−i); vi).

Next, I define the axiom of ‘non-bossiness in decision’ which requires (only) the deci-

sion rule in a mechanism to be well-behaved in the sense that no agent is able to influence

allocation decision of another agent without changing her own allocation decision.

Definition 4. A mechanism (d, τ) satisfies non-bossiness in decision (NBD) if for all

i ∈ N , all v ∈ RN
+ and all v′i ∈ R+,

di(v) = di(v
′
i, v−i) =⇒ dj(v) = dj(v

′
i, v−i),∀ j ̸= i.

8Similar axioms have been used by Marchant and Mishra [16] and Moulin and Shenker [20].
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As noted in Thomson [28], NBD represents a strategic hindrance to collusive practices

where agents form groups to misreport their valuations in a coordinated manner so that

object allocation decision for any one member changes to her benefit, while others are

not worse off.

The following axiom of feasibility requires that the sum of transfers not exceed zero

for any profile of valuations and thus, ensures that implementing fair mechanisms do not

entail wastage of resources.

Definition 5. A mechanism (d, τ) satisfies feasibility if for all v ∈ RN
+ ,∑

i∈N

τi(v) ≤ 0.

In the final axiom below, I present the fairness notion that requires all agents to

get a non-negative utility at all possible profiles so that voluntary participation in the

mechanism can be ensured.

Definition 6. A mechanism (d, τ) satisfies individual rationality (IR) if for all i ∈ N , all

v ∈ RN
+ ,

vidi(v) + τi(v) ≥ 0.

To conceptualize the Pareto frontier of any class of mechanisms S, I define a weak

partial order ⪰ on the mechanisms in S in the following manner. For any two mechanisms

(d, τ), (d′, τ ′) ∈ S, let (d, τ) ⪰ (d′, τ ′) iff for all i ∈ N and all v ∈ RN
+ , u(di(v), τi(v); vi) ≥

u(d′i(v), τ
′
i(v); vi). If in addition, this inequality is strict for some i and some v, then I write

that (d, τ) ≻ (d′, τ ′) and say that (d, τ) Pareto dominates (d′, τ ′). On the other hand, if

u(di(v), τi(v); vi) = u(d′i(v), τ
′
i(v); vi) for all i and all v, then I write that (d, τ) ∼ (d′, τ ′)

and say that (d, τ) is Pareto equivalent to (d′, τ ′). Finally, I call the class of mechanisms

in S that are not dominated by any other mechanism in S, as the set of Pareto optimal

mechanisms in S.

3 Results

I begin by presenting a well known result which states that the decision rule associated

with a strategyproof mechanism must be non-decreasing in one’s own reported valuation.9

More specifically, ∀ i and ∀ v−i, there exists a finite threshold price Ti(v−i) such that: i

wins an object if vi > Ti(v−i), and fails to win an object if vi < Ti(v−i).

9This result can be found as Proposition 9.27 in Nisan [22] and Lemma 1 in Mukherjee [21].
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Fact 1. Any mechanism (d, τ) satisfies SP and AS, if and only if ∀ i ∈ N and ∀ v−i ∈
RN\{i}

+ , there exist real valued functions Ki : RN\{i}
+ 7→ R and Ti : RN\{i}

+ 7→ R+ such that

di(v) =

{
1 if vi > Ti(v−i)

0 if vi < Ti(v−i)
and τi(v) =

{
Ki(v−i)− Ti(v−i) if di(v) = 1

Ki(v−i) if di(v) = 0

Proof. This result follows from Proposition 9.27 in Nisan [22] and Lemma 1 in Mukher-

jee [21]. It is also stated as Fact 1 in Basu and Mukherjee [4].

Note that Fact 1 allows for arbitrary tie-breaking in allocation decision of the object

at any profile v ∈ RN
+ such that ∀ i ̸= j ∈ N with vi ≤ Ti(vj). In this paper, without loss

of generality, I assume a lexicographic tie-breaking rule (as in Sprumont [26]) where the

linear order 1 ≻ 2 is used to break ties among agents. That is, for any profile v such that

vj ≤ Tj(vi) for all j ∈ N ,

d1(v) = 1 ⇐⇒ v1 = T1(v2).

Now, I present an result from Basu and Mukherjee [4], which states that any mecha-

nism satisfying AN, AS, NBD and SP; must employ a reserve price r ≥ 0 such that a top

bidder bidding in excess of r wins an object. That is, any such mechanism must employ

an allocation rule that is same as that of Vickrey auction with reserve price.

Fact 2. If mechanism (d, τ) satisfies AN, AS, NBD and SP, then there exists an r ≥ 0

such that for all i ̸= j ∈ N and all v ∈ RN
+ ,

� Ti(vj) = max{vj, r} and

� Ki(vj) = K(vj) where K : Rn−1
+ 7→ R is a symmetric functional.

Proof. The result follows of from Theorem 1 and Propositions 1 and 2 in Basu and

Mukherjee [4].

Let M be the class of mechanisms satisfying AN, NBD, feasibility, IR and SP. I show

below that any Pareto optimal mechanism among those in M must satisfy AS.

Proposition 1. If a mechanism (d, τ) is Pareto optimal in M, then (d, τ) satisfies AS.

Proof: Fix any Pareto optimal mechanism (d, τ) ∈ M, and suppose that it violates AS.

Hence, there exists an x > 0 such that the image of the associated threshold function

at x, T (x) /∈ [0,∞). Now, if T (x) < 0, then di(x, x) = 1 for both i = 1, 2 implying

a contradiction. On the other hand, if T (x) = ∞, then di(x, x) = 0 for both i = 1, 2.

Feasibility and IR would then imply that image of the associatedK function at x, K(x) =

0, and so, ui(di(x, x), τi(x, x);x) = 0, ∀ i. Now consider another mechanism (d′, τ ′) such

that for all v ̸= (x, x), (d′i(v), τ
′
i(v)) = (di(v), τi(v)) for all i, while d

′
1(x, x) = 1, d′2(x, x) =

0 and τ ′1(x, x) = −x
2
, τ ′2(x, x) =

x
2
. It is easy to see that (d′, τ ′) ∈ M. Further, for each
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i = 1, 2, ui(d
′
i(v), τ

′
i(v); vi) − ui(di(v), τi(v); vi) is positive if v = (x, x), or else it is zero.

This implies that (d′, τ ′) ≻ (d, τ), which is a contradiction to Pareto optimality of (d, τ).

Hence, the result follows.

Now I define a class of maxmed mechanisms Γ.

Definition 7. For any r ≥ 0, let (dr, τ r) be a maxmed mechanism such that for any

i ̸= j ∈ N , and any v ∈ RN
+ ,

� di(v) =

{
1 if vi > max{vj, r}
0 if vi < max{vj, r}

� τi(v) =

{
med{0, vj − r, r} −max{vj, r} if di = 1

med{0, vj − r, r} if di = 0

� d1(v) = 1,∀ v ∋ vi = vj ≥ r.

Let Γ := {(dr, τ r)}r≥0 be the class of all possible maxmed mechanisms.

The main result of this paper is the following complete characterization of Γ. I show

below that Γ is the unique class of Pareto optimal mechanisms in M.

Theorem 1. Γ is the unique set of Pareto optimal mechanisms in M.

Proof:

Necessity. Fix any Pareto optimal mechanism (d, τ) in M, any i ̸= j ∈ N , and any

v ∈ RN
+ . By Proposition 1, (d, τ) satisfies AS, and so, by Fact 2, there exists an r ≥ 0 such

that the threshold function associated with (d, τ) is T (x) = max{x, r} for all x ≥ 0. Now,

fix any y < r, and note that: if vi = vj = y, feasibility and IR imply that (i) K(y) = 0.

Now fix any profile v such that for any i ̸= j, vi ≥ 2r and vj < r. By feasibility and

IR, 0 ≤ K(vi) + K(vj) ≤ r. So, by (i), I can infer that (ii) 0 ≤ K(x) ≤ r,∀x ≥ 2r. If

there exists an x′ ≥ 2r such that K(x′) ∈ [0, r), then I can construct another mechanism

(d′, τ ′) such that,

� (d′(v), τ ′(v)) = (d(v), τ(v)) for all v such that for any i ̸= j, vi ̸= x′ and vj ̸= x′,

� (d′(v), τ ′(v)) = (d(v), τ(v)) for all v such that for any i ̸= j, vi = x′ and vj ≥ r,

� d′(v) = d(v) for any v such that for any i ̸= j ∈ N with vi = x′ and vj < r,

� for any v such that there exists i ̸= j ∈ N with vi = x′ and vj < r, τ ′j(v) = r and

τ ′i(v) = −r.

It is easy to see that for any i ̸= j ∈ N and for any v̂ ∈ RN
+ : if v̂i = x′, v̂j < r

then uj(d
′
j(v̂), τ

′
j(v̂); v̂j) = r > K(x′) = uj(dj(v̂), τj(v̂); v̂j) and ui(d

′
i(v̂), τ

′
i(v̂); v̂i) = x′ −

7



r = ui(di(v̂), τi(v̂); v̂i), or else uh(d
′
h(v̂), τ

′
h(v̂); v̂h) = uh(dh(v̂), τh(v̂); v̂h),∀ h ∈ N . Thus,

(d′, τ ′) ≻ (d, τ), which implies that (d, τ) is not Pareto optimal, and hence, I get a

contradiction. Therefore, by (ii), I can infer that (iii) K(x) = r,∀x ≥ 2r.

Now consider any z ∈ [r, 2r), and consider a profile v with vi ≥ 2r and vj = z. It is easy

to see that (iii), feasibility and IR imply that 0 ≤ K(z) ≤ z − r. Now, if there exists a

z′ ∈ [r, 2r) such that K(z′) ∈ (0, z′ − r), I can construct another mechanism (d′′, τ ′′) such

that,

� (d′′(v), τ ′′(v)) = (d(v), τ(v)) for all v such that for any i ̸= j, vi ̸= z′ and vj ̸= z′,

� (d′′(v), τ ′′(v)) = (d(v), τ(v)) for all v such that for any i ̸= j, vi = z′ and vj < 2r,

� d′′(v) = d(v) for any v such that for any i ̸= j ∈ N with vi = z′ and vj ≥ 2r,

� for any v such that there exists i ̸= j ∈ N with vi = z′ and vj ≥ 2r, τ ′′j (v) = −r

and τ ′′i (v) = r.

As before, for any v ∈ RN
+ : if vi = z′, vj ≥ 2r then uj(d

′′
j (v), τ

′′
j (v); vj) = vj − z′+ z′− r >

vj − z′ + K(z′) = uj(dj(v), τj(v); vj) and ui(d
′
i(v), τ

′
i(v); vi) = r = ui(di(v), τi(v); vi), or

else uh(d
′
h(v̂), τ

′
h(v̂); v̂h) = uh(dh(v̂), τh(v̂); v̂h), ∀h ∈ N . Hence, as before, (d′′, τ ′′) ≻ (d, τ)

- which is a contradiction to the supposition of (d, τ) being Pareto optimal. Thus, I

get that for any x ≥ 0, the K(.) function associated with (d, τ) must have an image as

follows;

K(x) =


0 if x < r

x− r if x ∈ [r, 2r)

r if x ≥ 2r.

Thus, K(x) = med{0, x− r, r},∀ x ≥ 0, and so the result follows.

Sufficiency. Fix any r ≥ 0 and any mechanism (dr, τ r) ∈ Γ. By Fact 1, it is easy

to see that (dr, τ r) satisfies AN and SP because, for all x > 0, the associated threshold

function T (x) = max{x, r} and K(x) = med{0, x − r, r}. Hence, it is easy to see that

(dr, τ r) satisfies NBD. To see that (dr, τ r) satisfies IR, note that for any i and v, di(v) =

0 =⇒ τi(v) = 0, while di(v) = 1 =⇒ |τi(v)| ≤ vi. Further, note that
∑

h∈N K(v−h) = 0

whenever
∑

h∈N dh(v) = 0, and if there exists an i ∈ N with di(v) = 1, then for i ̸= j:

∑
h∈N

τh(v) =



2r − vj if vi ≥ vj ≥ 2r

0 if vi ≥ 2r > vj ≥ r

0 if vi ≥ 2r > r > vj

vi − 2r if 2r > vi ≥ vj ≥ r

vi − 2r if 2r > vi ≥ r > vj.

Therefore, (dr, τ r) satisfies feasibility.

8



Finally, to prove that (dr, τ r) is Pareto optimal, suppose the contrapositive - that is, sup-

pose that there exists a (d, τ) /∈ Γ such that (d, τ) ≻ (dr, τ r). Then, by the proof of neces-

sity, there exists an r′ ≥ 0 and a maxmed mechanism (dr
′
, τ r

′
) ∈ M such that (dr

′
, τ r

′
) ⪰

(d, τ), and so, (dr
′
, τ r

′
) ≻ (dr, τ r). Therefore, I can infer that r ̸= r′. Now if r > r′,

then consider a profile v such that vi > vj > 2r, and note that uj(d
r
j(v), τ

r
j (v); vj) := r >

r′ = uj(d
r′
j (v), τ

r′
j (v); vj), which contradicts (dr

′
, τ r

′
) ≻ (dr, τ r). Similarly, if r < r′, then

there exists a profile v̂ such that v̂i > max{r′, 2r} ≥ min{r′, 2r} > v̂j > r, and note that

ui(d
r
i (v̂), τ

r
i (v̂); v̂i) = v̂i − v̂j + v̂j − r = v̂i − r > v̂i − r′ = ui(d

r
i (v̂), τ

r
i (v̂); v̂i), which again

contradicts (dr
′
, τ r

′
) ≻ (dr, τ r). Hence, the result follows.

The Theorem 1 above establishes the maxmed mechanisms as the unique Pareto opti-

mal mechanisms in M. Now, it is easy to see that no maxmed mechanism can be Pareto

dominated by any other mechanism that violates IR. This fact implies that maxmed

mechanisms continue to be Pareto optimal in the class, say M̂, of anonymous, feasible,

non-bossy in decision and strategyproof mechanisms. However, one may construct mech-

anisms in M̂ that are Pareto undominated by any maxmed mechanism. Hence, Γ is

no longer the unique Pareto optimal class of mechanisms in M̂. This result is reported

below as a corollary of Theorem 1 without proof.10

Corollary 1. Γ is Pareto optimal in M̂.

4 Discussion

As mentioned earlier, the characterization of maxmed mechanisms of this paper differs

from that of Sprumont [26] in terms of number of agents considered (which in this paper is

2) and the substitution of the no-envy axiom by non-bossiness.11 To check the relationship

between no-envy and non-bossiness; consider the mechanism (d, τ) where T (x) = x and

K(x) = 2x for all x ≥. This mechanism satisfies NBD since the object is allocated at all

profiles, while it violates no-envy at profile (10, 2) where τ1(10, 2) = 2 and τ2(10, 2) = 20

(implying that agent 1 prefers the allocation bundle of agent 2). Thus, NBD does not

imply no-envy. Similarly, consider a mechanism (d′, τ ′) where the associated functions

are T ′(x) =

{
x if x ≤ 10

2x if x > 10
and K ′(x) = 0 for all x ≥ 0. It is easy to see that this

mechanism satisfies no-envy. However, d′(12, 10) = (1, 0) but d′(12, 12) = (0, 0), and

(d′, τ ′) violates NBD. Thus, no-envy does not imply NBD. Thus, it follows that no-envy

and NBD are logically independent axioms.

10Note that Proposition 1 holds true for M̂ too.
11Formally, a mechanism (d, τ) is said to satisfy no-envy if for any i ̸= j ∈ N and any v,

ui(di(v), τi(v); vi) ≥ ui(dj(v), τj(v); vi).
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5 Conclusion

I present a new characterization of maxmed mechanisms that of Sprumont [26], by sub-

stituting the axiom of no-envy with axiom of non-bossiness in decision. I show that in a

simple two agent setting, maxmed mechanisms are the only Pareto optimal mechanisms

in the class of anonymous, feasible, individually rational, non-bossy in decision, and strat-

egyproof mechanisms. Extension of this characterization to the general n agent setting,

or to the multiple object setting is a difficult exercise. I leave these questions for future

research.
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