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Abstract:  

In this paper, I address a variant of traditional Generalized Assignment Problem (GAP) where 

multiple agents are assigned to jobs to satisfy the task requirements. I refer to this problem as 

a generalized assignment problem with demand constraints (GAPD). Like GAP, the GAPD is 

also a well-known (and NP-hard) combinatorial optimization problem. I present the well-

known generic cover and (1, k)-configuration inequalities for a single job. Furthermore, I 

introduce several other classes of non-trivial valid inequalities involving multiple jobs.  
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A Polyhedral Study of Generalized Assignment Problem

with Demand Constraints

1 Introduction

The traditional Generalized Assignment Problem (GAP) is a classical NP-hard discrete optimization prob-

lem. It consists of minimizing the assignment costs of a set of jobs to a set of machines while satisfying

the capacity constraints. It is one of the most widely addressed problems in the integer programming and

combinatorial optimization literature (Cattrysse and Van Wassenhove, 1992).

The purpose of this paper is to study a problem similar to the GAP where a set of agents with limited

pro�ciency are assigned to a set of jobs to satisfy their demands. The demand constraints are typically the

well-known knapsack inequalities in the form of greater-than-or-equal-to type constraints. Like the GAP, an

agent can be assigned to one job only. I assume that the cost of assignment is proportional to the pro�ciency

of the agent. I refer to this problem as generalized assignment problem with demand constraints (GAPD).

Hence, it is a variant of the GAP.

GAPD has numerous real life applications and it may also appear as a sub-problem in several other

problems. Although, I started with a problem that considers assignment of agents to jobs, problems with

similar structures arise in many other real life scenarios. I provide a few such examples here. In a software

development �rm, managers often estimate the man-hour requirements for the ongoing projects and allocate

a group of software professionals in form of teams to di�erent projects to meet the requirements. Also, GAPD

appears as a sub-problem to sta� scheduling and rostering problem where a �rm constructs work timetables

for its sta� to satisfy the demand for goods or services. The application areas of sta� scheduling and rostering

include health care systems, transportation services such as airlines and railways, emergency services such

as police, ambulance and �re brigade, call centres, and other service �rms like hotels, restaurants and retail

stores (Ernst et al., 2004; Van den Bergh et al., 2013). Similar situations also arise in some other contexts

such as load balancing in assembly lines. Motivated by the examples mentioned above, this paper introduces

a family of valid inequalities for the GAPD.

The GAPD can be described as follows. Each agent has heterogeneous pro�ciencies in terms of man-

hours to di�erent jobs. Now, each job has its own man-hour requirements (demands). Hence, the agents

are assigned to jobs to meet the man-hour requirements. Let, M := {1, . . . ,m} be the set of agents and

N := {1, . . . , n} be the set of jobs. If an agent (�she�) k ∈ M is assigned to a job j ∈ N , then she can

contribute ajk ≥ 0 man-hours. Also, let cjk ≥ 0 be the wage paid to (cost of ) agent k ∈ M for being
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assigned to job j ∈ N . I denote dj ≥ 0 as the man-hour demand required to complete the job j ∈ N . I

assume that m,n ≥ 2. The GAPD is formulated as the following integer program:

min
∑

j∈N

∑

k∈M
cjkxjk

s.t

∑

k∈M
ajkxjk ≥ dj , j ∈ N (1)

∑

j∈N
xjk ≤ 1, k ∈M (2)

xjk ∈ {0, 1} , j ∈ N , k ∈M (3)

In GAPD, the objective is to minimize the sum of wages paid to the agents. The �rst set of constraints

(1) ensure the demand dj (in terms of man-hour) of each job j ∈ N must be fully satis�ed (demand

constraints). Constraint set (2) enforces that every agent can be assigned to at maximum one job (SOS

constraints). Although, a job can take multiple agents.

Let d = {dj}j∈N , c = {cjk}j∈N ,k∈M, a = {ajk}j∈N ,k∈M denote the demand, cost and pro�ciency vectors

corresponding to a data instance. Given an instance N ,M,d, c,a of the GAPD, I de�ne

XGAPD =
{
x ∈ R|N |×|M|

∣∣∣x satis�es (1), (2), (3)
}
.

The purpose of this paper is to study the GAPD polytope, XGAPD. Then the convex hull of the 0 − 1

vertices of the GAPD polytope

PGAPD = conv
{
x ∈ R |N |×|M|

∣∣∣x satis�es (1), (2), (3)
}
.

Assumption 1.
∑

k∈M
min
j∈N

ajk ≥
∑

j∈N
dj .

Assumption 1 states that XGAPD 6= ∅, i.e., there exists at least a �exible solution.

The GAP is a widely addressed problem in the integer programming literature. Di�erent types of heuristic

and exact algorithms are presented in (Ross and Soland, 1975; Martello and Toth, 1981; Savelsbergh, 1997;

Nauss, 2003). Cattrysse et al. Cattrysse et al. (1998) are the �rst to use a B&C algorithm to solve the GAP.

Later, Avella et al. Avella et al. (2010) use an exact knapsack separation algorithm embedded into a B&C
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scheme. A few papers also study the polyhedral structure of the GAP (Gottlieb and Rao, 1990b,a; De Farias

and Nemhauser, 2001). These papers have introduced several types of valid inequalities that are valid to

GAP polytope. Finally, this problem considers the knapsack inequalities are in the form of greater-than-or-

equal-to types of inequalities. The polyhedral study on knapsack inequalities is well researched (Balas, 1975;

Hammer et al., 1975; Balas and Zemel, 1978; Wolsey, 1990; Gokce and Wilhelm, 2015). Among them, Gokce

et al. Gokce and Wilhelm (2015) presents valid inequalities for greater-than-or-equal-to types of knapsack

inequalities, augmented by generalized upper bound (GUB) constraints.

Although the literature on GAP with capacity constraint is abundant, to the best of my knowledge none

of them has addressed the GAP with a demand ful�lment constraint. The problem structure of GAP changes

completely when the capacity constraints are replaced by demand constraints. Despite GAPD may appear

as a relaxation to many integer programming problems, the literature to study the polyhedral properties of

PGAPD is quite limited. To the best of my knowledge, I am the �rst to address the GAPD problem and to

study polyhedral structure of it. I derive a class of valid inequalities that has to describe underlying GAPD

polytope PGAPD. At �rst, I present the well-known generic cover and (1, k)-con�guration inequalities for

single job. Next, I derive several classes of non-trivial valid inequalities involving multiple jobs.

The remainder of the paper is organized as follows. In Section 2, I study the polyhedral structures of the

proposed model and derive several classes of inequalities valid to this problem. In Section 3, I conclude the

work.

2 Valid Inequalities for the GAPD

In this section, I study the polyhedral structure of GAPD. First, I prove that GAPD is a NP-Hard problem

in a strong sense. Then I present two well-known classes of inequalities such as cover inequalities and (1, k)-

con�guration inequalities. After that I derive three di�erent classes of inequalities which consider multiple

jobs.

Proposition 1. The GAPD is a NP-hard problem in the strong sense.

Proof. The NP-hardness of GAPD can be easily proved by establishing that the well-known 3−PARTITION

problem is its special case (Garey and Johnson, 1979). Let the GAPD is restricted to special case by

considering an instance with cjk = ck for k ∈ M; ajk = ak for k ∈ M. However, this restricted GAPD can

be thought of a variant of a multiple knapsack problem (Martello, 1990). In fact, given these set of 2|M|+|N |

positive integers c1, . . . , c|M|; a1, . . . , a|M|; d1, . . . , d|N | and another positive integer α, this restricted GAPD

investigates if there exists |N | disjoint subsets S1, S2, . . . , S|N | ofM such that
∑
k∈Sj

ak ≥ dj for j ∈ N and
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∑
j∈N

∑
k∈Sj

ck ≤ α. Now, any data instance I of the 3−PARTITION problem can be pseudo-polynomially

transformed, without loss of generality, into an equivalent instance Î of the restricted GAPD (i.e., a case

of multiple knapsack problem) by setting dj = B for j ∈ N , ck = 1 for k ∈ M and α = |M| (Martello,

1990). As a 3−PARTITION problem is strongly NP-hard, the restricted GAPD is also NP-hard (Garey and

Johnson, 1979). Hence, the GAPD as a generalization of the restricted GAPD must also be NP-hard.

2.1 Individual Cover Inequalities

GAPD has a special structure. The problem consists of |N | number of greater-than-equal-to type of knapsack

constraints. Let, PKP (j) denotes the knapsack polytope corresponding to job j ∈ N . Then,

PKP (j) =
{ ∑

k∈M
ajkxjk ≥ dj |xjk ∈ {0, 1} , k ∈M

}
,∀j ∈ N .

The knapsack polytope PKP (j) is a relaxation of XGAPD. Cover inequalities were introduced by Balas

Balas (1975), Hammer et al. Hammer et al. (1975) and Balas et al. Balas and Zemel (1978) for a knapsack

polytope. Later, Gottlieb and Rao Gottlieb and Rao (1990b) also derived the individual cover inequalities

for GAP. Here I present similar inequalities for the PKP (j).

De�nition 2.1. A set Cj ⊆M,∀j ∈ N and C̄j :=M\Cj . Cj is an individual cover for j ∈ N if

∑

k∈C̄j

ajk < bj .

If Cj is a cover for job j ∈ N , then C̄j is also de�ned as the anti-cover for j.

De�nition 2.2. The set Cj is a minimal individual cover if

∑

k∈C̄j∪{`}
ajk ≥ bj

for all ` ∈ Cj .

The de�nition of individual cover Cj provides a feasibility condition for PGAPD polytope. At least one of

the variables in cover Cj need to be equal to 1 to satisfy the feasible space. Next, the following proposition

speci�es the individual cover inequality.

Proposition 2. The minimal individual cover inequality

∑

k∈Cj

xjk ≥ 1 (4)
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is valid for PGAPD.

Next, I introduce the extended individual cover to obtain stronger inequalities. For a minimal individual

cover Cj , let a
∗
j := maxk∈Cj ajk and E(Cj) = {k ∈ C̄j |ajk ≥ a∗j}. Then, the following set of inequalities are

referred as extended individual cover inequalities:

∑

k∈Cj∪E(Cj)

xjk ≥ 1 + |E(Cj)| (5)

Similar to Gottlieb and Rao Gottlieb and Rao (1990b), I also derive the set individual (1, kj)-con�guration

inequalities for each job.

De�nition 2.3. For each j ∈ N , a set M
′
j ∪ {z} is a (1, kj)-con�guration if M

′
j ⊂ M, |M ′

j | = m
′
j and

z ∈M\M ′
j are such that

(i)
∑
k∈M\M ′

j
ajk ≥ dj ,

(ii) Kj ∪ {z} is a minimal cover for each Kj ⊆ M
′
j with |Kj | = kj where kj is an integer satisfying

2 ≤ kj ≤ m
′
j (i.e., elements inM\

{
Kj ∪ {z}

}
can't satisfy the demand dj).

Proposition 3. The individual (1, kj)-con�guration inequality

(rj − kj + 1)xjz +
∑

k∈Rj

xjk ≥ (rj − kj + 1) (6)

is valid for PGAPD, where Rj ⊆M
′
j , |Rj | = rj satisfying kj ≤ rj ≤ m

′
j.

If kj = m
′
j , I observe that the individual (1, kj)-con�guration is a individual minimal cover.

2.2 Multiple Cover Inequalities

In this section, I restrict my attention to inequalities that consider multiple jobs. Next in Proposition 4, I

present several classes of valid inequalities corresponding to a subset of jobs.

Proposition 4. (a) For some job p ∈ N , let S ⊂M be a set of agents such that S is a cover, i.e.,
∑
k∈S̄ apk <

dp. Let, kp = arg mink∈S̄ apk. There doesn't exist any agent v ∈ S, such that
∑
k∈S̄\{kp} apk + apv ≥ dp,

i.e., substituting any agent from set S for the agent in S̄ with minimum pro�ciency is not enough to satisfy

the demand dp.

(b) For another job l ∈ N, l 6= p, let T̄ ⊂ S be a set of agents such that T̄
⋃ {s} is an anti-cover for all

s ∈ S̄, i.e., ∑k∈T̄ alk + als < bl. Equivalently, for all agent s ∈ S̄, the set of agents T\{s} is denoted to be

a cover for job l, where T = M\T̄ .
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Figure 1: Multiple Cover Inequality

(c) Also, there doesn't exist any agent t ∈ S\T̄ , such that the set of agents T̄
⋃ {t} satisfy the demand

dl, i.e.
∑
k∈T̄ ⋃{t} alk � dl.

Then the following inequality is valid for the PGAPD polytope:

∑

k∈S
xpk +

∑

k∈T\S̄
xlk ≥ 3.

Proof. To prove the proposition, I consider three non-trivial cases.

Case 1: For a job p, let xpk = 1, k ∈ S̄, and for job l, let xlk = 1, k ∈ T̄ . In that case, at least 1 additional

resource is required to complete job p, whereas at least 2 additional resources are required to complete job

l, i.e.,
∑
k∈S xpk ≥ 1 and

∑
k∈T\S̄ xlk ≥ 2.

Case 2: For a job p and for an agent s ∈ S̄ let xpk = 1, k ∈ S̄\{s}; whereas for job l, let xlk = 1, k ∈ T̄

and xls = 1. From Proposition 1(a), I know that
∑
k∈S̄\s apk +apv < dp for all agent v ∈ S; hence, at least 2

additional resources are required to complete job p, i.e.,
∑
k∈S xpk ≥ 2. From Proposition 1(b), I know that

T̄
⋃ {s} is an anti-cover and from Proposition 1(c), I know that

∑
k∈T̄ ⋃{t} alk < dl for any agent t ∈ S\T̄ .

Hence, at least 1 additional resource is required to complete job l, i.e.,
∑
k∈T\S̄ xlk ≥ 1.

Case 3: For a job p and for any two agents s1, s2 ∈ S̄ let xpk = 1, k ∈ S̄\{s1, s2} and for an agent t ∈ T̄

(i.e., t ∈ S as S ⊃ T̄ ) , xpt = 1; whereas for job l, let xlk = 1, k ∈ T̄\{t} and xl,s1 = 1, xl,s2 = 1. In that case,

from Proposition 1(a), it can be easily shown that at least 1 additional resource is required to complete the

job p, i.e.,
∑
k∈S xpk ≥ 2. From Proposition 1(b) and Proposition 1(c), it can also be easily shown that at

least one additional resource is required to complete job l, i.e.,
∑
k∈T\S̄ xlk ≥ 1.

For all these three non-trivial cases presented above, I need exactly 3 agents to complete both the jobs p

and l. For all other trivial cases, it can easily shown that the minimum number of agents required to both

the jobs p and l are at least 3. Hence, the inequality
∑
k∈S xpk+

∑
k∈T\S̄ xlk ≥ 3 is a valid one. It completes
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the proof of the proposition.

Example 1. Let us consider an example with 2 jobs and 5 agents. The constraints to the problem is given

by:

4x11 + 3x12 + 5x13 + 4x14 + 3x15 ≥ 7

3x11 + 4x12 + 5x13 + 2x14 + 3x15 ≥ 8

Let, p = 1 and S̄ = {1}, then cover set S = {2, 3, 4, 5}. Set {1} be anti-cover for job 1 as 4 < 7 (doesn't

satisfy demand). The inequality x12 + x13 + x14 + x15 ≥ 1 is a cover inequality for job 1.

Let, l = 2 and T̄ = {4}, then T = {1, 2, 3, 5}. For all s ∈ S̄ = {1}, T̄ ∪ {s} is an anti-cover. The cover

for job 2 is the set T\{s},∀s ∈ S̄. Then, the inequality x12 + x13 + x15 ≥ 1 is cover inequality for job 2. A

cover inequality considering multiple jobs is given by:

5∑

k=2

x1k +
∑

k∈{2,3,5}
x2k ≥ 3.

The set of all feasible integer points are given below. The inequality above satis�es all the feasible integer

points. At the same time, please check that, for l = 2, if T = {1, 2, 3, 4}, then condition 4(a) and 4(b) are

satis�ed but condition 4(c) is not satis�ed. Because for an agent t = {3} and T̄ = {5} (as T = {1, 2, 3, 4}),

a23 + a25 = 5 + 3 = 8 exactly satis�es the demand d2 = 8. Hence,
∑5
k=2 x1k +

∑
k∈{2,3,4} x2k ≥ 3 can not

be a multiple cover. From the set of feasible points, the �rst point




1 1 0 0 0

0 0 1 0 1


 presented in �gure 1,

doesn't satisfy this inequality. Hence, it is not a valid one.

Next in Corollary 1, I generalize the multiple cover inequality presented in proposition 4.

Corollary 1. (a) Let, W ⊂ N be a set of jobs. For some job p ∈ N , let S ⊂M be a set of agents such that

S is a cover, i.e.,
∑
k∈S̄ apk < bp. There doesn't exist any agent s ∈ S, such that

∑
k∈S̄\{kp} apk + aps ≥ dp,

i.e., substituting any agent from set S for the agent in S̄ with minimum pro�ciency is not enough to satisfy

the demand dp.

(b) For each job j ∈ W\{p}, there exists a set of agents T̄j ⊂ S, T̄j1
⋂
T̄j2 = ∅, j1 6= j2, j1, j2 ∈ W\{p},

such that T̄j
⋃ {s} is an anti-cover for all agent s ∈ S̄, i.e., ∑k∈T̄j

ajk + ajs < bj. Also, there doesn't exist

any agent tj ∈ S\T̄j, such that the set of agents T̄j
⋃ {tj} satisfy the demand dj, i.e.

∑
k∈T̄ ⋃{tj} ajk � dj.

Then the following inequality is valid for the PGAPD polytope:
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∑

k∈S
xpk +

∑

j∈W\{p}

∑

k∈Tj\S̄
xjk ≥ |W |+ 1.

The proof for Corollary 1 is essentially the same as for Proposition 4. Next in Proposition 5, I present

another variant of multiple cover inequality.

Proposition 5. (a) For some job p ∈ W , W ⊂ N and a set of jobs C̄ ⊂ M , |C̄| = c is such that C̄ is an

anti-cover ( C = M\C̄ is a cover), i.e.,
∑
k∈C̄ apk < dp. Let, kp = arg mink∈C̄ apk. There doesn't exist any

agent s ∈ C, such that
∑
k∈C̄\{kp} apk + aps ≥ dp, i.e., substituting any agent from set C for the agent in C̄

with minimum pro�ciency is not enough to satisfy the demand dp.

(b) for each job j ∈W\{p} , there exists a set of agents T̄j ⊂ C and

C̄j =
{
k ∈ C̄

∣∣T̄j
⋃
{k} is an anticover for job j

}
,

with |C̄j | = cj > 0.

(c) Also, there doesn't exist any agent tj ∈ C\T̄j, such that the set of agents T̄j
⋃ {tj} satisfy the demand

dj, i.e.
∑
k∈T̄ ⋃{tj} ajk � dj.

Then

∑

k∈C
xpk +

∑

j∈W\{p}

∑

k∈Tj\C̄j

xjk ≥ |W\{p}|+
⌈

(cm − 1) (µp − c) + 1

cm

⌉
,

is a valid inequality for the PGAPD polytope, where cm = max {cj |j ∈W\{p}}.

Proof. I know from 5(a) ,

∑

k∈C
xpk ≥ 1

From condition 5(b), I can write

∑

k∈Tj

xjk − xju ≥ 1,∀u ∈ C̄j

From SOS constraint,

1 ≥
∑

j∈W
xjk,∀k ∈ C̄.

Now,
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1

cm

∑

k∈C
xpj +

∑

j∈W\{p}





1

cj

∑

u∈C̄j


∑

k∈Tj

xjk − xju





+

cm − 1

cm
c

≥ 1

cm
+

∑

j∈W\{p}

cj
cj

+
cm − 1

cm

∑

k∈C̄

∑

j∈W
xjk

=
1

cm
+ |W\{p}|+ cm − 1

cm

∑

k∈C̄

∑

j∈W
xjk

=
1

cm
+ |W\{p}|+ cm − 1

cm

∑

k∈M\C
xpk +

cm − 1

cm

∑

j∈W\{p}

∑

k∈C̄
xjk

Re-arranging all the terms of the inequality above, I get

1

cm

∑

k∈C
xpj +

cm − 1

cm

∑

k∈C
xpk +

∑

j∈W\{p}





1

cj

∑

u∈C̄j


∑

k∈Tj

xjk − xju





−

cm − 1

cm

∑

j∈W\{p}

∑

k∈C̄
xjk

≥ 1

cm
− cm − 1

cm
c+ |W\{p}|+ cm − 1

cm

∑

k∈M
xpk

≥|W\{p}|+ 1

cm
− cm − 1

cm
c+

cm − 1

cm
µp

=|W\{p}|+ (cm − 1) (µp − c) + 1

cm

where µp =

⌈
dp
āp

⌉
with āp = maxk∈M apk (µp is the minimum number of agents required to complete the

job p). The second inequality holds true because
∑
k∈M xpk ≥ µp.

Next, the LHS of the inequality above can be expressed as
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1

cm

∑

k∈C
xpj +

cm − 1

cm

∑

k∈C
xpk +

∑

j∈W\{p}





1

cj

∑

u∈C̄j


∑

k∈Tj

xjk − xju





−

cm − 1

cm

∑

j∈W\{p}

∑

k∈C̄
xjk

=
∑

k∈C
xpj +

∑

j∈W\{p}




cj
cj

∑

k∈Tj

xjk −
1

cj

∑

u∈C̄j

xju −
cm − 1

cm

∑

k∈C̄
xjk





=
∑

k∈C
xpj +

∑

j∈W\{p}




∑

k∈Tj

xjk +
∑

k∈C̄j

(
− 1

cj
− cm − 1

cm

)
xjk −

cm − 1

cm

∑

k∈C̄\C̄j

xjk





≤
∑

k∈C
xpj +

∑

j∈W\{p}




∑

k∈Tj

xjk −
∑

k∈C̄j

cm + cj(cm − 1)

cjcm
xjk





≤
∑

k∈C
xpj +

∑

j∈W\{p}




∑

k∈Tj

xjk −
∑

k∈C̄j

xjk



 ,

as 1 ≤ cm+cj(cm−1)
cjcm

< 2.

Therefore,
∑
k∈C xpj +

∑
j∈W\{p}

∑
k∈Tj\C̄j

xjk ≥ |W\{p}|+
⌈

(cm−1)(µp−c)+1
cm

⌉
.

2.3 Flow Cover Inequalities

Padberg et al. (1985) is the �rst to introduce �ow cover inequalities for a network problems with �xed charges

on the arcs. I incorporate similar set of inequalities here, although they are very weak, being dominated by

other classes of valid inequalities. However, �ow cover inequalities can be up-lifted to make them stronger.

De�nition 2.4. A set of agents K ⊆M is a �ow cover for job p ∈ N if

(i)
∑
k∈K̄ apk < dp, where K̄ =M\K,

(ii)
∑
k∈
{
K̄∩{t}

} apk ≥ dp for some t ∈ K.

Proposition 6. Let, K̄ ⊂M, where K̄ =M\K and p ∈ N such that
∑
k∈K̄ apk < dp and

∑
k∈K̄∪{`} apk ≥

dp for some ` ∈ K. Then

∑

k∈K
apkxpk +

∑

k∈K
min {λ, apk}


1−

∑

j∈N\{p}
xjk


 ≥ λ,

where λ = dp −
∑
k∈K̄ apk is valid for the PGAPD polytope.

Proof. I use the induction method and directly prove the proposition.
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Figure 2: Multiple Cover Inequality

By de�nition of the �ow cover, if the agents in the set K̄ ⊂ M is already assigned to job p ∈ N , then

the residual demands that are required to ful�l are,

∑

k∈K
apkxpk ≥ λ.

If any agent `1 ∈ K is assigned to job p by keeping all the agents in K\{`1} left unassigned, then the

minimum �ow required to ful�l the demand dp are

∑

k∈K\{`1}
apkxpk = max {λ− ap`1 , 0} = λ−min {λ, ap`1} .

I extend it further by induction. If any two agents `1, `2 ∈ K are assigned to job p by keeping all the

agents in K\{`1, `2} left unassigned, then the minimum �ow required to ful�l the demand dp are

∑

k∈K\{`1,`2}
apkxpk = max {λ− ap`1 − ap`2 , 0} = λ−min {λ, ap`1 + ap`2} ≥ λ−

∑

k∈{`1,`2}
min {λ, apk} ,

as
∑
k∈{`1,`2}min {λ, apk} ≥ min {λ, ap`1 + ap`2}.

Extending it further for any subset L ⊂ K where all the agents in L are assigned to job p by keeping all

the agents in K\L left unassigned, then the minimum �ow required to ful�l the demand dp are

=
∑

k∈K\L
apkxpk = max

{
λ−

∑

k∈L
apk, 0

}
= λ−min

{
λ,
∑

k∈L
apk

}
≥ λ−

∑

k∈L
min {λ, apk} ,

as
∑
k∈Lmin {λ, apk} ≥ min

{
λ,
∑
k∈L apk

}
. Generalizing the inequality above, I get
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∑

k∈K
apkxpk ≥ λ−

∑

k∈K
min {λ, apk}


1−

∑

j∈N\{p}
xjk




⇒
∑

k∈K
apkxpk +

∑

k∈K
min {λ, apk}


1−

∑

j∈N\{p}
xjk


 ≥ λ,

so the inequality is valid.

3 Conclusion and Recommendations for Future Research

This paper establishes several valid inequalities to solve the GAPD e�ectively. Thus, I study the polyhe-

dral properties of the convex hull of the GAPD which comprises of a set of greater-than-equal-to types of

knapsack inequalities (each knapsack corresponds to a job) with SOS constraints. The GAPD appears as a

relaxation of several optimization problems. I introduce several families of valid inequalities for the GAPD:

the multiple cover and �ow cover inequalities. As a future research direction, I would like to develop appro-

priate combinatorial separation algorithms for these inequalities. Future research could also contribute by

seeking a disaggregated formulation of the GAPD.
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