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Shapley value and extended efficiency ∗

Ranojoy Basu† and Conan Mukherjee‡

Abstract

We formalize a new concept of ‘extended efficiency’ that models important practical

cooperative situations which the conventional notion of efficiency fails to accommodate.

We use it to completely characterize modifications of Shapley value that satisfy mono-

tonicity and symmetry.

Keywords: Shapley value, extended efficiency, coalitional monotonicity, marginal mono-

tonicity, symmetry

JEL Classification: C71, D60

Introduction

As argued by the seminal work Shapley [1953], application of cooperative game theory to

practical situations requires that players be able to evaluate the very “prospect of having to

play a game”. In this paper, we provide a new notion of value using an extended notion of

efficiency along with monotonicity and symmetry axioms. This extended notion of efficiency

requires the sum of individual values to exhaust, not just the grand coalitional worth, but

the sum of worths of all coalitions in a cooperative game.

This notion of efficiency has received very little attention in the cooperative game theory

literature over the years. However, it is quite intuitive and applies to several practical set-

tings.1 A typical example of such a setting would be a firm whose ‘line workers’ or ‘partners’

∗The authors would like to thank Professors André Casajus and Hervé Moulin for their kind comments
and suggestions. Any remaining errors are our own.
†Indian Institute of Management Udaipur, Balicha, Udaipur - 313001, Rajasthan, India.

Email: ranojoy.basu@iimu.ac.in
‡Economics Group, Indian Institute of Management Calcutta, D. H. Road, Kolkata - 700104, India.

Email:conan.mukherjee@iimcal.ac.in
1One may think of modelling these practical settings by accounting a coalition’s worth to be sum of

worths of its sub-groups. However, as we argue in the Discussion section, such modelling would lead values
that are socially unacceptable.
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produce multiple products or services to generate profits, which in turn, are required to be

redistributed as bonuses.2 In line with Littlechild and Owen [1973], such firms can be mod-

elled as cooperative games, where teams of workers generate coalitional worths measured as

profits. The desirable bonus distribution, then, can be found from any acceptable solution

to such a game. However, any such bonus distribution would be socially acceptable only if

the sum of individual bonuses exhausts the sum of profits earned by all teams of workers;

that is, the bonus distribution satisfies our notion of extended efficiency. Indeed, the same is

noted about the globe-spanning behemoth ‘Anderson Worldwide’ with multiple departments

including accounting and consultancy, by Brown and Dugan [2002], who state that:

“all of the profits from all the practice areas had to go into one big pot to be

divided among partners”.

We combine this notion of extended efficiency with standard notions of symmetry and

monotonicity to obtain a new value for a cooperative game. Our symmetry axiom is same as

the one used by Shapley [1953], and requires that the values chosen should ignore individual

identity characteristics that are exogenous to the game. We use two notions of monotonicity.

The first notion of coalition monotonicity requires that across two different games: if every

coalition containing some agent i does better in the former than the latter, then the value to

i from the former game should be no less than that in the latter game. The second notion of

marginal monotonicity is the more conventional one, first proposed by Young [1985], which

requires that across any two games: if the ‘marginal contribution’ of any agent i in each

coalition is no less in former than the latter, then the value to i should be no less in the

former than the latter.3

Note that, apart from the technical importance in developing a value for cooperative

game, the symmetry and monotonicity axioms also embody important ethical perspectives.

In terms of our motivating example, the former property ensures that profits are distributed

in a manner independent of personal characteristics of players endowed by nature, while

the latter property embodies that natural idea that better performance should not lead to

lower rewards. These properties constitute a notion of fairness that is essential for practical

application of a value of a game, to a practical question of resource distribution. In absence of

such fairness, any collaborative enterprise is likely to disintegrate. In fact, the aforementioned

multinational company Anderson Worldwide, did break up into two separate businesses,

2The largest example of such a setting would a nation’s economy where the gross national product is
created by collaborative, and often overlapping, economic enterprises by sub-groups of citizens.

3As in Shapley [1953] and Young [1985], we define marginal contribution of any agent i in any coalition
S, as measured by the difference v(S)− v(S \ {i}).
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‘Accenture’ and ‘Anderson’, on account of profit sharing dispute between the accounting

and consulting divisions.4

We obtain two values or solutions for a cooperative game. The first value is an egalitarian

one which has been discussed and anticipated in the literature, albeit in different axiomatic

setups. It assigns to any player i a value that is simply the sum of average worths of all

coalitions containing i; and is the unique solution that satisfies extended efficiency, coalitional

monotonicity, and symmetry.

The main result of our paper, however, is the second value that we obtain as the unique

solution satisfying extended efficiency, marginal monotonicity, and symmetry. Note that the

seminal paper Young [1985], obtained Shapley value as the unique solution satisfying con-

ventional efficiency, marginal monotonicity, and symmetry. Thus, our second value, which

is characterized by extended efficiency and the same axioms, represents the necessary modi-

fication of Shapley value to be applicable to practical settings where conventional efficiency

is not applicable.

Relation to literature

Over the years, several papers have analyzed solutions for cooperative games. Most of these

papers focus on obtaining elegant characterizations of the Shapley value using newer axioms.

A few notable recent papers of this kind are Casajus and Huettner [2018], Casajus and Yokote

[2017], Maniquet [2003] and Casajus [2011]. Casajus and Huettner [2018] introduce a notion

of decomposition of value of an agent i into ‘direct’ and ‘indirect’ parts (where the latter part

measures the contribution of i into direct part of other agents), and show that Shapley value

is the only decomposer of the ‘naive’ solution (which assigns to each agent a value equal to her

marginal contribution to the grand coalition). Casajus [2011] shows that Shapley value is the

unique solution that conventional efficiency, null player property, and differential marginality,

while Casajus and Yokote [2017] shows that the same result continues to hold (with more than

two players) if one uses a weaker version of differential marginality.5 Maniquet [2003], on the

other hand, characterizes Shapley using axioms applicable to cooperative game-theroretic

4As noted in Brown and Dugan [2000], the overseeing arbitrator identified the institutional unfairness in
extant profit redistribution process as the primary reason for this dissolution, and observed that:

“Andersen Consulting was right in my opinion when they claimed that the Swiss corporate
entity [Anderson Worldwide] was not performing its coordinating obligations”.

See Nanda and Landry [1999] for further details.
5Note that the differential marginality axiom in Casajus and Yokote [2017] is a weaker version of the

marginal monotonicity condition of Young [1985] that we use. Casajus [2018] presents a characterization of
Shapley value using an even weaker condition called ‘superweak’ differential marginality and an additional
property concerning null players.
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model of queueing problems.

There are also papers that present modifications or extensions of Shapley value by either

altering the underlying axioms or by imposing structures on the opportunities of coopera-

tion.6 One of most interesting of such modifications in recent times, is the concept of ‘egali-

tarian Shapley values’, which are convex mixtures of Shapley value and the equal division of

the grand coalition among all players. Two notable papers discussing these egalitarian Shap-

ley values are Casajus and Huettner [2014] and Casajus and Huettner [2013] and van den

Brink et al. [2013]. van den Brink et al. [2013] completely characterized this class using con-

ventional efficiency, linearity, anonymity and weak monotonicity (a condition that is weaker

than our marginal monotonicity). Casajus and Huettner [2014] characterize these solutions

as the only ones that satisfy conventional efficiency, symmetry and weak monotonicity.

Our paper, too, looks for a new solution for a cooperative game that satisfies extended ef-

ficiency (instead of conventional efficiency) along with the standard axioms of symmetry and

monotonicity. As argued above, our second solution that is developed using marginal mono-

tonicity, presents an extension of Young’s result to the idea of extended efficiency. As noted

in Casajus and Huettner [2014], there are only two other such generalizations of Young’s

result in the transferable utility framework: Nowak and Radzik [1995] and De Clippel and

Serrano [2008]. The former relaxes the symmetry assumption to present a characterization

of weighted Shapley values, while the latter presents a extension of Shapley value to coop-

erative games with externalities (requiring the primitive to be partition function instead of

characterisitic function).

With respect to our egalitarian value obtained using coalitional monotonicity, two rele-

vant papers are: van den Brink [2007] and Moulin [1987]. The latter paper characterizes the

solution that equally divides grand coalitional worth among all players in a setting where

players are identified by heterogeneous opportunity costs. The former paper explores con-

nections between the equal division of grand coalitional worth and the null player property

of Shapley [1953]. It provides characterizations of this value using a modification of this null

player property, and a same notion of monotonicity that is same as our axiom of coalitional

monotonicity.

Note that all these papers mentioned before use the conventional axiom of efficiency. We

are unaware of any other paper that uses the notion of extended efficiency axiom to present

an extension of Shapley [1953].

6Two excellent resources surveying literature on generalizations of Shapley value in transferable utility
settings are Monderer and Samet [2002] and Winter [2002].
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Model

Consider a set N = {1, 2, . . . , n} where n ≥ 2. For any set S ⊆ N , let ρ(S) be the set of all

possible non-empty subsets of S. Define a transferable utility cooperative game to be a pair

(N, v) where N is the set of players and v : ρ(N) ∪ ∅ 7→ R is a characteristic function that

assigns to each possible coalition in the game a real valued worth and v(∅) := 0. Let V(N)

denote the class of all such characteristic functions that can be defined on the set ρ(N), and

define {(N, v)}v∈V(N) to be the class of all possible games that can be defined on the player

set N . Note that we do not impose any superadditivity restriction on the set of functions

V(N).

Our objective is to obtain a solution (that is, a value distribution across players) for each

possible game so that a society of players can make an informed choice on which games to

play. That is, we seek to obtain a solution ψ : V(N) 7→ RN . In this paper, we require such

a solution to satisfy the axioms of extended efficiency, symmetry and monotonicity.

The first axiom of extended efficiency requires that a solution should exhaust sum of

worths of all coalitions. Any violation of this axiom would lead to wastage of resources,

which would be unacceptable in any practical application.

Definition 1 ψ(·) satisfies extended efficiency (EFF∗) if and only if for all v ∈ V(N) and

all i ∈ N , ∑
i∈N

ψi(v) =
∑

S∈ρ(N)

v(S).

Note that our notion of extended efficiency is different from the conventional notion of

efficiency of a solution to a game, which requires that sum of individual values sum up to be

equal to the grand coalitional worth. As argued earlier, there are several practical situations

of cooperative enterprise, where this conventional efficiency is not applicable.

Our second axiom presents the basic notion of fairness that requires any solution to ignore

the player identities. Shapley [1953], calls this the axiom of symmetry. To formally describe

this property, we define a permutation of player identities to be a bijection π : N 7→ N , π(S)

to be the restriction of such a permutation to any subset S ∈ ρ(N); and πv ∈ V(N) to be

a characteristic function derived from any other function v ∈ V(N) using this permutation

π(·) of identities, where πv(π(S)) := v(S) for all S ⊆ N .

Definition 2 ψ(·) satisfies symmetry (SYM) if and only if for all bijections π : N 7→ N and

all i ∈ N, v ∈ V(N),

ψπ(i)(πv) = ψi(v).
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Our third axiom requires that the solution satisfy ‘coalitional monotonicity’ in the sense

that the value assigned to any player i should not decrease, when the underlying characteristic

function v changes to any other function v′ in a manner such that worths of all coalitions

containing i increases. That is, value assigned to an agent should increase if profitability of

all cooperative groups containing her improves.

Definition 3 ψ(·) satisfies coalitional monotonicity (C-MON) if and only if for all v, v′ ∈
V(N), and all i ∈ N ,

[v(S ∪ {i}) ≤ v′(S ∪ {i}), ∀ S ⊆ N \ {i}] =⇒ [ψi(v) ≤ ψi(v
′)].

Our fourth axiom presents an alternative notion of monotonicity which requires that a

solution satisfy ‘marginal monotonicity’ (as proposed in Young [1985]). This idea of mono-

tonicity requires that the value assigned to any player i should not decrease, when the

underlying characteristic function changes in a manner such that marginal contributions of

i to all groups containing her, increase. As in Shapley [1953], we quantify such a marginal

contribution of a player i to any team S ⊆ N , by the difference civ(S) := v(S) − v(S \ {i})
with the convention that ci(∅) = 0. Further, we define for all i ∈ N and all v ∈ V(N), the

individual contribution vector civ := (civ(S))S⊆N as the collection of marginal contributions

of each player across all coalitions in ρ(N). These notations allows us to define marginal

monotonicity in the following manner:

Definition 4 ψ(.) satisfies marginal monotonicity (M-MON) if and only if for all i ∈ N

and all v, v′ ∈ V(N),

[civ ≤ civ′ ] =⇒ [ψi(v) ≤ ψi(v
′)].

Results

The following theorem states our first result. It shows that if one accepts symmetry, coali-

tional monotonicity and extended efficiency as the necessary properties that any solution

must satisfy, then the only option available is to assign to any agent i the amount equal to

the sum of average worths of all coalitions containing i.

Theorem 1 A solution ψ̄(.) satisfies EFF∗, SYM and C-MON if and only if for all i ∈ N
and all v ∈ V(N),

ψ̄i(v) :=
∑

S∈ρ(N),i∈S

v(S)

|S|
.

6



Proof: See Appendix. �

Note that Theorem 1 sums up the averages of coalitional worths to obtain the value

for an individual player. Therefore, for a two player game ({1, 2}, v), Theorem 1 implies a

solution:

ψ̄1(v) =
v(12)

2
+ v(1), ψ̄2(v) =

v(12)

2
+ v(2),

while for a three player game ({1, 2, 3}, v), it proposes a solution:

ψ̄1(v) =
v(123)

3
+
v(12)

2
+
v(13)

2
+ v(1),

ψ̄2(v) =
v(123)

3
+
v(12)

2
+
v(23)

2
+ v(2),

ψ̄3(v) =
v(123)

3
+
v(13)

2
+
v(23)

2
+ v(3).

Main Result

Observe that averaging of coalitional worths prior to its addition in the solution proposed

by Theorem 1, lends an egalitarian character to the implied value distribution. However, it

is unlikely that all members of a team put in equal amounts of efforts in generating team

profits or worths. One way to account for any difference in effort or productivity of a member

of a group, is to compute her marginal contribution to the team as in Shapley [1953]. The

following theorem presents our main result, which states the implication of using marginal

monotonicity instead of coalitional monotonicity. We find that ψ∗ is the unique solution that

satisfies extended efficiency, symmetry and marginal monotonicity.

Theorem 2 A solution ψ∗ satisfies EFF∗, SYM and M-MON if and only if for all i ∈ N
and all v ∈ V(N),

ψ∗i (v) :=
1

n!

n∑
t=1

βnn−t+1


∑

S∈ρ(N),

|S|=t,i∈S

civ(S)

 ,

where n := |N | and βnl :=
n!+(l−1)βnl−1

n−l+1
for all l = 1, 2, . . . , n.

Proof:

Sufficiency: It can easily be seen that ψ∗i (·) satisfies SYM and M-MON. To show that it
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satisfies EFF∗, we first note that for any v ∈ V(N), any i and any t = 1, . . . , n,∑
i∈N

∑
S∈ρ(N),

|S|=t,i∈S

civ(S) = t
∑

S∈ρ(N),

|S|=t

v(S)− (n− t+ 1)
∑

S∈ρ(N),

|S|=t−1

v(S).

Therefore, ∑
i∈N

ψ∗i (v) =
1

n!

n∑
t=1

{
tβnn−t+1 − (n− t)βnn−t

} ∑
S∈ρ(N),

|S|=t

v(S).

Since, tβnn−t+1− (n− t)βnn−t = n! for all t;
∑
i∈N

ψ∗i (v) =
∑

S∈ρ(N)

v(S) and thus it satisfies EFF∗.

This establishes the sufficiency of the result.

Necessity: Fix a solution ψ(·) such that it satisfies EFF∗, SYM and M-MON. Also define,

for any characteristic function v ∈ V(N),

η(v) := |ρ(N)| − |{S ∈ ρ(N) : v(S) = 0}|+ 1.

Now, consider a characteristic function v ∈ V(N) with η(v) = 1. For all i 6= j and all

permutations π such that π(i) = j, π(j) = i, SYM implies that ψi(v) = ψj(v). Thus, by

EFF∗, we get that for any characteristic function v with η(v) = 1, ψi(v) = 0 = ψ∗i (v) for all

i ∈ N . Now, fix a k ∈ {1, . . . , |ρ(N)|} and suppose that for all v ∈ V(N) such that η(v) ≤ k,

ψi(v) = ψ∗i (v) for all i. In the following paragraphs, we show how this induction hypothesis

implies that for all v ∈ V(N) such that η(v) = k + 1, ψi(v) = ψ∗i (v) for all i ∈ N .

Fix a v ∈ V(N) with η(v) = k+ 1 and any i ∈ N . If there exist a Ti ∈ ρ(N) such that i /∈ Ti
and v(Ti) 6= 0, then construct a characteristic function vTi ∈ V(N) such that for all

vTi(S) :=


v(Ti ∪ {i})− v(Ti) if S = Ti ∪ {i}
0 if S = Ti

v(S) otherwise

By M-MON and induction hypothesis, ψi(v) = ψi(vTi) = ψ∗i (vTi) = ψ∗i (v).

Now, consider the other possibility where for all T ∈ ρ(N) with i /∈ T , v(T ) = 0. This

possibility leads to two further cases: (i) v({i}) 6= 0 and (ii) v({i}) = 0. In case (i), construct

the characteristic function ṽ ∈ V(N) such that for all S ∈ ρ(N); if i /∈ S, ṽ(S) := v(S) and

if i ∈ S, ṽ(S) := v(S) − v({i}). By M-MON and induction hypothesis, for all j 6= i,

ψj(v) = ψj(ṽ) = ψ∗j (ṽ) = ψ∗j (v). Since ψ∗(.) satisfies EFF∗ (as shown in the proof of

sufficiency), it follows that ψi(v) = ψ∗i (v).
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In case (ii), define a set {S1, S2, . . . , St} := {S ∈ ρ(N)|v(S) 6= 0, S 6= N}. Since η(v) = k+1,

such a set is well defined. Further, define E := ∩tr=1Sr and note that i ∈ E by construction.7

If |E| > 1, then fix any j 6= k ∈ E, and consider the bijection πjk : N 7→ N such that

πjk(j) = k, πjk(k) = j, and πjk(l) = l for all l ∈ N \ {j, k}. By construction, for any

T ⊆ N , if E ⊆ T , then πjk(T ) = T which implies that πjkv(T ) = πjkv(πjk(T )) = v(T );8

or else (that is, if E is not a subset of T ), πjkv(T ) = v(T ) = 0. Therefore, by SYM, it

follows that whenever |E| > 1, ψj(v) = ψk(v), ∀ {j, k} ⊆ E. Thus, EFF∗ implies that

for all j ∈ E, ψj(v) = 1
|E|

{∑
r=1,...t v(Sr) + v(N)−

∑
l /∈E ψl(v)

}
, which is equivalent to the

statement (a) ψj(v) = 1
|E|

 ∑i∈S,
S⊆N

v(S)−
∑
l /∈E

ψl(v)

 ,∀ j ∈ E. Also note that if |E| = 1, then

(a) follows directly from EFF∗.

To compute ψl(v) for any l /∈ E, note that for any such agent l, by construction, there exists

an Srl ∈ {S1, . . . , St} such that l /∈ Srl . Define the characteristic function v̂rl ∈ V(N) such

that ∀ T ∈ ρ(N); if Srl ⊆ T , v̂rl(T ) := v(T ) − v(Srl), or else v̂rl(T ) := v(T ). Now, by M-

MON and induction hypothesis, for all j ∈ N \Srl , ψj(v) = ψj(v̂rl) = ψ∗j (v̂rl) = ψ∗j (v). Thus,

arguing in this manner, we can show that for all l /∈ E, ψl(v) = ψl(v̂rl) = ψ∗l (v̂rl) = ψ∗l (v).

Therefore, for all j ∈ E, ψj(v) = 1
|E|

 ∑j∈S
S⊆N

v(S)−
∑
∈E
ψ∗l (v)

. Further, by construction of

E,
∑
j∈S
S⊆N

v(S) =
∑

S∈ρ(N)

v(S) for all j ∈ E. So, by the proof of sufficiency, EFF* implies that

ψj(E) = 1
|E|
∑
l∈E

ψ∗l (v). It is easy to check that ψ∗l (v) = ψ∗l′ for all l, l′ ∈ E, and so, we get

that ψj(v) = ψ∗j (v) for all j ∈ E. �

It can be seen that Theorem 2 prescribes for two player game ({1, 2}, v), a solution where,

ψ∗1(v) =
v(12)− v(2)

2
+

3v(1)

2

ψ∗2(v) =
v(12)− v(1)

2
+

3v(2)

2
,

7Recall that we are considering the possibility where for all T ∈ ρ(N) with i /∈ T , v(T ) = 0.
8See definition of the characteristic πv(.) in Definition 2.

9



while for a three player game ({1, 2, 3}, v), it proposes a solution:

ψ∗1(v) =
v(123)− v(23)

3
+

2{[v(13)− v(3)] + [v(12)− v(2)]}
3

+
7

3
v(1)

ψ∗2(v) =
v(123)− v(23)

3
+

2{[v(13)− v(3)] + [v(12)− v(2)]}
3

+
7

3
v(2)

ψ∗3(v) =
v(123)− v(12)

3
+

2{[v(13)− v(3)] + [v(12)− v(2)]}
3

+
7

3
v(3).

Note how, unlike Theorem 1, Theorem 2 requires that the weights given to marginal contri-

bution of any player to groups containing her, decrease as the group sizes increase. So the

least weight is given to the marginal contribution to the grand coalition, while the maximum

weight is given to the singleton coalition (that is, what the player can do alone).

Note that a difficult feature of functional form of the value ψ∗(.) presented in Theorem

2 is that the coefficients βn1 , β
n
2 , . . . , β

n
n are defined in a recursive manner. The following

corollary presents a simpler functional formulation of the βt values.

Corollary 1 For any t = 1, . . . , n,

βnt = (n− t)!(t− 1)!
t−1∑
k=0

(
n

k

)
.

Proof: We prove this result by induction. Note that βn1 =
n!+(1−1)βn0
n−1+1

= (n− 1)! 0!
(
n
0

)
. Now

suppose that for all m ∈ N, βnm = (n−m)!(m− 1)!
∑m−1

k=0

(
n
k

)
. Then, by Theorem 2,

βnm+1 = n!+(m+1−1)βnm
n−(m+1)+1

=
n!+m(m−1)!(n−m)!

∑m−1
k=0 (nk)

n−m

= m!(n−m− 1)!
{
n(n−1)...(n−m+1)

m!
+
∑m−1

k=0

(
n
k

)}
= {(m+ 1)− 1}!{n− (m+ 1)}!

∑{(m+1)−1}
k=0

(
n
k

)
and so, the result follows. �

Therefore, in light of Corollary 1, for any i ∈ N and v ∈ V(N), ψ∗i can be rewritten as

follows:

ψ∗i (v) :=
∑

S∈ρ(N)

γ∗sc
i
v(S)

where for all t = 1 . . . , n, γ∗t :=
βnn−t+1

n!
= 1

(n−1
t−1)

∑n−t
k=0

1
n−k

(
n−1
k

)
and s := |S|,∀ S ∈ ρ(N).

Thus, Corollary 1 allows us to represent ψ∗i (·) as a linear combination of marginal contribu-

10



tion of player i, with the weights being given by γ∗s .

The following example provides a contrast between the two values presented by Theorems

1 and 2, by applying them to the contentious, but relevant, problem of bonus distribution

which led to dissolution of Anderson Worldwide.

Example 1 Consider a problem with 3 line workers who have collaborated in pairs, as well

as a three member group to service three different clients over the year, and have generated

aggregate profit of $130. Their performance numbers are as shown in the following table 1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 0 0 0 10 20 30 70

Table 1: Team performance data.

Given this data, as in Shapley [1953], we can compute individual contributions of each

worker to each team by calculating for all i = 1, 2, 3, civ(S) = v(S) − v(S \ {i}). This data

is presented in the following Table 2.

S v(S) c1v(S) c2v(S) c3v(S)

{1} 0 0 0 0

{2} 0 0 0 0

{3} 0 0 0 0

{1, 2} 10 10 10 0

{1, 3} 20 20 0 20

{2, 3} 30 0 30 30

{1, 2, 3} 70 40 50 60

Table 2: Individual contributions to each team.

Thus, we can obtain a bonus distribution as per the two rules that we have presented in

the following Table 3:

Discussion

A case can be made for an alternative manner of cooperative game theory modelling of

a practical social setting using the following modified characteristic function w(·), which

11



1 2 3

ψ̄ (Theorem 1) 115
3

130
3

145
3

ψ∗(Theorem 2) 100
3

130
3

160
3

Table 3: Bonus distributions.

assigns worth of any group of players S ⊆ N to be w(S) :=
∑
T⊆S

v(s) (that is, worth of S is

sum of worths of all subsets T of S). For such a model, the conventional notion of efficiency

would imply our extended efficiency. In terms of the example discussed above, the modified

characteristic function becomes as described in table 4.

S w(S)

{1} 0

{2} 0

{3} 0

{1, 2} 10

{1, 3} 20

{2, 3} 30

{1, 2, 3} 130

Table 4: Modified characteristic function.

Note that the Shapley value for this modified game for player i given by

ϕSi (w) :=
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(w(S ∪ {i})− w(S)), (1)

where N = {1, 2, 3}, and ϕSi (w) represents the bonus received by player i. Simple calcula-

tion using the modified characteristic function in table 4 yields the Shapley distribution of

bonuses: ϕS1 (w) = 115
3

, ϕS2 (w) = 130
3

, ϕS3 (w) = 145
3

. Interestingly, this is the same distribution

as the one prescribed by Theorem 1.

It may, therefore, appear that the Shapley [1953] value for this modified game (w(·), N)

would lead to same profit distribution (see table 3) as the distribution rule ψ∗(·) described

in Theorem 2, since the latter relies on the same notion of marginal contribution as Shapley

[1953]. However, this is not the case as the profit distribution implied by Theorem 2 is(
100
3
, 130

3
, 160

3

)
, which is different from the Shapley value for the modified game

(
115
3
, 130

3
, 145

3

)
.
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Most importantly, however, this alternate manner of constructing a characteristic func-

tion may be socially unacceptable in a practical setting, as the value generated by a group

of players gets attributed to a larger set. That is, for a simple two player game ({1, 2}, v):

the marginal contribution of 1 is now v(2) + v(12), which is unlikely to be acceptable to

the player 2, who finds that working harder on her own enhances the marginal contribu-

tion of her competitor within the organization. Similarly, player 1 would find it difficult

to accept such accounting procedure where her marginal contribution vector depends on

the individual performance of her competitor. Hence, from an application perspective to

real life problems, potentially of great importance in a country’s economy, our approach of

constructing a characteristic function is more useful.9

Conclusion

In this paper, we formalize a novel notion of extended efficiency to conceptualize the no-

wastage condition in settings where the traditional notion of efficiency is not applicable.

Such settings are those where the members of a society work in sub-groups to generate

resources for the society; like the gross national product of a nation being generated by

various cooperative enterprises among sub-groups of her citizens. Unlike the conventional

efficiency axiom of cooperative game theory literature, this axiom requires that a solution

to a game assign individual values that sum up to equal the sum of worths of all possible

coalitions.

We use this novel axiom, along with the standard monotonicity and symmetry axioms

to characterize a new solution for cooperative games which, in the spirit of Young [1985],

presents an extension of Shapley value to these practical settings.

Appendix

Independence of Axioms

Theorem 1

For simplicity of exposition, consider a 2-player game (N = {1, 2}, v). Clearly there are

three possible coalitions: {1}, {2} and {1, 2}. Consider the following solutions:

9As noted in Mossin [1968], these considerations are applicable to situations like firm mergers, which may
be as critical as the famous merger of Merril Lynch with Bank of America in wake of the sub-prime crisis of
2008 that led to saving of thousands of jobs.

13



• ψ1(v) = v({1}) + 0.8v({1, 2}), ψ2(v) = v({2}) + 0.2v({1, 2}). It is easy to see that this

solution satisfies EFF∗ and C-MON. However, if the agent labels were interchanged,

the individual values would not get interchanged for all possible v(.) - implying that

this rule does not satisfy SYM.

• ψ1(v) = v({1}) + v({1,2})
4

, ψ2(v) = v({2}) + v({1,2})
4

. It is easy to see that this solution

satisfies C-MON and SYM. However, for any v(.), ψ1(v) + ψ2(v) = v({1}) + v({2}) +
v({1,2})

2
, and so, this rule does not satisfy EFF∗.

• ψ1(v) = v({1}) + v({1}) v({1,2})
v({1})+v({2}) , ψ2(v) = v({2}) + v({2}) v({1,2})

v({1})+v({2}) . It is easy to see that this

rule satisfies EFF∗ and SYM. However, consider two characteristic functions, w(.) and

w′(.) such that w({1, 2}) = w′({1, 2}), w({1}) = w′({1}) and w({2}) > w′({2}). It is

easy to see that ψ1(w) < ψ1(w
′) even though 1’s coalitional worths in the groups {1}

and {1, 2} remain unchanged across characteristic functions w and w′. Note that, by

C-MON,

[w({1}) = w′({1}), w({1, 2, }) = w′({1, 2, })] =⇒ ψ1(w) = ψ1(w
′),

and so, this solution violates C-MON.

Theorem 2

As before, for simplicity of exposition, we consider a 2 player game (N = {1, 2}, w) with

three possible coalitions: {1}, {2} and {1, 2}. Consider the following solutions:

• ψ′1(v) = 0.75v({1}) + 0.25(v({1, 2})− v({2})), ψ′2(v) = 0.75v({2}) + 0.25(v({1, 2})−
v({1})). It is easy to see that this solution satisfies M-MON and SYM. However,

ψ′1(v) + ψ′2(v) = 0.5[v({1, 2}) + v({1}) + v({2})], and so, it does not satisfy EFF∗.

• Fix a small enough ε > 0, and consider ψ′1(v) = 1.5v({1}) + 0.5(v({1, 2})− v({2})) +

ε, ψ′2(v) = 1.5v({2}) + 0.5(v({1, 2}) − v({1})) − ε. It is easy to see that this rule

satisfies EFF∗ and M-MON but does not satisfy SYM (as an interchange of agent labels

would not lead to interchange in individual values).

• ψ′1(v) = v({1}) + v({2}) v({1,2})
v({1})+v({2}) , ψ′2(v) = v({2}) + v({1}) v({1,2})

v({1})+v({2}) . It is easy to see that this

solution satisfies EFF∗ and SYM. However, consider two characteristic functions v and

v′ such that v({2}) > v′({2}) and v(S) = v′(S) when S ∈ {{1}, {1, 2}}. This means

that c1v({1}) = c1v′({1}), and c1v({1, 2}) < c1v′({1, 2}). Therefore, M-MON requires that

ψ′1(v) ≤ ψ′1(v
′). However, by construction, ψ′1(v) > ψ′1(v

′), and so, it follows that this

solution violates M-MON.
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Proof of Theorem 1

Define for all i ∈ N and all v ∈ V(N), ψ̄i(v) :=
∑

S∈ρ(N),i∈S

v(S)
|S| .10

It can easily be checked that ψ̄i(v) satisfies EFF∗, SYM and C-MON, and so, the

proof of sufficiency follows. To prove necessity, fix any solution ψ(.) satisfying EFF∗,

SYM and C-MON, and any i ∈ N . Now consider the partition of V(N) into the set

P := {V 0, V 2, . . . , V |ρ(N)|} such that for all k = 0, . . . , |ρ(N)|, V k is the set of characteristic

functions such that there are exactly k teams in ρ(N) who have posted zero profit/worth.

It can easily be seen that: (i) by construction V(N) = R|ρ(N)|
+ , (ii) for all k 6= l ∈ {1, . . . , n},

V k ∩ V l = ∅, and ∪nk=0V
k = R|ρ(N)|

+ . Hence, P is well defined.

Now fix any characteristic function v|ρ(N)| ∈ V |ρ(N)|, any i 6= j, and any permutation πij :

N 7→ N such that πij(i) = j, πij(j) = i. Note that by SYM, ψi(v
|ρ(N)|) = ψj(v

|ρ(N)|). Hence,

EFF∗ implies that nψi(v
|ρ(N)|) = 0 =⇒ ψi(v

|ρ(N)|) = 0,∀ i ∈ N . Now suppose that for

some l ∈ {1, . . . , |ρ(N)|}, (a) vl ∈ V l =⇒ ψi(v
l) = ψ̄i(v

l),∀ i ∈ N . Now consider any

vl−1 ∈ V l−1, and define Ñ(vl−1) := {i ∈ N |∀ S ∈ ρ(N), i /∈ S =⇒ vl−1(S) = 0}. Thus

Ñ(vl−1) ⊆ N is the set of agents i such that any team S ∈ ρ(N) not containing i, has zero

worth in vl−1. Therefore, if Ñ(vl−1) = N , then for any S ∈ ρ(N), S 6= N =⇒ vl−1(S) = 0,

and so, vl−1(N) > 0 (as l − 1 < |ρ(N)| by construction). Now, as before, any i 6= j ∈ N ,

and any permutation πij with πij(i) = j and πij(j) = i, πijvl−1 = vl−1, and so, by SYM,

ψi(v
l−1) = ψj(v

l−1). Hence, EFF∗ implies that ψi(v
l−1) = ψ̄i(v

l−1). This establishes the

result for the case where Ñ(vl−1) = N .

Now, if Ñ(vl−1) ⊂ N , then for any i /∈ Ñ(vl−1), choose a T i(vl−1) ∈ ρ(N) such that

i /∈ T i(vl−1) and vl−1(T i(vl−1)) > 0. Note that by construction of Ñ(vl−1), the set T i(vl−1)

is well defined. Construct a characteristic function ṽli ∈ V l where for all S ∈ ρ(N), S 6=
T i(vl−1) =⇒ ṽl(S) = vl−1(S) and ṽl(T i(vl−1)) = 0. By supposition (a) and C-MON,

ψi(v
l−1) = ψi(ṽ

l) = ψ̄i(ṽ
l) for all i /∈ Ñ(vl−1). This establishes the result for the case

where Ñ(vl−1) = ∅. Further, if |Ñ(vl−1)| = 1, that is, supposing Ñ(vl−1) = {l∗}, by EFF∗,

ψl∗(v
l−1) =

∑
S∈ρ(N) v(S) −

∑
i/∈Ñ(vl−1) ψ̄(vl−1) which equals ψ̄l∗(Ñ(vl−1), because as argued

in proof of sufficiency above, ψ̄(.) satisfies EFF∗.

Now, to establish the result for the only remaining possibility where 0 < |Ñ(vl−1)| < n,

note that by construction, for any S ∈ ρ(N), vl−1(S) > 0 =⇒ Ñ(vl−1) ⊆ S. There-

fore, for any i 6= j ∈ Ñ(vl−1), and any permutation πij such that πij(i) = j, πij(j) = i,

πijvl−1 = vl−1, and so, by SYM, ψi(v
l−1) = ψj(v

l−1). Therefore, EFF∗ implies that for all

i ∈ Ñ(vl−1), |Ñ(vl−1)|ψi(vl−1) =
∑

S∈ρ(N) v
l−1(S)−

∑
j /∈Ñ(vl−1) ψj(v

l−1) =
∑

S∈ρ(N) v
l−1(S)−

10The proof technique resembles a similar result is proved in Mukherjee et al. [2020].
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∑
j /∈Ñ(vl−1) ψ̄j(v

l−1). Therefore,11

ψi(v
l−1) =

1

|Ñ(vl−1)|

 ∑
Ñ(vl−1)⊆S

vl−1(S)−
∑

j /∈Ñ(vl−1)

∑
j∈S,

Ñ(vl−1)⊆S

vl−1(S)

|S|

 ,

and so, for all i ∈ Ñ(vl−1), ψi(v
l−1) = 1

|Ñ(vl−1)|

∑
Ñ(vl−1)⊆S

{
vl−1(S)−

∑
j∈S\Ñ(vl−1)

vl−1(S)
|S|

}
=

1
|Ñ(vl−1)|

∑
Ñ(vl−1)⊆S

|Ñ(vl−1)|vl−1(S)
|S| , which by construction of Ñ(vl−1), is equal to

∑
i∈S,

S∈ρ(N)

vl−1(S)
|S| =

ψ̄i(v
l−1). �
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