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Effects of pharmaceutical price regulation: Evidence from India 
 
     Saravana Jaikumar1 ,Pradeep K. Chintagunta2, Arvind Sahay3 

 
 
 

Abstract 
 
We study the effects of pharmaceutical price regulation in India in the context of the Drug Price 

Control Order 2013 (DPCO), which regulated the prices of essential and life-saving drugs. The 

objective of regulators was to ensure that these drugs are more affordable; hence the expectation 

was increased sales volumes for these drugs. We empirically examine the impact of DPCO 2013 

on overall sales volumes and also on prescription behavior in rural and disadvantaged areas of 

the country. Using data on 108 molecules (51 regulated and 57 unregulated) over 62 months (50 

months pre-regulation and 12 months post-regulation) and employing a regression discontinuity 

design (in addition to panel regressions, matching estimators, and forecast models), we find that 

sales volumes and prescriptions from rural doctors (most without formal medical degrees) 

decline for regulated drugs while these measures increased for the unregulated ones. We then 

offer suggestive evidence regarding the mechanism behind our findings. Since prices of 

regulated drugs declined but those of the unregulated ones did not, we rule out lower prices for 

the latter as a potential explanation for our findings. Reduced margins of regulated drugs could 
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however, have pushed pharmaceutical firms to shift their marketing expenditures to unregulated 

drugs and may also have lowered retailers’ incentives to stock the products. We provide some 

evidence for a shift in marketing efforts using data on the detailing levels and sales of two brands 

(one regulated and one unregulated) from a specific firm. We also provide anecdotal evidence 

about retailers in certain geographic markets understocking regulated drugs, which might have 

influenced our sales, although not our prescription, outcomes. 

Keywords: pharmaceutical price regulation, DPCO, detailing, rural prescriptions, and price 

regulated molecules.  
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Effects of pharmaceutical price regulation: Evidence from India 

 

1. Introduction 

Price regulation in the pharmaceutical industry can be a double – edged sword. In 

countries with universal health care systems, governments cover the bills and hence show a 

tendency to keep a control over the prices through regulatory mechanisms (Green 1998). Extant 

research on price regulation has focused on developed nations such as the US, where prices are 

mostly unregulated (Abbott 1995, Abbott and Vernon 2007, Vernon 2005), and Europe (Mrazek 

2002, Puig-Junoy 2010) where prices are controlled (a) directly (eg. France and Belgium); (b) 

through reimbursements (e.g. Germany and Italy); or (c) through profit controls (eg. Spain and 

United Kingdom). Researchers in economics, marketing and public policy have studied the 

effects of pharmaceutical price regulation in these regions, and find that regulation may result in 

a – i) delay of new drug launches (Danzon et al. 2005, Kyle 2007); ii) deterioration in 

pharmaceutical innovation (Bardey et al. 2010, Vernon 2003); and, iii) decline in research and 

development investments (Golec et al. 2010, Golec and Vernon 2010).  

The effects of such regulation in emerging economies, such as India, remain largely, 

unexamined. Despite the theoretical attention on price regulation and a number of studies 

assessing the impact of such regulation on societal welfare in developed nations (eg. Podnar et 

al. 2007), there is a clear lack of empirical evidence assessing the impact of regulation on the 

availability, accessibility and sales of prescription drugs in emerging economies. In this paper, 

we attempt to address this issue by empirically examining the impact of price regulation on sales 

volumes and prescription behavior and pay special attention to these measures in rural and 

disadvantaged areas of the country. 
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Why is it important to assess the sales volume of price-regulated drugs? In an emerging 

country like India, which is typically characterized by a lack of universal health insurance or 

health care systems, the typical policy objective of pharmaceutical price regulation is to make the 

drugs more affordable (and accessible). India is considered a privatized health economy (Duggal 

2007), where around 80% of healthcare expenses are borne privately, with a majority being out-

of-pocket expenses (Banerji 2013), so the ostensible reason for price regulation is to increase 

affordability of essential drugs. While this may be the objective of regulation policy, price 

controls may have adverse effects on the supply-side. With declining margins due to price 

ceilings, firms may adapt, by shifting their marketing focus to unregulated drugs in the same 

therapeutic class (Bellur et al. 1985). This in turn, might lead to the unintended consequence of 

lowering the sales of the price-regulated drugs. 

Further, in India, where direct-to-consumer (DTC) advertising for prescription drugs is 

prohibited, detailing is the main vehicle of marketing to physicians. Physician prescription 

behaviors have been shown to be sensitive to detailing and marketing activities (eg. Bauer and 

Wortzel 1966, Gonul et al. 2001, Manchanda and Chintagunta 2004, Narayanan et al. 2004, 

Venkataraman and Stremersch 2007). Hence redirecting detailing resources to more profitable 

unregulated drugs may result in lower prescriptions of regulated drugs and eventually to lower 

sales volumes (in terms of units sold). This is especially true for rural doctors, many of whom 

lack a formal allopathic medical degree but prescribe drugs. They are detailed by firms and 

depend mainly on detailing for drug information. Further, to optimize resource utilization, firms 

may deploy their salesforce in a more selective manner, eliminating unproductive territories 

(Bellur et al. 1985). A territory may be unproductive for two reasons – i) low volume sales 

(observed in lower tier cities), and ii) difficulty of access (remote rural areas). Hence, the 
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percentage of sales from lower tier cities and prescriptions by rural doctors may also be 

adversely affected for the regulated drugs in the presence of price regulations. 

Price controls are not the only reason why firms may react by redirecting detailing to 

other molecules. In developed economies such as the U.S., when a patent expires for a molecule, 

a number of generics enter the market at significantly lower prices. This shock to the market 

results in the firm redirecting its detailing efforts to non-bioequivalent drugs (closely related 

molecules typically prescribed for the same indication) in the same therapeutic class (Caves et al. 

1992, Gonzalez et al. 2008). This adversely affects the sales of the brand that owned the patent, 

but favorably affects the non-bioequivalent drugs. For example, when the drug Prilosec 

(omeprazole) went off patent, AstraZeneca shifted its focus to Nexium, a closely related 

molecule (esomeprazole). Competition exists within a molecule as well as across molecules that 

treat the same condition, resulting in high cross-price elasticities between therapeutic substitutes 

(Stern 1996). Another stream of literature focusing on patent expiration provides evidence that a 

molecule’s total utilization (brand and generics) declines after patent expiration (Huckfeldt and 

Knittel 2012, Huskamp et al. 2008). The effect is attributed to (strategic) reduction of detailing 

by the brand to eliminate spillover promotion effects and deter entrants (Ellison and Ellison 

2011), and on strategic entry and increased marketing of new formulations (Huckfeldt and 

Knittel 2012). However, recently, Aitken et al. (2013) show an increase in molecule utilization as 

a brand loses exclusivity (patent expiration), especially for third party payers. However, in India, 

with no universal insurance, we do not expect to observe this form of response to increased 

competition from price reduction. Further, our context is one in which the market structure in 

terms of the number of players is not changing. Hence, in the case of price reductions in the form 
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of regulation, a more likely response for firms is to redirect their detailing efforts to unregulated 

molecules with higher profit margins.  

In this paper, we address a largely unanswered question in the empirical marketing 

literature: does price regulation of prescription drugs result in improved consequences in 

emerging economies - in terms of overall sales volume, sales in lower tier cities and prescriptions 

by rural doctors? We use the context of the Government of India’s (GoI) Drug Price Control 

Order (henceforth DPCO) in 2013 that brought 348 formulations, deemed essential medicines, 

under price regulation. Using panel data from IMS Health India database and SMSRC (Strategic 

Marketing Solutions and Research Centre), we examine the impact of price regulation on 51 

regulated and 57 closely related (similar therapeutic class) unregulated oral solid molecules 

(tablets or pills). We study changes in overall sales volume, sales volume in lower tier cities and 

prescriptions by rural doctors for the drugs. These outcomes, we believe, are of importance to 

policy makers and pharmaceutical firms in assessing the impact of the regulation.  

A simple description of the outcome measures (please refer to Online Appendix 1) of the 

51 molecules subject to regulation reveals that while 36 of them show an improvement in sales 

(comparing pre-regulation and post-regulation average sales), 15 show a sales decline for an 

overall average increase in units of 8.8%. Furthermore, looking at the set of 57 closely related 

molecules not subject to regulation, reveals that those molecules experienced larger sales 

increases with 55 of them showing an increase and only 2 showing a decrease (overall average 

increase in units of 34.1%). We then investigate these changes using a panel regression model 

that controls for various confounding factors via fixed effects and time trends, and find that sales 

of the regulated molecules decline by 3.7% versus an increase in 5.3% for the unregulated ones. 

Zooming in on the subset of regulated molecules that we can match (via propensity scores) with 
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those in the unregulated group, we find an increase in sales of the unregulated molecules in the 

matched subset of 28.7% compared to an increase of 17% for the regulated ones.  

Since the unregulated molecules are affected by the regulation as well, they cannot serve 

as a credible counterfactual for the regulated ones. So to measure the impact of the regulation on 

the regulated molecules, we turn instead to a regression discontinuity (RD) design to measure the 

local average “treatment” effect of the regulation. This analysis further corroborates the previous 

findings – 25 regulated and 24 unregulated molecules show significant effects with former 

showing a negative effect on unit sales across most molecules and the latter a positive effect. A 

similar pattern of results is observed for rural prescriptions as well (18 regulated and 16 

unregulated molecules show significant effects with former showing a negative effect across 

most and the latter a positive effect). Given the broad set of therapeutic categories associated 

with the regulated and the unregulated drugs, there is no obvious demand-side explanation for 

our findings. So we turn to the supply-side to investigate underlying reasons for our findings.  

First, looking at the prices of the regulated and unregulated molecules, we see that while 

the prices of the former decline, those of the latter do not change. Thus lowered prices of the 

unregulated molecules cannot explain our findings. A plausible supply-side explanation is that 

the firms marketing the molecules shifted their efforts away from the regulated to the 

unregulated drugs. Unfortunately, data on marketing efforts are not available for all the 

molecules. Instead, we provide suggestive evidence using data from one specific company. 

While not generalizable to all molecules we consider, we find that this firm, facing smaller 

margins for the regulated drug, shifted its marketing efforts (detailing to physicians) away from 

that drug to an unregulated one resulting in the poorer (improved) performance of the regulated 

(unregulated) drug. Second, facing lower margins (DPCO reduced the retailer margins for the 
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regulated drugs from 20% to 16%) from regulated drugs, retailers reduced their orders and stocks 

of these drugs. While this could potentially affect our sales volume outcome measures it is 

unlikely to have affected our rural prescription behavior outcome measure. Although we find 

some anecdotal evidence of retailers stocking less in specific geographic markets, we note that 

ultimately, if physicians prescribe the drug, the retailer not stocking the drug will lose out to a 

competitor offering the product for sale.  

2. Empirical Context  

2.1 The Indian Pharmaceutical Market 

The Indian pharmaceutical industry in 2015 was a $22 billion industry by revenues. The 

country is 3rd in the world in terms of the sales volume of medicines and 13th in terms of 

revenues. From humble beginnings in 1969, when 95% of medicines sold in India were sold by 

multinational pharmaceutical firms, Indian firms, subsequent to the promulgation of the process 

patent act in 1969, have reverse engineered many molecules and have grown to be known as 

suppliers of inexpensive medicines to the world. By the time a WTO (World Trade 

Organization) agreement to bring back product patents in India took effect in 2005, India had 

become home to the largest number of US Food and Drug Administration approved production 

plants in the world (Banerji 2013).  

Unlike developed markets, 95% of medicine sales in India are of off-patent 

pharmaceutical molecules (known as generic drugs). Both unbranded generic molecules (eg. 

Amoxycillin and Paracetamol) and branded generic drugs (e.g., Augmentin - a branded 

Amoxycillin) are sold in India with the branded generics being actively marketed by firms. While 

the scale of the market in revenue terms is relatively small compared to developed markets, (for 

example, Augmentin, a branded generic antibiotic had annual sales of INR 2 billion (USD 28 
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million) in 2014), the volumes are substantial as prices in India are significantly lower than those 

in developed markets. As per capita income in India is low ($1800 in 2014), and neither 

universal healthcare nor universal insurance are available, cheaper generic alternatives to 

expensive medicines are widely available, which in turn, reduce the likelihood of high priced 

therapies launching successfully (Subramanian et al. 2014). Given low incomes, the lack of 

universal health care and privatized health care access, the Drug Price Control Order (DPCO) 

came into existence to fulfill a key policy goal of the Indian government - to provide increased 

access to medicines to people at affordable prices. 

2.2 Prior Price Regulations in India 

Prior to DPCO 2013, pharmaceutical price regulation in India has had a long history. The 

first DPCO was implemented in 1970, wherein the pre-tax profits from the pharmaceutical 

business of a firm were restricted to a maximum of 15% of revenues (Narayan 2007). However, 

prices and product-wise margins were under the control of firms. The DPCO was revised in 

1979, 1987 and 1995. The 1979 DPCO brought 370 drugs under strict price control including 

many life-saving and essential medicines (termed ‘category-1’ drugs). With declining profits, 

many firms discontinued the formulations under price control. Realizing this issue, the 1987 

DPCO reduced the number of drugs under regulation to 142. Further, the profit margins were 

also increased for these drugs. In 1995, the DPCO further liberalized the pharmaceutical industry 

by reducing the number of formulations under price control to just 74 (Narayan 2007).  

Each of these DPCOs had a significant impact on the pharmaceutical industry. The profit 

margins trend in the industry (Figure1) reveals that there was significant decline post 1970. 

During the entire period from 1970 to 1994 (DPCO 1, 2 and 3), the margins were lower. 

However, the margins gained momentum post liberalization in 1995 (DPCO 4 in Figure 1). 
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Bellur et al. (1985) studied the reaction of pharmaceutical firms to the 1970 DPCO and found 

that several firms minimized the effects of the price regulation by shifting their focus to mass 

market, over-the-counter drugs and to other product categories (like animal health products). 

However, firms that were not already diversified into mass-market segments found it difficult to 

make a timely transition to high volume products. In short, “organizations which were well 

diversified - to cover the controlled and uncontrolled categories of product lines – will be in a 

more comfortable position than those operating in controlled categories only.” (Bellur et al.1985, 

p.155). Price regulation shifted competition to other factors such as brand image and reputation. 

Further, the regulation also forced the firms to optimize their salesforce efforts and to be 

selective in their marketing efforts (eliminating unproductive rural and remote access areas).  

[Insert Figure 1 here] 

While the 1995 DPCO reduced the number of regulated molecules to 74, 27 of them are 

no longer under production, suggesting that manufacturers shifted their focus to unregulated 

molecules. Further, an IMS study on the effect of 1995 DPCO reveals that, contrary to the 

expected volume surge for the regulated molecules, volume growth stagnated in the following 

years (Mookim and Khanna 2015). However, related (unregulated) molecules experienced a 

surge in their volume sales growth.  

2.3 Drug Price Control Order 2013 

In May 2013, the Department of Pharmaceuticals (DoP) of India brought 348 specific 

formulations (molecules or combinations of molecules) under price control by the Drug Price 

Control Order (DPCO). The list of 348 medicines was taken from the National List of Essential 

Medicines (NLEM), which was compiled by the Ministry of Health and Family Welfare in 2011. 

These formulations are considered “essential and lifesaving drugs, and address the priority health 
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needs of the country.” The objective of the DPCO 2013 was to ensure availability of essential 

medicines at affordable prices for the poorer masses, while still encouraging innovation and 

growth in the pharmaceutical industry (DPCO 2013). Further, the order authorized the National 

Pharmaceutical Pricing Authority (NPPA) of India to regulate medicine prices and monitor price 

increases of medicines that are not under regulation (Subramanian et al. 2014).  

The price ceilings for regulated drugs were set using ‘market-based’ mechanisms. For 

most drugs, the price ceiling is the simple average of the prices of all brands in the market with 

market shares of at least 1%. Brands priced higher than this average reduced prices to at or below 

the ceiling, those priced below were to maintain their current price levels. If there is only one 

drug in a category, then the price is based on a fixed percentage derived from price reductions in 

similar categories. Annual price increases for the regulated molecules were restricted to be in 

line with or below the wholesale price index of India. Unregulated molecules also were allowed 

a maximum price increase of 10% in any 1-year period. The price ceiling set by the DPCO refers 

to the price to the retailer. The retailer margin is then fixed at 16%. While firms were allowed to 

exit from a given category with a six months’ notice, the NPPA reserved the right to mandate 

continued production of up to 12 months (DPCO 2013). 

DPCO 2013 represented a major turning point in the Indian pharmaceutical market. An 

independent study by Wan (2013) showed that molecules under DPCO 2013 account for about 

60% of the pharmaceutical market in India and the order was expected to erode the value of the 

market by about $290 million annually (2.2% drop of the entire market). An IMS study 

compared the simple CAGR (cumulative annual growth rates) for a set of select few regulated 

and unregulated molecules and found that the growth rates for regulated molecules were 
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significantly lower than those for unregulated molecules (Mookim and Khanna 2015). Further, 

launches of new drugs declined from 270 drugs in 2008 to 56 in 2014 (FRPT-Research 2015). 

 

3. Data 

We obtained data from IMS Health (India) and SMSRC. Two types of data were 

obtained. First, we obtained monthly sales data; IMS primarily records data of sales from 

wholesaler to retailers. Our second data involve prescriptions in rural markets; we obtained the 

percentage of prescriptions of a drug written in rural areas. A vast majority of prescribers in rural 

areas do not have allopathic medical degrees and serve in low-income rural areas where 

healthcare access may be expensive even if available. These are doctors who specialize in 

ayurvedic or homeopathic medicine, but actively prescribe allopathic medicines as well; they 

represent about 16% of all allopathic doctors in the country (IMS Report 2013). Importantly, 

these doctors are detailed by pharmaceutical companies and are particularly dependent on such 

detailing for information about the various medications.  Hence the fraction or prescriptions for a 

drug written by rural doctors represents the prescriptions that eventually serve the healthcare 

needs of the lowest income groups and the disadvantaged in the country, most of whom reside in 

the rural areas.  

We are interested in examining the impact of the price control regulation on sales volume 

(overall and in lower tier cities) and on prescriptions in rural areas. While data on 105 drugs (oral 

solids) under price regulation are available in IMS, we assess the impact on 51 major oral solids 

(“regulated” molecules) that form about 90% of the total value of the 105 molecules (in terms of 

average sales value). We also select 57 molecules that are not under regulation (“unregulated” 

molecules), but are closely related to those under regulation, in terms of primary illnesses for 
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which the molecules are prescribed (for instance, we choose Rosuvastatin as the unregulated 

counterpart for Atorvastatin – both are typically prescribed for cholesterol control) 4.  

Our outcome variables of interest are: i) monthly sales volume for each molecule, ii) 

percentage sales volume in lower tier cities5 (henceforth, C24R%), and, iii) percentage 

prescriptions from rural doctors (henceforth, RuralRx%). The data are reported in monthly 

intervals. As each molecule has multiple SKUs (stock keeping units) depending on pack size and 

strength, we consider sales volumes of the largest selling SKU for each molecule as 

representative of that molecule6. For all these molecules (51 in the regulated group and 57 in the 

unregulated group), we collected five years of monthly sales data from May 2009 to June 2014, 

totaling 62 months (50 months before price regulation and 12 months post price regulation7). 

This ensures that we have enough variation to distinguish the effect of price regulation from 

other molecule specific factors. Further, for each of the 108 molecules, we collect information on 

C24R% and RuralRx%8. We also collect specific molecule properties that may influence the 

sales volume and prescription behaviors for drugs. These properties include – i) type of illness – 

acute vs. chronic, ii) primary indication (eg. Atorvastatin for cholesterol issues), and iii) 

percentage prescriptions by CP/GPs (consultant physician/general physician), indicating the type 

of doctors that typically prescribe the drug (henceforth, CPGPRx%) – for instance, Imatinib, a 

 
4 Molecules in the unregulated group were chosen based on the recommendations of two industry experts.  
5 IMS categorizes Indian cities into four groups – metro, class 1, class 2-4 and rural. We sum the percentage sales in 
class2-4 and rural to form C24R%. 
6 The largest selling SKU is typically the most prescribed strength and dose variation by physicians and specialists.  
7 DPCO did not allow any brand exits in the 6-month period after regulation (and reserved the right to mandate 
continued production for 12 months). Further, we did not find any brands with market share higher than 5% exit any 
of the categories (105 molecules) in the 12 months post regulation (a total of 6 brand exits were recorded, all with 
less than 5% market share in the period from Jan 2014 – June 2014). Further, as noted before, price increases for 
unregulated molecules were restricted to 10% in a 1-year period. Hence, we select 12 months as the time period for 
estimating the ceteris paribus effects of price regulation. 
8 Descriptive measures (in the pre-regulation and post-regulation periods) for all molecules used in the analysis are 
presented in Online Appendix 1. 
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medicine prescribed to cancer patients has on average 4.7% CPGPRx%, whereas Oflaxacin, an 

antibiotic has on average CPGPRx% of 75%.  

We present the pattern of outcome variables in Figure 2 and the pre-regulation summary 

statistics in Table 1. Specifically, we present the average monthly values (50 months prior to 

price regulation) across the regulated and unregulated groups of molecules. In the pre-regulation 

period, the two groups are almost similar with some minor differences in their characteristics. 

The pre-regulation sales volume (sales units) is lower (but the difference is insignificant at 5% 

significance level) for the regulated group compared to the unregulated group. The molecules in 

the regulated group, on average, also have higher RuralRx% (difference=2.9%, p<05). Pre-

regulation trends seem comparable across the regulated and unregulated groups (regulated 

molecules show more variability); we see a big impact of the regulation on rural prescriptions. 

Given the nature of the data and the timing of the regulation we are also able to control for 

differences in pre-regulation trends of the molecules, if any, as we discuss later. 

[Insert Figure 2 and Table 1 here] 

We also present some stylized facts from our data to illustrate how price regulation has 

influenced molecules in the regulated group compared to the unregulated group (Table 2). We 

find that, in the year after regulation compared with the period before regulation, sales increase 

by 8.8% in the regulated group, but there is a 34.1% increase in the unregulated group. Prima-

facie, one might misinterpret the 8.8% increase as evidence that the regulation is working. 

However, from Figure 2 we see that there are trends and seasonality in the data that need to be 

accounted for in our analysis. With the exception of C24R%, the shift is significantly negative 

(p<.05) across all factors. The shifts (column titled ‘Difference’ in Table 2) represent the 

difference-in-difference values (post-regulation and pre-regulation values are differenced for all 
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molecules, and these differences are compared between the regulated and unregulated groups). 

The negative difference-in-difference values indicate that the regulated molecules may have been 

negatively impacted vis-à-vis the unregulated ones in terms of overall sales volume and 

RuralRx%.  

[Insert Table 2 here] 

4. Empirical Framework and Identification Strategy 

We are interested in learning how price regulation has an effect on sales volume (units), 

percentage of sales in lower tier cities and percentage of prescriptions in rural areas for the 

regulated and closely related unregulated molecules. Each of these measures provides different 

information and insights to marketers and policymakers. An ideal experiment to estimate the 

effects of price regulation is to randomly select a set of molecules and regulate their prices. Then 

we can examine the effect of price regulation for these molecules against a randomly selected set 

of control molecules, that are completely unaffected by the price regulation. However such an 

experiment is not feasible for several reasons. 

i) The decision to include a molecule under the regulation is not random for the regulated group. 

Indeed, the GoI focused on these drugs due to their essential and lifesaving nature.  

ii) Since companies manage a portfolio of products, they may have shifted marketing efforts to 

the drugs in their portfolios that belonged to the unregulated group. This might be motivated by 

the potentially more lucrative nature of those drugs since they were not subject to the regulation. 

This renders the unregulated group unfit to be a credible counterfactual for the regulated group. 

A credible control group would be a set of molecules that are similar to those under 

regulation, but are completely unaffected by the regulation intervention. The alternative option is 

to identify molecules that are completely unrelated to the molecules under regulation. However, 
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the regulated molecules are considered essential medicines (taken from NLEM) addressing key 

indications. A control group composed of molecules addressing other indications and are 

unaffected by regulation, would, once again, not be a credible counterfactual, as the group would 

be systematically different from the regulated molecules. Thus even if we could design a 

controlled experiment to evaluate the impact of the regulation, it is unclear how such an 

experiment can be implemented. To ensure identification of the effect of price regulation 

therefore, we adopt multiple methods that, we hope, collectively address each of these concerns. 

4.1 Panel Fixed-Effects Regression 

We begin our analyses with a simple panel fixed-effects regression, which enables us to 

account for molecule and indication specific time-invariant factors, trends and other features in 

the estimation. If molecule fixed effects account for factors that determine why a molecule was 

“selected” into the regulated group, and if the timing of the regulation can be treated as random 

(since it occurs at the same time across molecules and so molecules cannot “self-select” into the 

treatment at different strategic times), then the panel fixed-effects estimator can provide us with 

a useful base case regarding the impact of the regulation. Having access to detailed molecule-

level information allows us to control for a number of confounding factors. For example, a given 

molecule may be appropriate for multiple indications. Hence, we need to account for demand 

shocks specific to this molecule. Consequently, we include a number of fixed effects – month 

fixed-effects to account for seasonality, molecule, year, and molecule-year interactions to 

account for the selection of molecules into the regulated list and for differential trends in the 

sales of the different molecules. We begin by estimating the average effect of price regulation in 

the two groups. We estimate the following panel regression: 

Y"# = 	&' + &)*+,-./0# 	+ &1(3,4567" ∗ *+,-./0)"# +	:;"#& + <=>/?6@@/A-, +	B"#        (1) 
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where i = 1,..108 molecules, t= 1,..62 (panel time period: 1 – May 2009 and 62 – June 2014), Yit 

refers to the outcome variable of interest, PostRegt takes the value of 0 from May 2009 to June 

2013 (pre-regulation period) and takes the value of 1 from July 2013 to June 2014 (post-

regulation period), IsNLEMi takes the value of 1 if molecule i belongs to the regulated group or 0 

otherwise , Xlit is the set of covariates representing time-varying molecule characteristic and 

FixedEffects refers to the various fixed-effects that we include in the analysis. We add the 

following fixed-effects to the model – i) molecule, ii) month, iii) year, and iv) molecule-year 

interactions9. The coefficients of interest are β1 (coefficient of PostReg) and β2 (coefficient of 

IsNLEM * PostReg). The coefficient β1 indicates the average effect of regulation across all 

molecules (in both unregulated and regulated groups) in the period after regulation. The 

coefficient β2 captures the average difference in the outcome variable between the regulated and 

unregulated groups in the post-regulation period.  

4.2 Propensity Score Matching 

As we see from Table 1, the two groups (regulated and unregulated) differ in their pre-

regulation levels of sales (though insignificant) and rural prescriptions. Hence, we employ 

propensity score matching to address the issue of non-comparability of regulated molecules and 

the closely related unregulated molecules. A matching estimator compares the outcomes of a 

regulated group and unregulated group, where the two groups are ‘matched’ based on similarity 

on observables (Smith and Todd 2008). The method addresses a key issue of linear regression – 

the assumption of a functional form for controlling observables. Matching estimators allow for a 

non-parametric flexible relationship for observables (see e.g., Goldfarb and Tucker 2014). 

 
9 As a robustness test, we also included molecule specific polynomial (order 3) time trends (not fixed-effects) 
defined at the monthly level (results in Online Appendix 2). 
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Specifically, we use the following variables averaged over the pre-regulation period to 

compute propensity scores: log (sales), C24R%, RuralRx% and CPGPRx%. This process 

provides a matched sample – molecules that are similar in terms of the observable features in the 

pre-regulation period with equal propensities of being chosen for regulation. With this matched 

sample, we estimate the impact of price regulation on outcome variables using the panel 

regression model explained in Equation (1). We argue that, given the similar pre-regulation 

values in the two groups, the observed differences post-regulation may be attributed to price 

regulation. This enables us to account for the bias introduced by the non-comparability of the 

two groups and estimate the average effect of regulation on regulated and unregulated molecules.  

4.3 Regression Discontinuity Design 

Matching, however, does not address the primary challenge for identification - lack of a 

credible counterfactual or control group. Hence, there may be unobserved factors that are 

changing over time, as both the groups are affected by the regulation intervention. The concern 

with estimating Equation (1) using fixed-effects panel regression is that these unobserved factors 

may produce biased estimates of β1 and β2. We therefore, use a regression discontinuity (RD) 

design to address this identification issue. The RD design works on the principle that assignment 

to a treatment condition is determined by the value of a predictor variable. Treatment is assigned 

only when the predictor is above a particular fixed threshold, creating a discontinuity at the 

threshold if the treatment effect is significant (Imbens and Lemieux 2008). In our case, the 

effective source of the regression discontinuity is time. Under the assumption that the threshold 

is random and not associated with underlying outcome discontinuities, any discontinuity can then 

be attributed to the treatment (Hartmann et al. 2011). The RD design addresses the endogeneity 

issue by considering a narrow window of time around the implementation of price regulation. 
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Within this interval, the unobserved factors influencing the outcomes are likely to be similar so 

that observations just before regulation provide a comparison group for observations just after 

regulation. In other words, after adjusting for time trends, the outcomes just before and just after 

regulation should not be different, as the policy intervention is external to the outcome trends of 

the molecules. Any discontinuity in the regression may then be attributed to the price regulation 

intervention. Specifically, we examine whether there is a discontinuity in the trend of outcomes 

for each of the molecules around the intervention period (July 2013), and test for direction and 

significance of this change. 

For assessing the effects of regulation, we consider price regulation as the binary 

intervention or treatment. Time (month) is the underlying running (predictor) variable and the 

intervention is applied when regulation is implemented in July 2013. Hence, July 2013 acts as 

the cut-off point for the RD design. Let Yit(0) and Yit(1) denote the pair of outcomes for a 

molecule i at time t: Yit(0)  is the outcome without exposure to price regulation and Yit(1) is the 

outcome after price regulation. Hence our focus is on Yit(1) – Yit(0). However, we do not observe 

both Yit(0) and Yit(1) together. We use the RD design to focus on (local) average regulation 

(“treatment”) effects. The rationale behind RD design is that the treatment (in this case price 

regulation) is determined partly (warrants fuzzy RD design) or completely (warrants sharp RD 

design) by the predictor variable. As the intervention is at a specific time t (deterministic 

function for assigning treatment), we use the sharp RD design. Any discontinuity of the 

conditional distribution of the outcome around the cut-off point (July 2013) may be interpreted 

as the causal effect of price regulation. Let the deterministic function be Wit ε {0,1} such that Wit 

takes the value of 1 when t>c (in our dataset, when t=50, regulation is implemented, and hence 

c=50 and Wit takes the value of 1 when t>50) and 0, otherwise. In the sharp RD design, we 
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examine the discontinuity of the conditional distribution of the outcome given the regulation at 

the cut-off point, to identify the average treatment effect: 

   CDEF = Ε[I"#(1) − I"#(0)|N" = 1]	                (2) 

where τSRD refers to the LATE (local average treatment effect) estimate. The bandwidth over 

which the LATE is estimated is identified using the Imbens-Kalyanaraman optimal bandwidth 

calculation (Imbens and Kalyanaraman 2012). As the RD design is specific to each molecule, the 

average treatment effect estimated is specific to each molecule. In other words, while RD designs 

provide very high internal validity, the results may not be generalized to other subpopulations of 

molecules (Imbens and Lemieux 2008).  

The RD coefficients are molecule-specific (dependent on scale of outcomes). Hence 

average LATE may not be an appropriate aggregate measure of regulation effect. We use the RD 

coefficients, the bandwidths identified using Imbens-Kalyanaraman method and the standard 

deviation scores around the bandwidths, to compute the effect size and variance for each 

molecule. As we are looking at mean change around the cut-off point (outcomes just before and 

just after the regulation are expected to be equal in case of null effect of regulation), the effect 

size is the standardized mean change computed using raw score standardization allowing 

heteroscadastic variances before and after regulation (Bonnet 2008). Once we compute the effect 

sizes and variances for all molecules, we apply the standard meta-analysis methodology 

(Schmidt and Hunter 2014) and employ restricted maximum likelihood (random-effects) 

(Viechtbauer 2005) to estimate the overall weighted effect size. We expect the weighted effect 

size to be negative for regulated and positive for the unregulated group. 

4.4 SARIMA Forecasting of Post-regulation Sales Using Pre-regulation Data 
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Finally, to provide additional evidence, using the pre-regulation data of all the molecules, 

we fit a forecast function and create a credible counterfactual for each molecule in the post 

regulation period. The difference between the forecast and the actual values post-regulation 

indicates whether regulation has resulted in an increase (decrease) in outcomes. We follow three 

stages: i) estimate a SARIMA (seasonal autoregressive integrated moving average) function 

(with or without drift) using historic sales (pre-regulation) data, ii) create a baseline using the 

forecast function for the period immediately following the regulation (12 months) and, iii) 

compare the actual outcomes with the baseline to isolate the average effect of regulation. In other 

words, we estimate the residuals of the forecast function for the period following the regulation 

and test for direction and statistical significance.  

We identify the best fitting seasonal ARIMA model using the algorithm developed by 

Hyndman and Khandakar (2008). We identify an ARIMA (p, d, q) (P, D, Q) [m] model where p 

and q refer to the autoregressive and moving average models respectively, d refers to the degree 

of differencing, P, D and Q refer to the autoregressive, differencing and moving average terms of 

the seasonal component of the model and m refers to the length of seasonality (eg. 12 months in 

one year). The specification of the seasonal ARIMA (p, d, q) (P, D, Q) [m] process is presented 

in Equation (3).  

                      Φ(QR)	S(Q)	(1 − QR)F(1 − Q)TU# = A + 	Θ(QR)W(Q)B#	          (3) 

where Φ(X) and Θ(X) are polynomials of orders P and Q respectively (both contain no roots in 

the unit circle), S(X) and W(X) are polynomials of order p and q respectively (both have no roots 

for |z| <1), c is the drift term and if c ≠ 0, then it implies a polynomial of order d + D in (1). B 

refers to the backshift operator, B# denotes the white noise process and U#refers to the time 

indexed percentage sales growth. An overview of the algorithm followed (Hyndman and 
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Khandakar 2008) to fit the seasonal ARIMA model (identify the appropriate p, d, q, P, D and Q) 

is explained below: 

1. The value of D is first chosen based on Canova-Hansen (1995) test. This test checks whether 

the seasonal pattern changes significantly over time to warrant a seasonal unit root.  

2. The value of d is chosen by using successive KPSS (Kwiatkowski et al. 1992) unit root tests. 

The test is applied on seasonally differenced data if D ≠ 0 and on original data if D = 0. 

3. If d + D < 2, then the drift term c is included in the model.  

4. A step-wise algorithm is then used to evaluate different models (for detailed steps of the 

algorithm refer Hyndman and Khandakar 2008, p.11). 

5. The values of p, q, P and Q are chosen by minimizing the AIC (Akaike Information Criteria). 

We identify the best fitting models for the regulated and unregulated molecules. The 

objective is to get the best fitting forecast function based on AIC (Akaike Information Criteria) 

and robustness of the model was verified using MASE10 (mean absolute scaled errors) 

(Hyndman and Koehler 2006, Kostenko and Hyndman 2008). Specifically, we verify that the 

MASE of the forecast functions are below one (for a detailed discussion, refer Franses 2016). 

Using the models identified from historic data (pre-regulation), we forecast the outcomes from 

July 2013 to June 2014 (post-regulation period of 12 months). We compute the differences 

between the forecasts and actual values (residuals) and test for significance. A significant 

difference between the actual and the predicted outcomes may then be attributed to price 

regulation. We expect the results to be consistent with those obtained from RD approach. 

5. Results 

5.1 Panel Estimation 
 

10 MASE, as the name indicates, is independent of the scale of the data and allows the forecast accuracy to be 
compared over several molecules with different scales. MASE values greater than one indicate that the one-step 
naïve forecasts perform better than the forecast function.  
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We estimate the average outcome effects of price regulation on regulated and unregulated 

(closely related) molecules using the fixed-effects panel model explained in Equation (1). The 

results of the panel regression models with i) log (sales volume), ii) log (C24R%), and iii) log 

(RuralRx%) as the dependent variables are presented in Table 3 (complete analysis results for 

each of the dependent variables are presented in Online Appendix 2)11. In the case of sales 

volume, the coefficients of PostReg (β1=.053, p<.05) and IsNLEM*PostReg (β2=-.090, p<.05) 

are significant, indicating that sales increased for the unregulated group but declined for the 

regulated group. The unregulated group had an average increase of 5.3% sales volume in the 

post-regulation period. However, the regulated group had an average decline of 3.7% (sum of β1 

and β2). We find that both the regulated and unregulated groups had an average increase of 3.4% 

(β1=.034, p<.05) in C24R% post-regulation. The effect of the interaction term (β2) is not 

statistically significantly different from 0 at the 5% level indicating no differences between the 

regulated and unregulated groups in the post-regulation period. Given the overall decline in sales 

volume of the regulated, this indicates that the absolute level of sales in these markets declined in 

regulated group relative to the unregulated group. Finally, RuralRx% of the regulated molecules 

declined on average by 18.7% while the unregulated molecules saw an average increase of 8.6% 

in the 12 months following regulation.  

5.2 Matching Estimators 

As there are some minor differences between the regulated and unregulated groups in the 

pre-regulation period, we adopt a matching procedure to address the issue of non-comparability 

of the groups. We use the following covariates averaged over the pre-regulation period to 

compute the propensity score of being in the regulated group: log (sales), C24R%, RuralRx% 

 
11 For the dependent variables in ii) and iii) we also estimated logistic regressions with log(y/1-y) as the dependent 
variable (results in Online Appendix 2) and the results are consistent. 
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and CPGPRx%. We use a probit model for computing propensity scores and apply a caliper of 

.01 for the propensity scores. The balance of the covariates in the regulated and unregulated 

groups after matching is presented in Online Appendix 3. After matching, we have 1,798 

observations (number of regulated molecules, Nregulated= 13 and unregulated molecules, 

Nunregulated= 16). With the matched sample, we re-estimate the coefficients of the panel model in 

Equation (1) with log (sales), log(C24R%) and log(RuralRx%) as the dependent variables 

(similar to Tsai et al. 2015). Results of the analyses using the matched sample are presented in 

Table 3. Consistent with our earlier estimates, after regulation, relative to the unregulated group, 

the regulated group has 11.7% lower increase in sales volume (p<.05) and 7.4 % (p<.05) fewer 

prescriptions from rural doctors. Additionally, we find the effect of regulation on the lower tier 

cities in the regulated group to be negative (β2=-1.2 %, p<.05) relative to the unregulated group, 

in the period following price regulation. 

[Insert Table 3 here] 

5.3 Regression Discontinuity Design  

To address the issue of lack of credible counterfactuals for the regulated group (as the 

unregulated group is also affected by price regulation), we use RD design to examine whether 

there is a discontinuity in the outcomes for the molecules around the period of regulation. While 

the results of RD designs may not be generalizable to other molecules, the results have high 

internal validity at the molecule level. We estimate the RD coefficients or local average 

treatment effects (LATE) for each molecule as specified in Equation (3), while accounting for 

time trends. We use a sharp RD design at the July 2013 cut-off (month of implementation of 

price regulation). The bandwidths (on either side of the threshold) are computed using the 

Imbens-Kalyanaraman optimal bandwidth calculation (Imbens and Kalyanaraman 2012). We use 
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a ‘triangular’ kernel to be used in the local linear fitting as specified by Lee and Lemieux (2010). 

We conduct RD estimation for each of the regulated and unregulated molecules, with the 

bandwidths being identified separately for each molecule. The detailed results of RD estimations 

for the three outcome variables are presented in Online Appendix 4. 

With log(sales) as the outcome variable, we find that the RD coefficients are significant 

for 25 regulated molecules and 24 unregulated molecules. We compute the average LATE 

estimates (results presented in Table 4 and illustrated in Figure 3) for the regulated and 

unregulated molecules. Overall, the average LATE of unregulated molecules (24 molecules with 

significant LATE) is found to be .071 whereas the average LATE of regulated molecules is -.064 

(25 molecules). We find a similar pattern of results for log(RuralRx%); the average LATE 

estimate of log(RuralRx%) is .033 (16 molecules with significant RD coefficients) for 

unregulated molecules, and -.051 (18 molecules with significant RD coefficients) for regulated 

molecules. Further, majority of LATE estimates were insignificant for log(C24R%) – only 4 

unregulated molecules (average=.028) and 7 regulated molecules (average=-.011) have 

significant RD coefficients. Overall, the list of specific molecules with significant LATE are 

slightly different (there is significant overlap) for the log(sales) and log(RuralRx%). 

[Insert Figure 3 here] 

As the RD coefficients are molecule-specific, aggregating the LATE values may not 

provide interpretable results. We compute pre- and post-regulation standard deviations of 

outcomes for each molecule over the bandwidths identified from the Imbens-Kalyanaraman 

method. The pooled standard deviation (Olejnik and Algina 2000) is then computed for 

estimating the effect size of the LATE measures. The RD coefficients and the pooled standard 

deviations are used to estimate the standardized mean change (allowing for heteroscadistic 
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variances before and after regulation) (Bonnet 2008). The weighted effect size (Schmidt and 

Hunter 2014; Viechtbauer 2005) for regulated and unregulated molecules are presented in Table 

4 for the three outcome measures. We first compute overall effect size of all molecules (plots 

with effect sizes and confidence intervals for all molecules are in Online Appendix 4) and then 

with just the molecules with significant RD coefficients. In the case of log(sales), the effect size 

(using random-effects, restricted maximum likelihood estimator) is found to be -.354 (p<.05) for 

the regulated group, compared to .139 (p<.05) for the unregulated group. Further, we compute 

the ‘fail-safe’ metric using the Rosenthal method. Fail-safe number indicates the number of 

molecules with null results in order to render the overall weighted effect size to be insignificant 

(Rosenthal 1979). The fail-safe number for the regulated molecules is found to be 3,187 

(significantly higher than the total number of molecules under regulation), whereas the fail-safe 

for unregulated molecules is found to be 1,721. Overall results suggest a decline in sales volume 

for regulated molecules, while the sales volume of unregulated molecules, on average increased. 

Similar pattern of results are observed for log(RuralRx%). However, in case of log(C24R%), the 

effect size is positive and marginally significant (.129, p<.10) for the unregulated group, while it 

is insignificant for the regulated group.  

[Insert Table 4 here] 

5.4 Forecast Outcomes 

Using Hyndman and Khandakar’s (2008) algorithm, we identify the best fitting SARIMA 

models for all the molecules. The models are fit to the pre-regulation data and are then used to 

forecast for 12 months after regulation. Next, the differences between actual outcomes and 

forecast values are tested for significance. For each molecule i, we compute the average of these 

differences in the post-regulation period, termed the ‘average treatment’ effect (ATEactual-forecast)  
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YZ6"([\#][;^_`ab\[c#) = 	Yd0efg(hA-ihf")j − 	Yd0efg(@+k/Ah,-")j  (4) 

The magnitude of LATE estimates (effect sizes) and ATEactual-forecast are not directly 

comparable. However, when there is a significant discontinuity at the point of intervention, we 

expect the direction of ATEactual-forecast to be consistent with that of LATE estimates, providing 

additional evidence. Hence we expect the ATE values to be significant for molecules with 

significant LATE estimates. Overall pattern of results are consistent with that of RD design 

results with some exceptions (majority of the molecules with insignificant LATE estimates, also 

have insignificant ATE values). Table 4 reports the results for the three outcomes12 (summary 

results for molecules with significant LATE estimates).  

5.5 Robustness Checks 

We find that the pattern of our reported results are robust to the following additional tests 

albeit with minor exceptions.  

5.5.1. Timeline. As the announcement for price regulation was made in May 2013 

(giving the firms, 45 days to comply with the new prices), we drop May and June 2013 data and 

redo the analysis. Our findings are robust to whether the data on two months are included. For 

instance, in the case of log(sales), when we drop 2 months from our analysis, the evidence is 

stronger for the negative effect on regulated molecules (31 molecules with significant LATE, 

majority being negative) and positive effect on unregulated molecules (30 molecules with 

significant LATE, majority being positive).  

5.5.2. Matching Estimators. We check the sensitivity of our results to different caliper 

values (.01 and .001) in identifying the matched sample. Next, we also conduct coarsened 

 
12 ATE values for the three outcome variables (all molecules) are presented in Online Appendix 4.   
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matching with the covariates, to assess the similarity of the matched sample obtained. The 

selection of matched sample was robust to different criteria and matching methods. 

5.5.3 Regression Discontinuity Design. In the earlier reported results, bandwidths were 

computed for each of the molecules to estimate RD coefficients. As a robustness test, we double 

the Imbens-Kalyanaraman bandwidth to assess the sensitivity of the results to bandwidth 

selection and find the results to be consistent.  

Next, we conduct ‘placebo’ RD tests by assigning the cut-off point at two different pre-

regulation periods (20 months and 35 months in the pre-regulation period), and once in the post-

regulation period (6 months after regulation), and find no significant discontinuities with minor 

exceptions for molecules with significant LATE estimates13. We also conduct a placebo test 30 

months into the pre-regulation period when NLEM list was first announced (September 2011) 

and find that the announcement did not have a significant impact on sales and prescription 

behavior (detailed results in Online Appendix 5).  

5.5.4 Forecast Function. To assess the sensitivity of our results to prediction errors, we 

split the pre-regulation period (50 months) into two halves for the molecules with significant 

ATE values, use the first 25 data points to forecast for the next 12 periods. While the forecasts 

were found to be significant, the residuals (difference between actual and forecast values in the 

post-estimation period) were mostly insignificant, for the three outcome measures. This indicates 

that absence of a discontinuity after 25 months as the model from the first 25 months was able to 

predict sales from the next 25 whereas the earlier results indicated the presence of a discontinuity 

when the regulation went into effect. 

6. Mechanism 

 
13 While we conduct placebo tests for all molecules, for brevity, we only report the results for molecules with 
significant RD estimates in Online Appendix 5. 
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Prior research provides evidence that pharmaceutical price regulation may result in 

declining pre-tax profit margins to companies (Vernon 2003; Vernon et al. 2006). Further, prior 

regulations also reveal a significant decline in profit margins in India (refer Figure 1). Regulated 

molecules may become unattractive to firms for two reasons – i) regulated price is relatively 

lower compared to other molecules in the firm’s portfolio, and ii) high percentage reduction in 

prices after regulation. The relationship between regulated prices, weighted percentage price 

reduction14 and LATE estimates for the 25 regulated molecules with significant RD coefficients, 

is presented in Figures 4a and 4b (details in Online Appendix 6). The LATE estimates appear to 

be positively correlated (even after dropping an outlier) with regulated prices (higher the 

regulated price, lower the negative value of LATE). Further, the LATE estimates are negatively 

correlated with percentage price reduction, which suggests that higher price reductions are 

associated with higher negative values of LATE. This provides evidence that higher negative 

discontinuities are observed when regulated prices are lower or when the percentage reduction in 

prices are higher or both.  

[Insert Figure 4 here] 

While the price control order brought a ceiling on price increases for the unregulated 

drugs, the firms are not required to reduce their current prices of these drugs. Hence, the profit 

margins on unregulated molecules are preserved (if firms do not decrease the prices of 

unregulated molecules), while the margins for the regulated molecules declined due to reduction 

in prices. We compute simple average prices of unregulated molecules (with significant LATE 

estimates) just before regulation (March 2013), just after regulation (June 2013) and 6 months 

post-regulation (December 2013) (details in Online Appendix 6). We find that there are no major 

 
14 We take the top 5 brands for each molecule (based on market share) and compute a weighted average reduction 
(with market shares as weights) in prices. 
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price decreases (average price decreased only for 3 molecules in June 2013 and for 2 molecules 

in December 2013). Hence, we can eliminate decline in prices as the potential explanation for the 

increase in sales of unregulated molecules. However, lower margins for the regulated drugs seem 

to have done 2 things – lowered the motivation of manufacturers to detail the drugs and lowered 

the motivation of retailers to stock the drugs. 

In the pharmaceutical industry in India where DTC advertising for prescription drugs is 

illegal, companies rely on detailing as the main promotion vehicle to compete for prescriptions 

from physicians. Detailing refers to a firm’s salesforce effort in terms of interaction with the 

physicians to provide information about the company’s brands for various molecules 

(Manchanda and Chintagunta 2004). When the profit margins decline for a brand, a possible 

reaction from a firm could be to shift the detailing efforts to more profitable brands. This would 

mean, reducing the overall number of visits required for a particular brand (at the national level) 

by the firm’s salesforce. We provide suggestive evidence for the proposed mechanism using 

detailing data for two brands (one regulated and other unregulated) from a top pharmaceutical 

firm in the country. The brands chosen for this analysis are represented15 as Brand R (regulated 

molecule) and Brand UR (unregulated molecule). Both these brands are typically prescribed for 

cardiac issues (heart disease or hypertension) and are considered close substitutes16. The firm 

headquarters plans the total number of visits (termed as exposures) to be covered by its 

salesforce for each brand on a monthly basis. The number of visits are computed for – i) new 

doctors, ii) non-core doctors (these doctors are visited only once in a month), and iii) core 

doctors (more than one visit per month). Using data (from April 2012 to June 2014 -15 months 

 
15 We disguise the names of the brands to protect the anonymity of the pharmaceutical firm that shared the data (at 
the firm’s request). 
16 While the price of Brand UR was unchanged, the firm had to reduce the price of Brand R, after regulation. 
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of pre-regulation and 12-months of post-regulation data) for the two brands, we provide evidence 

of shift in detailing efforts that can be attributed to price regulation.  

Our main outcome variables of interest include, i) log(visits), and ii) log(sales volume). 

We use a RD design to identify any discontinuities (with July 2013 as the cut-off), after 

accounting for time trends. Results of the analysis (Table 5) indicate that there is a significant 

discontinuity revealing negative LATE for Brand R and positive LATE for Brand UR, across the 

two main outcome variables (RD figures presented in Figure 5). Further, the RD estimates across 

the three categories of visits reveal changes in the distribution of detailing efforts. LATE 

estimates for new doctor visits are positive for both Brands R and UR. However, the non-core 

and core visits have a negative LATE for Brand R, indicating a decline in detailing plan for the 

regulated molecule (RD figures in Online Appendix 7). In the case of Brand UR, the LATE for 

core visits is found to be positive and significant. Our results indicate that the firm has increased 

the number of new doctors to be visited (across all molecules) post regulation, increased the 

detailing for core visits for Brand UR (to gain market share for the unregulated molecule) and 

decreased both core and non-core visits for Brand R (as a result of decline in profit margins).17 

Overall, our results indicate lower detailing efforts for the regulated molecule accompanied by 

lower sales in the post-regulation period.  

[Insert Table 5 here] 

The above rationale for the findings was confirmed when a top management executive 

and strategy team members in the firm were interviewed. The interviews also revealed that firms 

were mostly unwilling to reduce the prices of unregulated molecules, as such a reduction would 

 
17 An alternative approach would be to control for the detailing levels in the analysis. This would predict that the 
post-regulation dummy interacted with whether the molecule was regulated would no longer be statistically 
significant. While we find this to be the case, we prefer the current approach since (a) our objective is only to 
identify the mechanism; and (b) including time-varying detailing levels raises the issue of endogeneity. 
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have an effect on all future price increases (as price increases for unregulated molecules were 

restricted to 10% in one year). Further, the interviews revealed that rural doctors typically fall 

under non-core visits (one visit per month) and post-regulation, in many regions detailing efforts 

were reduced for rural doctors for the regulated molecules. One of the reasons cited is the cost 

associated with access to remote rural areas. As noted previously, majority of the rural doctors 

do not have formal allopathic medical degrees and depend on detailing for medical information. 

Reducing detailing to these doctors therefore has a big effect on rural prescriptions. Overall, we 

find the firm’s actions to be consistent with our arguments and results.   

Another potential explanation of lower sales for regulated drugs is that the retailers may 

stock less of the regulated drugs due to lower margins. DPCO 2013 fixed the retailer margin for 

the regulated molecules at 16%, whereas the average retailer margin for the unregulated 

molecules is around 20% (Mukherjee 2013). Hence there is an incentive for retailers to sell less 

of the regulated drugs. Note that this could potentially explain our sales outcome measures but is 

unlikely to have influenced our third outcome measure – the percentage of prescriptions written 

in rural markets (at least in the immediate aftermath of the regulation). Press reports suggest that 

wholesalers and retailers insisted on the old margins so pharmaceutical firms had no option but 

to sell to the channel at low prices (Unnikrishnan and Unnikrishnan 2014), cutting down their 

own margins given the price cap on MRP. As a result, 65% of the pharmaceutical firms restored 

older trade margins (Vaitheesvaran 2013). This led to further lowering of manufacturer margins, 

thus resulting in even lower motivation to detail.  

7. Conclusions 

We examined the effect of price regulation on a set of regulated and closely related 

unregulated molecules on three outcome variables – i) sales volume, ii) percentage sales in lower 
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tier cities, and iii) percentage prescriptions from rural doctors. In the case of sales volume, 

regression discontinuity design results indicate that 25 (of the 51) regulated molecules have 

significant discontinuities when the regulation was implemented, with majority (19) 

experiencing a negative impact. Contrary to the policy objectives, the regulation has resulted in 

lower sales volume in spite of price reduction. However, results also suggest discontinuities for 

24 closely related unregulated molecules with majority (22) being positive.  

We did not find any significant differences in terms of percentage sales in lower tier 

cities (the change in sales volume for the regulated molecules and unregulated molecules, are 

similar across higher and lower tier cities). Finally, we find that percentage prescriptions from 

rural doctors significantly declined for regulated molecules (14 molecules with negative LATE 

and 4 molecules with positive LATE – overall weighted effect being negative) whereas, that of 

unregulated molecules increased (14 molecules with positive LATE and 2 molecules with 

negative LATE – overall weighted effect being positive).  

We provide suggestive evidence that the shift in sales and prescriptions from remote and 

rural areas may be attributed to the shift in detailing efforts of firms. First, we find that the 

regulated price and weighted percentage price reduction of the regulated molecules were 

correlated with LATE estimates obtained from RD analysis. This indicates that the lower priced 

and high price-reduced regulated molecules were less attractive for firms. Second, using two 

specific brands (one regulated molecule and another unregulated molecule), we find a shift in 

detailing efforts and sales volumes. Specifically, there is a negative discontinuity in the number 

of visits (for detailing) planned by the firm headquarters for the regulated brand whereas the 

discontinuity was positive for the unregulated brand (from the same therapeutic class). A similar 

pattern of results was observed for the sales volume of the two brands. We also find that the 
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detailing efforts were specifically reduced (increased) for core doctors (doctors who are visited 

more than once in a month for detailing) for the regulated (unregulated) brand. Finally, 

interviews with industry personnel revealed the strategic shift of detailing in remote access rural 

areas. Due to the unproductive nature of detailing for regulated brands (with reduced margins), 

detailing in these regions was restricted.  

Prescription drugs (both regulated and unregulated) in India are among the lowest priced 

in the world (even prior to regulation). The prices are almost 65% lower than the country’s 

BRICS counterparts (Mookim and Khanna 2015). Hence reducing the price ceilings via 

regulation adversely affects the profit margins. Currently, the price regulation targets the supply-

side of the market by controlling manufacturer prices and their margins. However, as our results 

indicate, marketing incentives have been reduced (as evidenced by reduction of detailing efforts 

by manufacturers) and the market has shifted to more profitable alternatives within the same 

therapeutic class (Liepina 2011), resulting in a demand-side shift. Firms may also evade the price 

ceiling by adding or changing the formulations of the drugs under regulation (e.g. focus on 

marketing Atenolol/Amlodipine combination instead of the separate molecules that are under 

price control). In the long term, the firms may completely stop making the drugs under control 

and migrate to other molecules in the same therapeutic class, rendering the price control 

ineffective, as observed in DPCO 1995 (25 of 74 regulated molecules are no longer produced). 

In concluding, our main takeaway for regulators is to consider the entire system – 

patients, doctors, and firms when considering such regulations. If physicians are dependent on 

pharmaceutical reps for their information on drugs (especially primary care physicians who have 

to prescribe across a very broad range of therapeutic categories), then price regulation could be 

susceptible to firms redirecting their marketing efforts towards more lucrative drugs and 
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categories. Alternatively the regulator may consider focusing on a few key categories while 

extending the price ceiling to all molecules in that category. Nevertheless, our study does point 

to potential unintended consequences of good intentions on the part of the regulator. 

We would also like to acknowledge several limitations of our study. First, though the 

regulated and unregulated molecules are closely related substitutes, the molecules in the two 

groups may differ in term of severity of indications in driving prescriptions. For instance, 

Atenolol/Amlodipine combination (unregulated) may be prescribed for the additive benefits in 

case of severe hypertension as opposed to Amlodipine (regulated) alone. Second, only a subset of 

our chosen regulated molecules has significant negative LATE estimates. Further research may 

explore the reason for the remaining regulated molecules that seem to be unaffected by 

regulation. Third, while RD designs ensure high internal validity for the molecules examined, the 

results may not be generalizable. While the meta-analysis and fail-safe metrics provide some 

evidence for generalizing the RD results, further research may focus on broadening our 

conclusions beyond those considered. Fourth, we only estimate the effects of regulation over a 

12-month period post regulation. Further research may explore long-term changes in detailing 

efforts, prescription behaviors and sales volumes. Further, in our post-regulation analysis period 

(12 months), there are no significant brand exits from the categories under price control. 

However, in the long-term, brand exits may be high and further research may focus on assessing 

the impact of price regulation on brand exits and brand entries into the (un)regulated categories. 

Fifth, our units of analysis are the molecules. Further research can examine the effect of extent of 

price reduction for brands (as few brands had to reduce prices to the market average, while 

others had to maintain their current prices) on market share for those brands. This would provide 

additional evidence at the brand level that firms were shifting their marketing efforts to other 
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brands in the portfolio. Finally, in the pre-regulation period, though there is no regulation, the 

level of competition for each molecule may be different. This may essentially have an impact on 

how firms react to regulation. Further research may examine any structural changes in 

competition post-regulation in the pharmaceutical domain. 
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Figure 1 Profit margin trends (1970-2000) 

 
(Data source: IndiaIndustryStat.com) 

 
Figure 2 Outcome raw data patterns before and after regulation 

Outcome variable: Average of log(sales units) 
a. Unregulated molecules b. Regulated molecules 

  
Outcome variable: Average of C24R% 

c. Unregulated molecules d. Regulated molecules 

  
Outcome variable: Average of RuralRx% 

e. Unregulated molecules f. Regulated molecules 

  
Notes: Vertical dotted lines (----) mark July 2013 (implementation of price regulation) 
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Figure 3 Distribution of treatment effects (LATE) 

Outcome variable: log(sales units) 
a. Unregulated molecules b. Regulated molecules 

  
Outcome variable: log(RuralRx%) 

c. Unregulated molecules d. Regulated molecules 

  
 
Figure 4  Regulated prices, percentage price reduction and LATE estimates 

a. Regulated price and LATE b. % price reduction and LATE 

  
 
Figure 5 Detailing and sales volume: Brand UR and Brand R 

a. Unregulated: Brand UR b. Regulated: Brand R 
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Table 1 Pre-regulation summary statistics 
Sample Sizea  Unregulated Group: 57  Regulated Group: 51  Differenceb,c 
Variable  Mean SD  Mean SD  
Sales (units)  34,828,103 79,750,198  27,742,658 29,659,619  -7,085,445 
Log(sales)  16.404 1.454  16.401 1.447  -.003 
C24R%  .332 .065  .354 .099  .022 
RuralRx %  .043 .044  .072 .059  .029*** 
Type: Acute  .456 .503  .608 .493  .152 
CPGPRx %  .455 .121  .417 .181  -.038 

*** p<.01, ** p<.05, * p<.1 
(a) No. of time periods per molecule: 50 months. Unregulated group has 2,850 and regulated group has 2,550 
observations; (b) Difference = average regulated – average unregulated (in the pre-regulation period); (c) p-Value 
reported is for t-test (unregulated-regulated, two-tailed tests) 

Table 2 Difference-in-difference estimates (post-regulation – pre-regulation) 
  Unregulated Group: 57  Regulated Group: 51  Differenceb,c 
Variablea  Mean SD  Mean SD  
         
Δ Sales (units)  11,865,683 18,920,202  2,449,169 6,615,871  -9,416,514*** 
Δ Log(sales)  .617 .678  .084 .234  -.532*** 
Δ C24R%  .004 .010  .002 .008  -.002 
Δ RuralRx %  .001 .014  -.003 .008  -.004* 
Δ CPGPRx %  .003 .066  -.021 .031  -.024** 

*** p<.01, ** p<.05, * p<.1 
(a) Post-regulation values – Pre-regulation values for each molecule within the group (and then averaged); (b) 
Difference = average Δ regulated – average Δ unregulated (difference-in-difference); (c) p-Value reported is for t-
test (regulated-unregulated, two-tailed tests) 

Table 3 Panel fixed-effects regression: Average effect of regulation on outcomes 
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 Full sample  Matched sample 
Explanatory variables (1) (2) (3)  (1) (2) (3) 
        
PostReg .053* .034*** .086***  .287*** .051*** .085*** 
 (.029) (.002) (.016)  (.051) (.003) (.026) 
IsNLEM * PostReg -.090*** .000 -.273***  -.117*** -.012*** -.074*** 
 (.023) (.001) (.012)  (.044) (.003) (.022) 
CPGPRx .477 .217*** 1.464***  .626 .182*** 3.136*** 
 (.317) (.017) (.172)  (.467) (.028) (.231) 
Constant 15.826*** -1.314*** -4.139***  15.760*** -1.240*** -4.611*** 
 (.141) (.007) (.076)  (.170) (.010) (.083) 
        
Observations 6,555 6,646 6,584  1,738 1,798 1,748 
R-squared .852 .795 .730  .885 .845 .743 
No. of molecules 108 108 108  29 29 29 
Molecule FE ü ü ü  ü ü ü 
Month FE ü ü ü  ü ü ü 
Year FE ü ü ü  ü ü ü 
Molecule*year FE ü ü ü  ü ü ü 

(1) Log (sales) (2) Log (C24R%)  (3) Log (RuralRx%)  Standard errors in parentheses 
*** p<.01, ** p<.05, * p<.1 

Table 4 Results of RD design, meta-analysis and SARIMA forecasts 
  log(sales)  log(C24R%)  log(RuralRx%) 
    (1) (2)   (1) (2)   (1) (2) 

LATE estimatea  .071(24) -.064(25)  .028(4) -.011(7)  .033(16) -.031(18) 
Meta-Analysisb          

Effect size  .139*** -.354***  .129* .051  .348** -.142*** 
Fail-safe number  1,721 3,187  424 -  1,457 831 

Meta-Analysisc          
Effect size  .303*** -.614***  1.393*** -.021  .779** -.296*** 
Fail-safe number  1,705 2,861  304 -  1,361 633 

SARIMA forecastsd          
ATE   .054 -.013   .116 -.006   .098 -.200 

*** p<.01, ** p<.05, * p<.1 
(1) Unregulated molecules  (2) Regulated molecules 
Parentheses – No. of molecules with significant LATE estimates 
(a) Average LATE of molecules with significant LATE values 
(b) Meta-analysis - all molecules (significant and insignificant LATE estimates) 
(c) Meta-analysis – molecules with significant LATE 
(d) Average ATEactual-forecast for molecules with significant LATE estimates 
 
Table 5 RD estimates: Brand UR and Brand R 

Outcome variable  LATE estimates 
  Brand UR  Brand R 
log(visits)  .012*  -.056*** 
  (.007)  (.015) 
      log(new visits)  .161*  .139*** 
  (.100)  (.045) 
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      log(non-core visits)  -.014  -.087*** 
  (.014)  (.016) 
      log(core visits)  .030***  -.037*** 
  (.012)  (.013) 
log(sales volume)  .108***  -.069** 
  (.002)  (.035) 

Standard errors in parentheses 
*** p<.01, ** p<.05, * p<.1 
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ONLINE APPENDICES 

Online Appendix 1: List of molecules and descriptive measures 

Table OA1.1 Regulated molecules 

  Pre-regulation (mean)   Post-regulation (mean) 
Molecule Sales (units) C24R% RuralRx%  Sales (units) C24R% RuralRx% 

Acyclovir 1,769,909 35.5% 6.5%  2,290,356 35.4% 6.5% 
Albendazole 4,751,608 48.6% 12.5%  5,140,623 48.8% 10.1% 
Allopurinol 14,419,185 31.3% 3.8%  12,973,487 32.9% 3.8% 
Alprazolam 53,972,281 37.5% 9.1%  50,964,214 39.0% 9.1% 
Amiodarone 2,640,505 19.9% 1.4%  2,576,689 20.1% .8% 
Amlodipine 90,577,078 37.7% 7.5%  108,255,763 37.9% 6.0% 
Amoxycillin/Clavulanate 26,177,973 39.3% 6.8%  43,411,322 39.1% 6.8% 
Amoxycillin  34,429,063 47.8% 19.4%  33,407,763 48.9% 19.4% 
Antithyroid preparations 6,827,610 37.9% .7%  8,650,567 37.8% .7% 
Atenolol 43,897,092 44.0% 9.7%  39,910,427 42.8% 7.8% 
Atorvastatin 56,860,179 29.0% 1.1%  59,988,171 29.0% 1.1% 
Azathioprine 2,287,797 14.2% 2.6%  2,598,225 14.8% 2.4% 
Azithromycin  13,103,179 42.2% 10.8%  14,563,998 43.2% 10.9% 
Bisacodyl 22,576,401 40.8% 7.7%  24,960,924 38.6% 7.7% 
Cardiac glycosides 15,048,620 43.8% 4.9%  16,401,441 43.8% 3.9% 
Cefixime 54,839,233 51.7% 18.5%  61,300,037 51.8% 18.5% 
Cephalexin 6,099,180 46.2% 15.4%  6,066,248 46.5% 15.4% 
Cetirizine 74,270,127 48.0% 20.5%  83,205,504 49.0% 22.6% 
Clindamycin 1,172,628 25.7% 3.2%  1,807,759 24.8% 3.2% 
Clopidogrel 32,212,158 26.9% 2.2%  34,525,103 28.7% 1.2% 
Diclofenac 30,239,580 43.4% 14.2%  24,876,323 43.9% 14.2% 
Domperidone 13,968,566 31.2% 10.8%  12,949,214 31.6% 10.8% 
Enalapril 16,694,349 42.7% 4.7%  15,042,128 42.9% 2.1% 
Fluconazole 6,824,991 40.9% 10.8%  8,208,995 41.6% 10.8% 
Glibenclamide 31,441,286 38.4% 7.0%  24,522,674 37.0% 7.0% 
Hydroxychloroquine 8,016,134 25.1% .7%  11,062,944 26.2% .7% 
Hyoscine 7,313,119 44.3% 7.7%  7,874,736 43.8% 7.7% 
Imatinib 209,690 4.9% 7.0%  193,482 4.2% 4.7% 
Isosorbide-5-mononitrate 9,935,075 30.0% 3.4%  10,061,415 30.4% 3.4% 
Leflunomide 926,471 18.4% 1.0%  1,194,522 18.5% .7% 
Levothyroxine 104,844,435 26.8% .8%  125,581,644 26.9% .8% 
Losartan 32,889,273 35.4% 3.5%  34,373,522 34.6% 3.8% 
Medroxyprogesterone 4,734,642 33.4% 2.0%  5,307,746 34.8% 2.0% 
Metformin 95,253,160 28.4% 3.2%  124,174,334 28.3% 3.2% 
Methylergometrine 4,304,485 48.0% 19.0%  4,277,639 47.9% 19.1% 
Metoprolol 30,515,111 29.6% 2.5%  40,065,700 29.9% 2.5% 
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Mifepriston 525,343 47.3% 5.3%  171,195 46.8% 5.3% 
Nifedipine 16,084,923 38.6% 3.6%  16,521,116 38.7% 3.6% 
Nitrofurantoin 4,103,859 25.7% .9%  6,033,057 26.8% .9% 
Norethisterone 20,750,889 39.6% 4.6%  22,706,459 39.4% 5.1% 
Ofloxacin 45,809,352 46.6% 21.4%  36,601,520 46.7% 21.4% 
Olanzepine 6,307,254 27.1% 1.9%  6,834,783 27.4% .9% 
Omeprazole 57,082,163 43.7% 18.5%  64,544,938 43.5% 18.7% 
Ondansetron 15,520,939 38.5% 11.0%  20,507,187 38.0% 11.0% 
Others - Folic acid 48,396,839 30.4% 4.9%  54,127,731 31.8% 4.9% 
Paracetamol 122,169,033 48.7% 13.3%  118,383,877 48.6% 13.2% 
Phenytoin 71,683,918 32.9% 3.2%  72,437,839 33.9% 3.2% 
Propranolol 12,230,254 32.6% 3.2%  14,405,796 32.9% 2.1% 
Pyrazinamide 2,928,813 21.6% 4.9%  3,066,078 20.6% 3.8% 
Sodium valproate 17,532,340 29.8% 3.9%  17,678,465 29.6% 3.9% 
Trihexyphenidyl 17,707,489 31.8% 2.3%  22,997,495 31.5% 1.7% 
                

 

Table OA1.2 Unregulated molecules 

  Pre-regulation (mean)   Post-regulation (mean) 
Molecule Sales (units) C24R% RuralRx%  Sales (units) C24R% RuralRx% 

Dpp4 inhibitors and combinations 19,772,240 17.7% .2%  50,143,040 20.3% .3% 
Glimepiride/Metformin 118,641,469 31.6% 1.0%  212,828,020 31.7% .9% 
Pantoprazole/Domperidone 48,636,418 37.0% 8.7%  72,515,953 37.5% 8.7% 
Rosuvastatin 22,991,779 26.5% 1.4%  45,570,295 26.6% 1.5% 
Rabeprazole/Domperidone 52,612,334 39.2% 6.5%  73,637,944 39.1% 8.0% 
Ranitidine  594,391,374 48.0% 17.6%  703,449,821 48.5% 18.0% 
Pantoprazole 60,544,714 33.5% 9.0%  80,692,616 33.1% 8.8% 
Levocetirizine/Montelukast 27,581,583 38.2% 5.1%  49,961,074 38.4% 5.2% 
Pioglitazone/Metformin/Glimepiride 51,827,764 36.0% 1.7%  54,135,370 36.3% 2.0% 
Cefpodoxime 36,050,565 46.5% 13.4%  47,472,936 47.3% 14.6% 
Telmisartan/ Hydrochlorothiazide 31,099,636 30.9% 1.2%  48,089,339 33.5% 1.4% 
Atenolol/Amlodipine 124,913,756 41.1% 9.3%  144,168,107 41.7% 10.6% 
Cefuroxime 12,112,256 31.6% 7.4%  13,856,915 32.1% 7.7% 
Levetiracetam 11,151,615 25.0% 2.5%  22,742,361 24.9% 4.9% 
Omeprazole/Domperidone 67,683,259 46.8% 18.3%  90,364,399 46.9% 17.8% 
Glimepiride/Metformin/Voglibose 2,600,749 30.3% .0%  16,361,777 31.0% .1% 
Amlodipine/Telmisartan 17,050,277 32.6% 1.0%  33,207,261 32.2% 1.6% 
Ursodeoxycholic acid 11,675,020 28.4% 1.7%  15,170,618 28.7% 1.8% 
Rabeprazole 56,954,048 36.5% 6.3%  59,691,992 35.9% 6.7% 
Gliclazide/Metformin 37,145,096 34.0% 3.1%  41,791,892 34.0% 3.7% 
Sildenafil 10,149,794 36.9% 4.5%  10,221,839 36.2% 4.3% 
Voglibose 23,120,165 29.4% .7%  37,790,723 32.7% .9% 
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Ofloxacin/Ornidazole 31,186,736 43.4% 9.4%  35,425,920 43.8% 9.3% 
Cefpodoxime/Clavulanate 8,398,350 40.2% 6.0%  11,991,900 40.3% 6.3% 
Aceclofenac/Paracetamol 63,991,413 43.9% 10.5%  78,111,885 44.3% 1.0% 
Losartan/Hydrochlorthiazide 42,321,096 38.9% 1.8%  44,200,042 38.8% 1.5% 
Olmesartan 13,580,719 28.5% .8%  23,366,815 32.9% .6% 
Ramipril 34,848,608 26.5% 3.0%  34,444,862 26.6% 2.9% 
Levosulpiride/Rabeprazole 4,342,038 34.0% 2.6%  12,385,175 34.4% 3.9% 
Itraconazole 461,776 26.9% 3.2%  2,158,354 26.1% 3.7% 
Cilnidipine 2,975,158 36.4% .6%  16,600,465 35.3% .4% 
Dutasteride/Tamsulosin 6,788,841 31.8% .7%  10,433,490 31.0% .5% 
Esomeprazole/Domperidone 10,026,629 33.7% 3.6%  17,505,073 34.8% 4.1% 
Rosuvastatin/Fenofibrate 3,951,021 23.2% .4%  9,607,510 24.4% .6% 
Levocetirizine 44,547,018 38.8% 7.9%  51,662,773 39.3% 8.2% 
Levofloxacin 26,670,562 38.7% 11.3%  23,609,808 38.4% 10.6% 
Amlodipine/Metoprolol 14,257,340 33.0% 1.5%  22,130,955 32.8% 1.6% 
Chlortalidone/Telmisartan 2,032,771 24.3% .4%  8,295,876 24.6% .7% 
Etorecoxib 14,841,524 37.3% 4.8%  16,670,605 37.9% 4.9% 
Hydrochlorthiazide/Olmesartan 9,709,078 29.9% .5%  14,756,272 31.0% .3% 
Esomeprazole 16,746,021 28.6% 2.4%  23,517,340 29.6% 2.9% 
Terbinafine 3,298,504 35.5% 8.8%  6,317,371 35.8% 9.6% 
Fenofibrate/Atorvastatin 11,496,910 26.3% .5%  13,012,433 27.2% .6% 
Metformin/Voglibose 5,775,630 30.3% .6%  15,489,492 30.5% .6% 
Rifaximin 2,211,774 25.6% 1.5%  4,651,646 25.6% 1.3% 
Fexofenadine 8,464,660 21.9% 2.4%  9,864,678 21.7% 3.0% 
Montelukast/Fexofenadine 2,581,820 33.6% 2.3%  7,192,374 32.8% 2.9% 
Tamsulosin 10,851,297 31.4% 1.4%  14,602,923 30.9% 1.2% 
Gliclazide 17,191,328 26.5% 2.7%  18,937,863 26.5% 2.2% 
Levosulpiride/Pantoprazole 1,945,930 29.8% 3.0%  5,514,453 29.8% 3.2% 
Cefixime/Ofloxacin 18,357,920 39.7% 14.3%  31,799,134 39.0% 15.1% 
Colecalciferol 4,904,851 23.8% 5.0%  16,399,733 24.6% 4.4% 
Atorvastatin/Aspirin 32,746,182 33.6% 1.1%  51,926,328 34.6% 1.6% 
Nebivolol 14,035,872 29.8% .5%  17,542,361 29.6% .7% 
Clavulanic acid/Cefuroxime 2,267,808 35.7% 1.5%  2,885,516 36.1% 1.4% 
Glibenclamide/Metformin 41,502,233 40.5% 2.6%  42,809,110 40.9% 4.3% 
Torsemide 17,186,564 30.9% 2.1%  21,860,985 30.9% 2.2% 
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Online Appendix 2: Results of panel fixed-effects regression models 

Table OA2.1 Panel regression results 

 log(sales)  log(C24R%)  log(RuralRx%) 
Explanatory 
variables 

(1) (2) (3)a  (1) (2) (3)a (4)b  (1) (2) (3)a (4)b 

              
PostReg .305*** .053* .056***  .034*** .034*** .033*** .049***  .107*** .086*** .079*** .084*** 
 (.058) (.029) (.020)  (.003) (.002) (.002) (.002)  (.026) (0.016) (.016) (.017) 
IsNLEM * PostReg -.483*** -.090*** -.090***  .000 .000 .000 .002  -.384*** -.273*** -.273*** -.288*** 
 (.027) (.023) (.023)  (.001) (.001) (.001) (.002)  (.014) (.012) (.012) (.013) 
CPGPRx% 1.831*** .477 .477  .226*** .217*** .219*** .346***  1.785*** 1.464*** 1.464*** 1.839*** 
 (.380) (.317) (.317)  (.016) (.017) (.017) (.024)  (.165) (.172) (.172) (.176) 
Constant 15.288*** 15.826*** 15.818***  -1.207*** -1.314*** -1.306*** -.831***  -4.128*** -4.139*** -4.132*** -4.092*** 
 (.172) (.141) (.141)  (.007) (.007) (.007) (.011)  (.074) (.076) (.076) (.078) 
              
Observations 6,555 6,555 6,555  6,646 6,646 6,646 6,646  6,584 6,584 6,584 6,584 
R-squared .269 .852 .852  .337 .795 .795 .807  .129 .730 .730 .732 
No. of Molecules 108 108 108  108 108 108 108  108 108 108 108 
Molecule FE ü ü ü  ü ü ü ü  ü ü ü ü 
Month FE ü ü ü  ü ü ü ü  ü ü ü ü 
Year FE ü ü ü  ü ü ü ü  ü ü ü ü 
Molecule-year FE  ü ü   ü ü ü   ü ü ü 
Polynomial Time 
trend 

  ü    ü ü    ü ü 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

(a) Time trend added as a robustness check (polynomial time trend – t, t2 and t3 added to the panel regression) 
(b) Logit transformation of dependent variables - log (y%/(1-y%)) – y à(C24R% and RuralRx%) 

 



50 
 

Online Appendix 3: Balance of covariates after matching 

a. Propensity scores b. Covariate distributions 

  
 

 
Online Appendix 4: RDD results 
Table OA4.1 RD results: Regulated molecules 
    log(sales units)   log(C24R%)   log(RuralRx%) 

Molecule   LATEa Effect sizeb ATEc   LATEa Effect sizeb ATEc   LATEa Effect sizeb ATEc 
Acyclovir  .110 .410 .377  -.002 -.247 -.015  -.005 -.023 -.002 
Albendazole  -.057 -.445 -.054  .007 .981 .028  -.044 -.399 -.211 
Allopurinol  -.080 -.495 -.240  .034 1.606 .049  -.004 -.055 -.008 
Alprazolam  -.036 -.515 -.015  .016 1.595 .037  -.009 -.076 -.005 
Amiodarone  -.127 -.549 -.026  .006 .973 .027  -.052 -.277 -.489 
Amlodipine  -.104 -.749 -.018  -.007 -.868 -.005  -.069 -.864 -.129 
Amoxycillin   .133 .248 .021  .004 .614 .005  -.015 -.029 -.001 
Amoxycillin/Clavulanate  .088 .497 .012  .004 .568 .024  -.002 -.013 -.001 
Antithyroid preparations  .003 .016 -.017  .005 .623 .015  .001 .023 .003 
Atenolol  -.117 -1.757 -.064  -.013 -1.730 -.030  -.043 -.371 -.107 
Atorvastatin  -.041 -.453 -.015  -.001 -.070 -.021  -.005 -.172 -.003 
Azathioprine  -.010 -.206 -.025  .036 .629 .024  -.024 -.316 -.047 
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Azithromycin   .089 .509 -.024  .021 .544 .017  -.022 -.116 -.018 
Bisacodyl  .068 .368 .054  -.052 -2.999 -.085  .005 .142 .007 
Cardiac glycosides  -.087 -.462 -.025  .001 .667 .025  -.064 -.450 -.189 
Cefixime  .086 .323 .023  -.002 -.696 -.024  -.005 -.259 -.007 
Cephalexin  .014 .089 .025  -.003 -.498 -.031  -.004 -.203 -.006 
Cetirizine  .084 .593 .096  -.004 -.530 -.026  .036 .326 .049 
Clindamycin  .083 .163 .125  -.012 -.094 .020  .018 .033 .019 
Clopidogrel  -.145 -1.192 -.036  .037 .836 .059  -.087 -.881 -.164 
Diclofenac  -.115 -1.181 .057  .014 .314 .026  -.056 -.230 .016 
Domperidone  -.031 -.250 .245  .007 .416 .021  -.088 -.477 -.048 
Enalapril  -.145 -1.469 .185  .009 .133 .036  -.075 -.692 -.407 
Fluconazole  .103 .537 .161  .009 .273 -.045  -.008 -.215 .004 
Glibenclamide  -.091 -.535 -.035  -.005 -.611 -.039  .003 .330 .005 
Hydroxychloroquine  -.257 -.987 -.011  .004 .334 -.026  .002 .105 .004 
Hyoscine  .103 .547 .200  -.002 -.315 .035  .004 .106 .007 
Imatinib  .539 .712 .102  -.109 -1.550 -.102  -.056 -.464 -.414 
Isosorbide-5-mononitrate  -.069 -.862 .018  -.001 -.070 .017  -.003 -.215 -.008 
Leflunomide  -.086 -.717 -.130  .002 .115 .018  -.048 -.513 -.371 
Levothyroxine  -.132 -.804 -.075  .017 .325 .029  -.002 -.221 -.008 
Losartan  -.146 -1.692 .048  .010 .179 .075  .032 .398 .070 
Medroxyprogesterone  -.134 -1.045 -.115  .012 .285 .016  .009 .502 .008 
Metformin  -.030 -.173 -.066  -.006 -.524 .079  -.010 -.179 -.002 
Methylergometrine  .011 .106 .075  -.004 -.364 -.055  -.013 -.295 -.041 
Metoprolol  -.143 -.639 -.063  .006 .399 -.039  .002 .239 .004 
Mifepriston  -.059 -.126 -.120  -.002 -.256 -.004  -.004 -.127 -.005 
Nifedipine  -.023 -.315 -.243  .016 .632 .014  -.005 -.205 -.008 
Nitrofurantoin  -.006 -.018 -.032  .029 .351 -.024  -.005 -.116 -.007 
Norethisterone  -.371 -3.418 -.055  -.006 -.179 .004  .039 .221 .278 
Ofloxacin  .177 .858 .015  -.009 -.283 -.085  -.004 -.151 -.003 
Olanzepine  -.150 -1.326 -.104  .004 .332 .024  -.023 -.419 -.468 
Omeprazole  -.093 -1.024 -.136  .004 .523 .011  .023 .338 .029 
Ondansetron  -.151 -.839 -.024  -.014 -.277 -.107  .004 .161 .002 
Others - Folic acid  -.144 -.550 -.085  .006 .317 -.008  .005 .115 .007 
Paracetamol  .143 .747 .157  -.011 -.353 -.116  -.010 .147 .005 
Phenytoin  .289 1.860 .041  .011 .425 .032  .007 .211 .001 
Propranolol  .029 .307 .029  -.001 -.054 -.004  -.042 -.319 -.370 
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Pyrazinamide  -.119 -.624 -.033  .007 .536 .005  -.023 -.305 -.305 
Sodium valproate  -.087 -1.051 -.124  .020 .107 .104  .009 .153 .006 
Trihexyphenidyl   -.162 -.814 -.090  -.027 -.375 -.057  -.042 -.439 -.350 
Notes: Boldface indicates statistical significance (p<.05) 
(a) RD coefficients (b) Standard mean change (effect size)  (c) Difference between actual outcomes and forecast values 
 
Table OA4.2 RD results: Unregulated molecules 
    log(sales units)   log(C24R%)   log(RuralRx%) 

Molecule   LATEa Effect sizeb ATEc   LATEa Effect sizeb ATEc   LATEa Effect sizeb ATEc 
Dpp4 inhibitors and combinations  .035 .054 -.022  .026 1.375 .137  .021 .272 .004 
Glimepiride/Metformin  .030 .114 .067  -.017 -.510 .021  .005 .140 -.003 
Pantoprazole/Domperidone  .061 .267 .024  .016 .583 .025  .002 .518 -.006 
Rosuvastatin  .005 .009 .015  .022 .438 -.024  -.010 -1.024 -.008 
Rabeprazole/Domperidone  .074 .376 .031  -.006 -.418 -.026  .067 1.523 .212 
Ranitidine   .162 1.077 .111  .002 .271 .019  .054 1.499 .081 
Pantoprazole  .037 .211 -.010  .003 .278 .004  -.012 -.106 -.008 
Levocetirizine/Montelukast  .086 .187 -.121  -.003 -.361 .002  .006 .121 .004 
Pioglitazone/Metformin/Glimepiride  -.051 -.539 .009  .006 .480 -.013  .029 .130 .015 
Cefpodoxime  .185 .714 -.061  .011 .335 -.017  .025 .438 .040 
Telmisartan/ Hydrochlorothiazide  .032 .107 .013  .026 2.558 .081  .063 .328 .012 
Atenolol/Amlodipine  .020 .200 .018  .021 .606 -.021  .103 2.221 .137 
Cefuroxime  .068 .549 .112  .001 .092 .005  .043 .391 -.006 
Levetiracetam  .050 .112 .014  -.007 -.382 -.011  .025 2.075 .700 
Omeprazole/Domperidone  -.016 -.079 .019  .002 .217 .010  -.012 -.330 -.033 
Glimepiride/Metformin/Voglibose  .071 .047 .109  .013 .208 .021  .003 .027 .001 
Amlodipine/Telmisartan  .038 .082 .006  .004 .452 .010  .022 .416 .015 
Ursodeoxycholic acid  .028 .139 -.008  .003 .265 .003  .021 .293 -.004 
Rabeprazole  .022 .282 .033  .010 .132 -.003  .009 1.084 .002 
Gliclazide/Metformin  -.002 -.028 .068  .009 .198 -.018  .093 1.300 .103 
Sildenafil  -.013 -.131 .152  -.001 -.091 .010  .019 .541 -.003 
Voglibose  .023 .082 -.062  .013 1.142 .105  .065 .592 .102 
Ofloxacin/Ornidazole  -.083 -.441 .126  -.007 -.036 -.025  -.003 -.393 .001 
Cefpodoxime/Clavulanate  .129 .378 .152  -.008 -.332 -.024  .065 .455 .038 
Aceclofenac/Paracetamol  .148 .969 .042  -.007 -.227 -.013  -.202 -1.134 -0.734 
Losartan/Hydrochlorthiazide  -.026 -.439 -.009  -.013 -.493 .002  -.048 -.541 -.049 
Olmesartan  .017 .047 .143  .045 .576 .141  -.044 -.012 .061 
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Ramipril  -.063 -1.293 .040  .004 .052 -.007  -.019 -.575 -.028 
Levosulpiride/Rabeprazole  .088 .081 .135  .008 .669 -.024  .107 1.328 -.412 
Itraconazole  .098 .043 -.025  .014 .147 -.017  .036 .637 .046 
Cilnidipine  -.069 -.085 .177  -.019 -1.006 -.058  -.073 -1.153 -.288 
Dutasteride/Tamsulosin  .108 .443 .063  .001 .063 .038  .034 .877 .057 
Esomeprazole/Domperidone  .091 .321 .031  .015 .591 .043  .043 .327 .252 
Rosuvastatin/Fenofibrate  .053 .058 .097  .040 .720 .051  .021 .683 -.083 
Levocetirizine  .140 1.162 .054  -.018 -.192 .000  .015 .499 .026 
Levofloxacin  .103 .760 -.046  -.010 -.270 -.031  -.016 -.292 -.025 
Amlodipine/Metoprolol  -.002 -.006 .132  -.002 -.162 .050  -.008 -.189 .030 
Chlortalidone/Telmisartan  -.115 -.146 -.201  -.011 -.533 -.016  .020 .145 .002 
Etorecoxib  -.034 -.447 -.015  -.003 -.379 .005  -.062 -.406 .015 
Hydrochlorthiazide/Olmesartan  .003 .009 -.098  .029 .820 .050  -.138 -.257 -.058 
Esomeprazole  .104 .687 .047  .022 .176 -.027  .027 .331 .329 
Terbinafine  .157 .456 .190  -.011 -1.063 .022  .018 .296 .109 
Fenofibrate/Atorvastatin  -.053 -.487 -.067  .021 .630 -.043  .007 .234 -.005 
Metformin/Voglibose  .017 .015 .073  -.006 -.108 .017  -.003 -.194 .004 
Rifaximin  -.070 -.149 -.073  .019 .020 -.015  -.028 -.503 -.080 
Fexofenadine  .161 .941 .119  -.014 -.609 -.002  .062 .829 .343 
Montelukast/Fexofenadine  .054 .062 .027  .012 .243 -.047  .041 .355 -.044 
Tamsulosin  .043 .275 .025  -.004 -.311 .004  -.065 -.012 .006 
Gliclazide  .013 .286 .073  .003 .257 .036  -.076 -.306 -.065 
Levosulpiride/Pantoprazole  -.056 -.076 -.014  .003 .277 -.049  .078 .151 -.004 
Cefixime/Ofloxacin  .105 .116 -.024  -.005 -.586 -.004  .017 .376 .027 
Colecalciferol  -.035 -.040 -.025  -.015 -.078 .015  -.026 -.414 -.009 
Atorvastatin/Aspirin  .019 .056 -.053  .029 .028 -.008  .043 .742 .265 
Nebivolol  -.030 -.221 -.044  -.011 -.117 -.031  .033 .157 .037 
Clavulanic acid/Cefuroxime  .069 .369 -.028  .031 .500 .023  .025 .106 -.006 
Glibenclamide/Metformin  .025 .444 .032  -.012 -.462 -.017  .108 1.309 .521 
Torsemide   .003 .020 .023  -.003 -.071 .002  .033 .460 .037 
Notes: Boldface indicates statistical significance (p<.05) 
(a) RD coefficients (b) Standard mean change (effect size)  (c) Difference between actual outcomes and forecast values 
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Figure OA 4.1 Meta-analysis illustration: Regulated molecules  (with 95% Confidence Intervals) 
a. log(sales units) b. log(C24R%) c. log(RuralRx%) 

 
 

 
 

* RE refers to random-effects model in computing the weighted effect size 
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Figure OA 4.2 Meta-Analysis illustration: Unregulated molecules (with 95% Confidence Intervals) 
a. log(sales units) b. log(C24R%) c. log(RuralRx%) 

   
* RE refers to random-effects model in computing the weighted effect size 
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Online Appendix 5: Placebo tests (RD design) 
Notes:  Placebo 1: RD coefficient in the pre-regulation period (20 months: December 2010) 

Placebo 2: RD coefficient in the pre-regulation period (30 months: October 2011 – NLEM list announced) 
Placebo 3: RD coefficient in the pre-regulation period (35 months: March 2012) 
Placebo 4: RD coefficient in the post-regulation period (6 months: December 2013) 
Boldface indicates statistical significance (p<.05) 
 

Table OA5.1 Regulated molecules: log(sales) 

  Placebo 1   Placebo 2   Placebo 3   Placebo 4 

Molecule LATE p-Value   LATE p-Value   LATE p-Value   LATE p-Value 

Acyclovir .347 .020  .024 .876  .021 .903  .049 .640 

Amiodarone -.082 .563  -.007 .961  .040 .804  -.093 .481 

Amlodipine .061 .303  .014 .811  .027 .678  -.056 .509 

Atenolol .025 .473  .021 .548  .078 .036  -.091 .357 

Azathioprine .077 .268  .022 .764  .038 .630  .027 .658 

Cefixime -.105 .452  -.180 .202  -.013 .936  -.220 .022 
Cetirizine -.054 .511  -.057 .488  -.055 .551  -.149 .160 

Clopidogrel .087 .122  -.016 .767  -.017 .783  -.066 .417 

Fluconazole .029 .797  -.081 .472  .033 .792  -.165 .106 

Glibenclamide .003 .965  .039 .624  -.064 .458  -.116 .288 

Hydroxychloroquine .048 .683  .018 .885  .051 .700  -.094 .357 

Imatinib -.212 .658  .747 .123  -.102 .848  -.165 .535 

Isosorbide-5-mononitrate .050 .242  .003 .940  .033 .498  -.055 .552 

Leflunomide .178 .369  -.050 .806  -.095 .667  -.022 .743 

Levothyroxine .059 .449  .010 .898  .058 .506  .011 .942 

Metoprolol .112 .232  -.049 .611  -.040 .702  -.041 .607 

Norethisterone .013 .757  -.042 .338  -.035 .466  -.187 .309 

Olanzepine .051 .333  -.009 .860  -.008 .892  -.096 .242 

Omeprazole .050 .254  .046 .274  .054 .225  -.039 .646 

Ondansetron -.059 .419  -.072 .335  .155 .053  -.109 .267 

Others - Folic acid .075 .636  -.189 .245  -.038 .831  .152 .211 

Propranolol .081 .316  -.037 .651  .083 .354  -.069 .466 

Pyrazinamide .037 .731  -.031 .770  .087 .457  -.160 .287 

Sodium valproate .029 .489  .048 .226  .036 .397  -.034 .624 

Trihexyphenidyl .002 .988   -.087 .393   -.057 .608   -.161 .392 

 

Table OA5.2 Unregulated molecules: log(sales) 

  Placebo 1   Placebo 2   Placebo 3   Placebo 4 

Molecule LATE p-Value   LATE p-Value   LATE p-Value   LATE p-Value 

Dpp4 inhibitors and combinations .067 .072  .002 .950  -.016 .700  .001 .986 

Glimepiride/Metformin .050 .074  -.048 .080  -.019 .548  -.039 .605 

Pantoprazole/Domperidone .004 .926  -.036 .374  .046 .304  -.073 .220 



57 
 

Rabeprazole/Domperidone .037 .382  -.036 .385  .063 .159  -.063 .376 

Ranitidine  .042 .402  -.054 .287  .043 .442  -.063 .549 

Pantoprazole .020 .558  -.031 .336  .020 .589  -.034 .561 

Telmisartan/ Hydrochlorothiazide .104 .001  .011 .681  -.003 .923  -.006 .932 

Atenolol/Amlodipine .022 .415  -.007 .810  -.014 .635  .015 .824 

Levetiracetam .061 .017  -.011 .639  -.027 .333  -.028 .713 

Omeprazole/Domperidone -.004 .943  .073 .255  .198 .003  -.109 .157 

Amlodipine/Telmisartan .103 .002  -.032 .357  -.095 .024  .011 .872 

Cefpodoxime/Clavulanate -.042 .613  -.059 .468  -.032 .730  -.070 .203 

Aceclofenac/Paracetamol .001 .979  -.058 .227  .054 .311  -.085 .491 

Ramipril .039 .127  -.009 .734  -.016 .563  -.017 .807 

Levosulpiride/Rabeprazole .048 .257  .027 .784  .004 .825  .002 .687 

Dutasteride/Tamsulosin .014 .628  -.068 .018  -.058 .088  -.047 .520 

Esomeprazole/Domperidone .000 .995  .094 .035  .163 .000  -.068 .305 

Rosuvastatin/Fenofibrate .430 .000  -.154 .041  -.276 .015  -.039 .608 

Levocetirizine -.068 .293  -.052 .426  -.032 .661  -.120 .042 
Esomeprazole .001 .972  .018 .574  .068 .041  -.062 .337 

Terbinafine -.112 .230  -.141 .131  .066 .534  -.159 .104 

Fexofenadine -.003 .967  -.021 .724  -.069 .310  -.170 .006 
Tamsulosin .030 .302  -.017 .553  .023 .463  -.047 .567 

Glibenclamide/Metformin .081 .009   .026 .408   .019 .576   -.010 .894 

 

Table OA5.3 Regulated molecules: log(C24R%) 

  Placebo 1   Placebo 2   Placebo 3   Placebo 4 

Molecule LATE p-Value   LATE p-Value   LATE p-Value   LATE p-Value 

Allopurinol -.007 .194  .005 .389  -.003 .592  .014 .281 

Alprazolam .007 .154  .005 .347  .004 .408  -.014 .011 
Atenolol -.004 .370  -.007 .125  -.007 .170  -.017 .156 

Bisacodyl .002 .724  .003 .461  .001 .815  .017 .162 

Clopidogrel -.003 .614  .002 .751  .002 .814  -.011 .544 

Imatinib -.001 .827  .012 .674  .005 .832  .009 .679 

Phenytoin -.012 .013   -.002 .700   -.008 .139   -.011 .419 

 

Table OA5.4 Unregulated molecules: log(C24R%) 

  Placebo 1   Placebo 2   Placebo 3   Placebo 4 

Molecule LATE p-Value   LATE p-Value   LATE p-Value   LATE p-Value 

Dpp4 inhibitors and combinations -.002 .862  -.023 .043  -.004 .720  .009 .700 

Telmisartan/ Hydrochlorothiazide -.002 .715  .008 .195  .009 .183  .010 .511 

Voglibose -.010 .139  .010 .148  .015 .052  -.014 .180 

Olmesartan -.004 .480   -.004 .557   .010 .133   -.006 .528 
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Table OA5.5 Regulated molecules: log(RuralRx%) 

  Placebo 1   Placebo 2   Placebo 3   Placebo 4 

Molecule LATE p-Value   LATE p-Value   LATE p-Value   LATE p-Value 

Albendazole .008 .591  .023 .142  -.009 .614  .004 .966 

Amiodarone .050 .731  -.118 .427  -.005 .977  .003 .969 

Amlodipine .045 .107  -.018 .521  -.046 .138  .006 .970 

Atenolol -.007 .699  -.019 .312  -.008 .707  .004 .984 

Azathioprine .101 .118  -.014 .836  -.058 .428  .002 .991 

Cardiac glycosides .030 .448  .017 .672  -.052 .236  .006 .963 

Cetirizine -.012 .179  -.015 .096  -.014 .140  .003 .979 

Clopidogrel -.041 .646  -.109 .225  -.186 .054  .018 .966 

Enalapril -.018 .628  .005 .903  .018 .664  .005 .955 

Imatinib .012 .652  -.053 .038  -.039 .158  .012 .958 

Leflunomide .164 .397  -.149 .451  -.086 .688  .013 .947 

Losartan -.093 .082  -.089 .098  .014 .808  .016 .964 

Norethisterone .041 .297  -.014 .729  .052 .227  -.001 .993 

Olanzepine .171 .052  -.109 .231  -.132 .188  .004 .964 

Omeprazole .001 .911  -.008 .315  .000 .998  .002 .986 

Propranolol -.078 .177  -.019 .755  -.018 .784  -.001 .998 

Pyrazinamide -.040 .314  -.008 .854  .008 .855  .008 .946 

Trihexyphenidyl .028 .725   -.019 .816   -.084 .342   .018 .948 

 

Table OA5.6 Unregulated molecules: log(RuralRx%) 

  Placebo 1   Placebo 2   Placebo 3   Placebo 4 
Molecule LATE p-Value   LATE p-Value   LATE p-Value   LATE p-Value 

Rabeprazole/Domperidone .008 .006  .004 .156  -.001 .865  -.002 .702 

Ranitidine  .000 .721  .001 .453  -.001 .548  .003 .265 

Cefpodoxime .004 .378  .017 .257  .003 .581  -.004 .385 

Atenolol/Amlodipine .001 .529  -.002 .218  -.001 .657  -.002 .360 

Levetiracetam -.002 .778  .005 .476  -.014 .086  -.004 .612 

Gliclazide/Metformin -.012 .038  -.012 .048  .000 .991  .011 .409 

Aceclofenac/Paracetamol .000 .845  -.002 .395  -.001 .654  -.002 .558 

Levosulpiride/Rabeprazole .003 .648  .002 .748  -.009 .175  -.013 .273 

Cilnidipine -.007 .838  .018 .593  -.014 .705  -.084 .577 

Esomeprazole/Domperidone .010 .074  .008 .184  -.001 .921  -.008 .089 

Rosuvastatin/Fenofibrate -.047 .242  -.012 .767  .005 .903  .235 .678 

Esomeprazole -.008 .228  .012 .094  .008 .285  -.011 .442 

Terbinafine .000 .875  -.002 .363  .003 .140  .004 .294 

Fexofenadine .014 .064  .010 .222  .003 .703  .008 .471 

Atorvastatin/Aspirin .009 .618  .000 .993  .026 .189  -.038 .278 

Glibenclamide/Metformin .003 .674   -.015 .053   -.014 .097   .001 .899 
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Online Appendix 6: Prices pre- and post-regulation 
 
Regulated Molecule Regulated 

price (Rs) 
% price 

reductiona LATE 
 

Unregulated Molecule (1) (2) (3) %changeb %changec LATE 

Acyclovir 12.38 17.00% .110 
 

Dpp4 inhibitors and combinations 239.90 239.90 239.90 .00% .00% .035 
Amiodarone 6.93 24.70% -.127 

 
Glimepiride/Metformin 64.67 64.67 65.55 .00% 1.37% .030 

Amlodipine 3.01 9.20% -.104 
 

Pantoprazole/Domperidone 58.93 61.36 62.27 4.12% 1.48% .061 
Atenolol 2.20 26.30% -.117 

 
Rabeprazole/Domperidone 81.13 81.29 81.29 .20% .00% .074 

Azathioprine 10.52 7.20% -.010 
 

Ranitidine  13.64 13.64 13.87 .00% 1.63% .162 
Cefixime 11.96 3.90% .086 

 
Pantoprazole 82.40 85.09 85.09 3.26% .00% .037 

Cetirizine 1.92 20.80% .084 
 

Telmisartan/ Hydrochlorothiazide 104.08 104.08 104.71 .00% .60% .032 
Clopidogrel 10.66 6.50% -.145 

 
Atenolol/Amlodipine 37.61 38.44 39.28 2.20% 2.20% .020 

Fluconazole 15.36 10.20% .103 
 

Levetiracetam 100.42 101.57 100.24 1.14% -1.30% .050 
Glibenclamide 1.02 23.20% -.091 

 
Omeprazole/Domperidone 40.69 43.03 43.67 5.73% 1.50% -.016 

Hydroxychloroquine 6.00 1.70% -.257 
 

Amlodipine/Telmisartan 67.34 64.29 66.50 -4.53% 3.44% .038 
Imatinib 93.13 .10% .539 

 
Cefpodoxime/Clavulanate 171.88 171.33 176.04 -.32% 2.75% .129 

Isosorbide-5-mononitrate 3.50 .30% -.069 
 

Aceclofenac/Paracetamol 30.24 30.24 30.39 .00% .51% .148 
Leflunomide 30.44 16.20% -.086 

 
Ramipril 79.77 80.53 85.87 .96% 6.63% -.063 

Levothyroxine 1.18 8.20% -.132 
 

Levosulpiride/Rabeprazole 125.21 125.21 125.21 .00% .00% .088 
Metoprolol 3.59 5.70% -.143 

 
Dutasteride/Tamsulosin 143.85 148.05 150.77 2.92% 1.84% .108 

Norethisterone 5.39 13.60% -.371 
 

Esomeprazole/Domperidone 65.92 66.30 67.18 .57% 1.32% .091 
Olanzepine 3.08 8.90% -.150 

 
Rosuvastatin/Fenofibrate 134.32 133.85 137.06 -.35% 2.39% .053 

Omeprazole 3.21 32.50% -.093 
 

Levocetirizine 38.51 39.03 39.26 1.35% .59% .140 
Ondansetron 5.06 12.50% -.151 

 
Esomeprazole 62.35 62.67 62.51 .52% -.26% .104 

Others - Folic acid 1.46 48.70% -.144 
 

Terbinafine 129.22 114.60 115.90 -3.88% 1.14% .157 
Propranolol 1.16 2.90% .029 

 
Fexofenadine 71.52 71.52 74.51 .00% 4.17% .161 

Pyrazinamide 7.35 2.50% -.119 
 

Tamsulosin 112.76 112.76 113.74 .00% .87% .043 
Sodium valproate 3.26 5.80% -.087 

 
Glibenclamide/Metformin 20.66 20.90 22.20 1.14% 6.22% .025 

Trihexyphenidyl 1.45 43.60% -.162 
        

Notes: 
(a) Weighted average price reduction of regulated molecules is based on the price change before and after regulation of the top 5 brands (with market share as 
weights) 
Average price of unregulated molecule in (1) March 2013 (before regulation), (2) June 2013 (just after regulation), and (3) December 2013 (6 months after 
regulation) 
Average price of unregulated molecule computed as simple average of top 5 brands producing the molecule 
(b) % price change in June 2013 (relative to March 2013) (c) % price change in December 2013 (relative to June 2013) 
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Online Appendix 7: Detailing efforts: Brand UR and Brand R 
 

a. Brand UR – Unregulated molecule b. Brand R – Regulated molecule 

  

  

  
 

 


