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A multi- (depot, path, vehicle) 4D traveling purchaser

problem for perishable and breakable items under

disruption through quantum-inspired memetic algorithm

Abstract

The aim of this investigation is on improving the dynamic procurement planning and transporting

with selecting appropriate depot. This paper attempts to address decision problems faced by

the stakeholders, i.e., retail chains, e-commerce industries for perishable and breakable items

with multiple outlets under disruption risk of the path considering different vehicle types for

traveling and transportation. Introducing multiple path and vehicles between two markets with

considering multiple-depot is making classical traveling purchaser problem (TPP) a multi-depot

4DTPP. Multi-depot 4D (four-dimensional) Traveling Purchaser Problem is a TPP in which,

market selection and routing decisions are made by traveling multiple paths and each path having

multiple vehicles to minimize traveling, purchasing and transportation costs with multi-depot

considering quality of the product and risks factor of the road, vehicles, etc. Again in the variation

of product type, we study perishable and breakable items only. This is an NP hard problem, and

hence we develop a quantum-inspired memetic algorithm with a novel selection and crossover

technique to address this problem. We establish the superiority of our algorithm in terms of

solution quality and computational time on benchmark problems. Focusing on issues relevant for

practitioners, we address strategic decisions like introducing quality and quantity based policy and

appropriate choosing of the transporting vehicles, capacity and its impact on selection of markets

and conveyance types, optimal routing and procurement plan etc. In our analysis, we provide

a dynamic decision-making framework to regulators for fixing placing depot/warehouse and for

designing a route structure to motivate purchasers to opt for high quality with low risky network

design.

Keywords: Traveling Purchaser Problem, Quantum-inspired memetic Algorithm,

Perishability, 4D TPP, IVF Crossover;

1. Introduction

1.1. Motivation

In the classical TPP, a firm selling one or more items from a retail shop at a location employs

purchasers to purchase the items from different markets and transport the items to its depot

[cf. Ramesh [51]]. The purchaser starts from the depot, travels to a set of different markets,

purchases the items according to their availability and the demand, and transports the goods

to the depot, minimizing the combined traveling, transportation, and purchasing costs. It is an

NP-hard discrete optimization problem according to Lawler et al. [31]. TPP as a problem context

has become increasingly relevant because it combines market/supplier selection, appropriate path

arrangement and, product procurement design to avoid sub-optimality of independently solving
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each optimization problem. Increasing information access, real time tracking and coordination of

various departments facilitate the implementation of TPP.

After allowing 100% foreign direct investment for food retail in India there have stiff competi-

tion of supermarket chain with online e-commerce industries “Global retailers, including Amazon,

Wal-Mart and Metro AG, are keen to increase their footprint in India to cash in on the con-

sumption growth story of the worlds second populous nation”[cf. Hindustantimes [28]]. Recently,

“Amazon has pledged to spend · · · proposed 500 million entry into the food sector, is ramping

up its Amazon Pantry and Amazon Now initiatives” [cf. Times [64]] to expand Amazon business

strategy.

Previously, in developing countries, firms frequently procured items in small amounts from

the markets because of inadequate appropriate storage space. The purchaser carried the goods

with him/her in the same conveyance to deliver them to the depot [cf. Mansini and Tocchella

[40]]. Currently, even in countries such as India and Sri Lanka, international retail houses, such

as “Metro Cash and Carry” and “Amazon”, do have large warehouses equipped with a food

preservation facility and their purchases of several perishable and breakable items from remote

markets, such as apple and orange, etc. and different varieties of breakable items such as cashew,

biscuits, snacks, etc. with breakable come perishable products such as egg, sweets, etc. in large

amounts. They tend to avoid a large number of orders from remotely located sources for the large

ordering cost and inconveniences involved, such as the unavailability of an expert purchaser and the

required coordination efforts. Retailers attempt to balance the problems of avoiding large ordering

costs and shortages because they lead to a loss of goodwill [cf. Report [53]]. Our examination of

the purchase process revealed that, because of large bulk purchases, normally two separate vehicles

are used, one to transport the goods and one to transport the purchaser. Purchasers tend to be

internal employees of the firm, whereas most of the transportation operations are outsourced to a

third-party transport provider.

In supermarkets chain have multiple retail stores in a mega city, but they purchase from the

different buyer/supplier for different items and sent it into their different retail stores. Take

this scenario into account considering the proposed model with suitable multiple depots in the

place of a single depot in classical TPP. Thus we called it multi-depot TPP. According to a

present situation that at each markets considering appropriate vehicles for procurement manager

traveling and also different vehicles for transporting the goods into the depot. Thus the model

termed as multi-depot 3D (market-multi vehicle-market) TPP. But it is found that between each

market there more than one path(route) available for traveling as well as transporting the goods

to the depots also. Accounting this practical observation, we formulate the model and termed as

multi-depot 4D (market-multi path-multi vehicle-market) TPP.

Perishable product logistic is a complicated problem for a procurement manager because to

find out the best decision designing/ taken at the time of purchasing. It found that more than

40% of foods is wasted in each year at the United States which in the cost of $218 billion according

to Thomson [63]. Again at European Union expected food waste increase to 126 million tons by

2020 as reported by Gutierrez et al. [24]. In the present investigation, we account the perishability

of the products which depend on initial product quality, transporting vehicles and road condition

with distance covered by the vehicles also.

In our paper, we introduce a novel application of memetic algorithm (MA), Quantum-inspired

MA (QiMA) to solve proposed multi − depot 4DTPP . Quantum-inspired MA uses the concept

from both quantum computation and Genetic Algorithm (GA) and has successful applications in

TSP. Few attempts were done by the researcher for quantum-inspired GA to solve NP-hard like
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as TSP, TPP, etc. As a methodological contribution, firstly we develop a Quantum-inspired MA

(QiMA) implementation technique using quantum inspired initialization, selection, and crossover

that have not been attempted before. It yields better solution quality than traditional GA in

less computational time. In our knowledge there had only a few attempts Narayanan and Moore

[45], Talbi et al. [61] are taken in this Quantum-inspired GA for TSP. At the present work we

first-time QiMA used for TPP also. The novelty of the developed algorithm that superposition

dependent initialization and selection operation did in proposed QiMA. It facilitates the reduction

of computational time without compromising solution quality. We also develop a novel three

parents crossover technique (Intro Vitro Fertilization (IVF) crossover) that increases the diversity

of the chromosomes obtained after crossover. In mutation, we create a generation dependent

sigmoid random mutation probability threshold to influence mutation as the generation progresses.

The developed algorithm is compared with benchmarks from (TSPLIB, [52]) against the traditional

GA which is the alliance of roulette wheel selection (RW), cyclic crossover with conventional

mutation to establish the productivity of the developed algorithm.

This paper contributes to the problem context and methodology in three ways: A) addressing

more complex and relevant version of the problem context (TPP), B) methodological contribu-

tion by developing a novel quantum-inspired MA-based technique and C) developing policy level

insights required for robust decision support systems.

In this paper, we consider a multi-depot, multi-paths TPP with perishable and breakable items

having multiple vehicles of different types at marketplaces for travel and transportation. Goods

transportation vehicles differ in their costs per unit distance, per unit load, capacities for carrying

articles and perishability and breakability depends on the initial quality of the purchase items,

road conditions, vehicle capacity, and conditions, distance from the depot, etc. Different types

of path and vehicles are used for purchaser’s travel and goods transportation. The purchased

articles are transported to the depot directly just after the purchase. The purchaser comes back

the depot once the demands of the items are fulfilled. This model is termed as multi-depot 4D

traveling purchaser problem (multi− depot 4DTPP ) because of additional dimension introduced

by multiple depots, paths and vehicles. The problem is to find the suitable routes for the purchaser

to purchase and return, to determine the amounts of purchased items from the markets and to

send the purchased units to depot under the constraint of perishable and breakability so that

sum total of travel and materials’ transportation costs is minimum. As these models are NP-hard

problems, a Quantum-inspired memetic algorithm (QiMA) developed and used for solutions of

the above-formulated problems. Solutions of different formulated models are compared. Some

managerial decisions are also derived.

Thus main contributions in this investigation are as follows:

• Making a general TPP as multi-depot and introducing different types of paths and vehicles

at each market for travelling as well as transportation

• Procurement of perishable and breakable items from the markets against their demands at

the depot influenced by their prices or quality

• Breakability and perishability of the product depends on the road condition as well as vehicles

specific parameters

• Development of a novel Quantum-inspire memetic algorithm.

• Imposition of quantum based initialization, selection and IVF crossover with sigmoid muta-

tion
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• Managerial insights are drawn depending product quality and disruption on roads

This paper is structured as follows: in Section 1, a brief introduction is given. Section 2 elaborates

on TPP model with parameters. In Section 3, we introduce and elaborate presentation of devel-

opment of quantum-inspired MA (QiMA). In Section 4 numerical experiments are performed and

results are reported. Finally, we conclude the paper by discussing important research questions

addressed, relevance of the insights derived, limitations and future scope of research in Section 5.

1.2. Literature review

The TPP, first introduced by Ramesh [51] in 1981, is a variant of the classical traveling salesman

problem (TSP). Early papers on TPP include that of Voß [65], in which a study of a TPP with

fixed costs was presented. Two different types of TPP models, biobjective and asymmetric, were

developed by Riera-Ledesma and Salazar-González [54, 56]. A budget constraint TPP model was

solved by Mansini and Tocchella [41], with capacitated and uncapacitated variations [cf. Mansini

and Tocchella [40]]. Research studies on a periodic heterogeneous multiple TPP for refuge logistics

and budget constraints, an uncapacitated TPP, and a multiple TPP for maximizing a system’s

reliability with budget constraints were reported by Choi and Lee [13, 14, 15, 16]. Other types

of variations of the TPP with multiple stacks and delivery were studied by Batista-Galván et al.

[6]. Although a few studies, however, a multiple vehicle TPP was papers implemented; see TPP

multiple vehicles Bianchessi et al. [7], Manerba and Mansini [38], and Gendreau et al. [19].

Abdelhalim et al. [1] address a multiple vehicle inventory routing with the fixed time period

for perishable products with considering vehicle capacity in transportation. They are optimizing

production and transportation cost. A recent study found according to Broekmeulen and van

Donselaar [9] by reducing food waste and increasing freshness and sales for perishables products

in supermarkets. They consider three products fresh meat, fruits, and vegetables in 27 stores from

3 large retailers in Europe. A centralized decision system for just-in-time shipment policy was

developed by Chen [12] for perishable products such as fishes, fruits and vegetables, etc. In most

of the studies about perishable products consider three types of deterioration rate. The linear

distribution according to Wu et al. [68], Weibull distribution followed by Ali et al. [3], Gong et al.

[22], Perry and Stadje [49] and exponential distribution studied by Al Hamadi et al. [2], Sangeetha

et al. [58]. Since we fixed some parameters of Weibull distribution in between 0 to 1, and Weibull

distribution will degenerate liner as well as exponential distribution also. So in the present study,

we consider the deterioration rate followed Weibull distribution with some modifications according

to the problem. In transport planning of the purchased product vehicles load, capacity, and initial

quality of the product have a major influence in the decay rate of the perishable items which

incorporated in the present investigation.

Earlier, Mandal and Maiti [36, 37] formulated a single item inventory model for a breakable

unit with stock dependent demand and they assumed that the demand was a linear or non-linear

function of current stock level as well as the breakable unit B(q) depended on the current stock

level. They did not considered also the multi-items. Later Maiti and Maiti [34, 35] developed

some production-inventory/inventory models for breakable items in crisp environment. Though

the general form of breakability function was considered. Again Saha et al. [57] consider the rate of

breakability per unit time may be a linear or non-linear function of current stock level. Recently,

Halder et al. [26] studied breakable items in a transportation problem. In the present study, we

formulated the breakability rate with depending on road conditions, load and capacity of the

vehicles, distance covered by the vehicles, etc. Since multiple routes with multiple conveyances

are available between markets and depots so different road conditions, i.e., disruption due to
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weather, longitudinal and latitudinal position, etc., are emerges for simplicity we took into account

disruption with normal distribution between 0 to 1 as good to bad.

The list of exact optimization approaches for solving a TPP includes the lexicographic search

proposed by Ramesh [51], the branch-and-bound method proposed by Singh and van Oudheusden

[59], the branch-and-cut approach proposed by Laporte et al. [30], Riera-Ledesma and Salazar-

González [56], and Batista-Galván et al. [6], dynamic programming proposed by Gouveia et al.

[23] and Kang and Ouyang [29], and constraint programming proposed by Cambazard and Penz

[10]. Exact optimization approaches developed for NP − hard problems typically fail to address

relatively large problems because of the computation time involved. An approximation approach

was investigated by Barketau and Pesch [5]. A survey of this issue was conducted by Manerba

et al. [39]. To address the issue of computation time, various metaheuristic and soft computing

(proposed by Zadeh [70]) approaches were explored by several researchers. Voß [66] proposed a

Tabu search (TS) and simulated annealing (SA) for an uncapicitated TPP generalization with a

deterministic purchasing cost. Teeninga and Volgenant [62] considered an improved heuristic for

solving a TPP. Riera-Ledesma and Salazar-González [55] proposed a heuristic for the classical TPP.

Petersen and Madsen [50] developed a heuristic approach for a multiple-stack TPP. Some other

metaheuristic-based implementations include the TS method proposed by El-Dean [17], variable

neighborhood search (VNS) proposed by Ochi et al. [46], and the ant colony optimization (ACO)

approach proposed by Bontoux and Feillet [8]. Among the metaheuristic approaches for the TPP,

we found that GAs are the most widely used soft computing methods. Ochi et al. [47] proposed a

parallel GA called GENPAR, based on the island model, for an asymmetric TPP. Goldbarg et al.

[21] developed a transgenetic algorithm (TA) for a TPP that depends on horizontal gene transfer

and endosymbiosis.

Moscato et al. [44] first time introduced the word Memetic Algorithm (MA) based on the

population of cross GA. MAs are represented with different versions like Hybrid Evolutionary Al-

gorithms (Mart́ınez-Estudillo et al. [42], Baldwinian Evolutionary Algorithms Baldwin [4], Lamar-

ckian Evolutionary Algorithms Skinner [60]). When we merge the rules of memetics and compu-

tational model in a frame is called Memetic Computing (MC) introduced by Ong et al. [48]. The

nature of MC indicates the nature of the generality of Darwinism. Wang et al. [67] proposed an

effective MA to solve TSP based on two improved Inver-over operators, which used different op-

erators in different stages, and improve the convergence speed. Merz and Freisleben [43] focus on

his paper, the fitness landscapes of several instances of the TSP are investigated using new generic

recombination-based MAs can exploit the correlation structure for finding near-optimum tours for

the TSP. Ghoseiri and Sarhadi [20] introduced a special designed MA to solve the well-known Sym-

metric TSP by using a local search combined with a specially designed genetic algorithm to focus

on the population of local optima and good convergence behavior and solutions. Zou et al. [72]

presented a novel MA, in which a new local search scheme is introduced called Multi-Local Search

each of which executes with a predefined probability to increase the diversity of the population

to solve TSP. Gutin and Karapetyan [25] introduced MA with a powerful local search procedure

approach to solving generalized TSP which is an extension of the well-known TSP. In 2013, Castro

et al. [11] introduced an MA for the TSP with hotel selection (TSPHS). Very recently, Lu et al.

[33] studied an MA for the Orienteering Problem with Mandatory Visits and Exclusionary Con-

straints. Very few kinds of literature are found about quantum inspired MA for solving to TSP

or such NP − hard problems. A comprehensive survey about the quantum-inspired evolutionary

algorithm was done by Zhang [71]. According to Ganjefar and Tofighi [18] developed a quantum-

inspired neural network extended over a hybrid GA which is the combination of the gradient
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descent method for solving the optimization problem. But they did not investigate any quantum

experiment on GA. In the present study, we extended the GA operators such as selection, and

crossover depends on quantum behavior. An MA with real observation based quantum-inspired

evolutionary algorithm (QIEA) proposed by Liu et al. [32] to solve reactive power optimization in

power systems. Yuanyuan and Xiyu [69] proposed a QIEA for automatically determine the cluster

and optimizing the solutions. Best of our knowledge, we do not found any quantum-inspired MA

to solve such TSP or TPP.

2. Proposed Multi-depot 4D Traveling Purchaser Problem (multi-depot 4DTPP)

We create a table of important parameters with their descriptions that we use frequently in

subsequent sections.

Abbreviation and description of parameters and decision variables
Notation Description

K Product Set
M Market Set

C(i,j) Traveling cost from ith market to jth market
amk, cmk Unit cost of loss at mth depot for perishable and breakable product k

Cft
io Unit transporting cost from ith market to depot using vehicle type f

efio Emission rate of vehicle per unit length
qik Availability of kth product at ith market
pik Purchase cost of kth product at ith market
pc Possibility of crossover
pm Possibility of mutation
dik Demand of kth item at ith market
wi Per unit Weights of product i
xel Decision variable for traveling lth type of vehicles corresponding edge e
xerl Decision variable for traveling rth route using lth type of vehicles corresponding edge e
yi Decision variables of the selecting the corresponding market i
x́ef Decision variable for transporting f th type of vehicles corresponding edge e
x̀esf Decision variable for transporting by sth route using f th type of vehicles through edge e

2.1. Classical Traveling Purchaser Problem (TPP)

The TPP is explained as follows. Consider a depot 0, a set KR of products/items to purchase,

and a set M of markets dispersed geographically. A discrete deterministic demand dk, given for

each product k ∈ K, can be shared in a subset Mk ⊂M of markets at a given price pik > 0, i ∈Mk.

The availability of product qik > 0 is given for each product k ∈ K and each market i ∈ Mk,

making it a restricted TPP. For a feasible purchasing scheme according to the product demand,

the condition
∑
i∈Mk

qik ≥ dk,∀k ∈ K must be satisfied. The problem is specified on a graph

G = (V ,A), where V = M ∪{0} is the market set and E = {(i, j) : i, j ∈ V, i 6= j} is the edge set.

The cost components involve the traveling cost cij for edge (i, j) ∈ A and unit purchase cost pik.

The TPP yields an output of a simple cycle in G starting and finishing at the same depot, where

items are purchased at a subset of markets, to decide the amount of each product to be purchased

from each market, i.e., zik, that fulfills the demand at minimum traveling and purchasing costs.

For a TPP with a graph G∪ = (V ,E ), where E = {e = [i, j] : i, j ∈ V, i < j} is the edge set

and a traveling cost ce is associated with edge set e ∈ E, let xe, e ∈ E, yh ∈ V
′
, and h ∈ M be
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the decision variables taking value 1 if edge e and the corresponding market are considered, or

0 otherwise. Let also δ(V
′
) :={(i, j) ∈ E : i ∈ V

′
, j ∈ V/V

′} for any subset V
′

of nodes. The

mathematical formulation is

Minimize S =
∑
e∈E

cexe +
∑
k∈K

∑
i∈Mk

pikzik (1)

subject to
∑
i∈Mk

zik = dk, k ∈ K (2)

zik ≤ qikyi k ∈ K, i ∈Mk (3)

∑
e∈δ({h})

xe = 2 ∗ yh, h ∈M (4)

∑
e∈δ({h})

xe ≤ |A| − 1, (A ⊂ V, 2 ≤ |A| ≤M − 1) (5)

∑
e∈δ(M ′ )

xe ≥ 2 ∗ yh, M
′ ⊆M,h ∈M ′

(6)

zik ≥ 0, k ∈ K, i ∈Mk (7)

yi ∈ {0, 1}, i ∈M (8)

xe ∈ {0, 1}, e ∈ E (9)

The objective function Eq. (1) minimizes the traveling and purchasing costs. Eq. (2) ensures

that the total demand for every product is satisfied. The constraint in Eq. (3) is incorporated to

ensure that the products are purchased from a selected market; the purchased quantity should not

overreach the availability at the corresponding market. For the graph, because of the constraint

degree Eq. (4), two edges must be incident to each visited vertex. The sub-tour elimination

constraint is defined by Eq. (5). We write Eq. (6) to ensure that at least two edges are incident

to the subset of markets containing one at which purchases are made. The constraint in Eq. (7)

denotes the purchasing unit at any market. Finally, constraint Eqs. (8)–(9) represent the binary

and non-negative conditions exerted on variables.

2.2. Modified Three Dimensional Travelling Purchaser Problem (Solid/3D TPP)

Previously defined symbols in TPP formulation will be continued while describing formulation

of our chosen problem context. In our solid TPP, different vehicle types are available to travel

to different markets as well as to transport the purchased products from every market to depot.

Here, cel defines traveling cost from ith market to jth market with {e = (i, j)} using lth type of

conveyance, l ∈ {l : 1, 2, · · · , L}. Similarly cfti0 recognizes the unit transportation cost from ith
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market to depot 0 using vehicle type f = {f : 1, 2, · · · , F}. Mathematical formulation of solid

TPP is as follows:

2.2.1. Scenario-I: Goods are transported directly to depot just after purchase

Z1=
∑
e∈E

(cel)xel+
∑
k∈K

∑
i∈Mk

pikzik

Z2 =
∑
e∈E

∑
i∈Mk

cfti0 x́ef

Minimize Z=Z1 + Z2

Where l ∈ {1, 2, · · · , L}, f ∈ {1, 2, · · · , F}.

(10)

with Equs. 3-9.

2.2.2. Scenario-II: Goods are transported with purchaser by a separate vehicle

Minimize Z1=
∑
e∈E

(cel)xel+
∑
k∈K

∑
i∈Mk

pikzik

Z2 =
∑
e∈E

∑
i∈Mk

cfte xef

Minimize Z=Z1 + Z2

Where l ∈ {1, 2, · · · , L}, f ∈ {1, 2, · · · , F}.

(11)

with Equs. 3-9.

2.3. Multi-depot Four Dimensional Travelling Purchaser Problem (multi-depot 4DTPP)

Instead of single depot considering multiple depots set m = {0, 1, 2, · · · , P − 1} for simplicity

here staring depot is always 0. In our Four Dimensional TPP, different routes are available to travel

to different markets as well as to transport the purchased products from every market to depot.

Here, cerl defines traveling cost from ith market to jth market with {e = (i, j)} through rth route

using lth type of conveyance, r ∈ {1, 2, · · · , R} and l ∈ {1, 2, · · · , L}. Similarly cftism recognizes the

unit transportation cost from ith market to depot m through sth route, s ∈ {l : 1, 2, · · · , S1} using

vehicle type f = {f : 1, 2, · · · , H}. Mathematical formulation of m-depot 4DTPP for Scenario−I
is as follows:

Minimize Z=
∑
e∈E

(cerl)xerl+
∑
k∈K

∑
i∈Mk

pikzik+
∑
e∈E,

∑
i∈Mk

cftismx̀esf

Where l ∈ {1, 2, · · · , L}, f ∈ {1, 2, · · · , F}, r ∈ {1, 2, · · · , R},
s ∈ {1, 2, · · · , S1},m = {0, 1, 2, · · · , P − 1}.

(12)

x̀esf ∈ {0, 1}, e ∈ E, s ∈ {1, 2, · · · , S1}, f ∈ {1, 2, · · · , H}. (13)

with Equs. 2-9.

2.4. Multi-depot 4DTPP with Perishable and Breakable items

It is observed that, some products are perishable such as vegetables, fruits, fish, etc. some

are breakable such as dry fruit- cashew, biscuits, etc. and rest of the both perishable come

breakable like as egg, sweets, etc. Even some of the products are incompatible also. Here consider
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K = Ḱ∪ ´́
K, Ḱ = {Perishable Products}, ´́

K = {Breakable Products}, and Ḱ∩ ´́
K= Both perishable

and breakable products. So all of these taking into account the mathematical model formulated

as given below:

Minimize Z=
∑
e∈E

(cerl)xerl+
∑
k∈K

∑
i∈Mk

pikzik+
∑
k∈Ḱ

∑
i∈Mk

(amk ∗ θik)zik

+
∑
k∈ ´́
K

∑
i∈Mk

(cmk ∗ Ωik)zik+
∑
e∈E,

∑
i∈Mk

cftismx̀esf

Where l ∈ {1, 2, · · · , L}, f ∈ {1, 2, · · · , H}, r ∈ {1, 2, · · · , R},
s ∈ {1, 2, · · · , S1},m = {0, 1, 2, · · · , P − 1}.

(14)

θik is the perishable rate at ith market for kth perishable product given below:

θik =

{
ξk0 , Qik = 1

ξk0 ∗ (1−Qik)
−nf∗t∗ξk , 0 < Qik < 1

ξk = 1
Tk
,

Tk = Shelf life of the kth product

nf = wf

W f , w
f = Present load off th V ehicle,

W f = Maximum load capacity f th type of vehicle,

Qik0 = Initial quality of the kth product at ith market,

t = Required transporting time.

(15)

Ωik is the breakability rate at ith market for kth breakable product given below:

Ωik = nf ∗ (Rc + vc) ∗ log(1 + 1
d
)d

nf = wf

W f , w
f = Present load off th V ehicle,

W f = Maximum load capacity f th type of vehicle,

Rc = Road condition (disruption), 0 < Rc < 1

vc = vehicle condition, 0 < vc < 1

d is the distance will be carried.

(16)

Here we taken as Qik is the quality of the products and 1 stands for highest (good) and 0 for worst

quality (i.e, completely perishable) of the product. Similarly, Rc and vc which are taken as 0 for

road and vehicle condition is good and 1 indicated route is mostly disrupted and vehicles is bad.

For simplicity, Rc and vc are randomly generated following normal distribution in between 0 and

1.

3. Proposed Quantum-inspired Memetic Algorithm (QiMA)

We focused on heuristic approaches such as GA to address the TPP with variations because of

the computational time involved. The properties of quantum mechanics motivated us to develop

a quantum-inspired GA to achieve faster execution by utilizing the inbuilt properties of quantum

computation. Here, we select qubits to visit each markets characteristics in the chromosomes

of QiMA, which outperforms the classical counterpart in terms of the diversity of visiting the

population of markets. The convergence of the algorithm is more rapid than that of the traditional

one. In this section, some classical properties of quantum computation and its adaptation to a

GA are described.
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3.1. Quantum Computing

In basic quantum computing, the information is stored in quantum bits (qubits) (Han and

Kim [27]). A quantum qubit represents state 1, state 0, or a superposition of both. The state of

a qubit can be described as (Talbi et al. [61]):

|Ψ〉 = α|0〉+ β|1〉 (17)

where |0〉 and |1〉 represent the classical bit values 0 and 1, respectively, with α and β complex

numbers such that

||α||2 + ||β||2 = 1 (18)

α2 and β2 are the probability values of the qubit in states 0 and 1, respectively. In classical

quantum computing, a quantum register with n qubits can represent 2n different values. However,

when considering the “measure”, the superposition is demolished and one single value becomes

accessible for use. The exponential growth of the state space with the number of particles that

recommended a possible exponential speed-up of computation on quantum computers vis-a-vis

classical computers.

3.2. Quantum-inspired memetic algorithm (QiMA)

Here, we propose a quantum-inspired GA (QiMA) that uses the quantum initialization and

selection, an IVF crossover, and generation-dependent sigmoid mutation. The proposed QiMA

and its procedures are presented below.

3.2.1. Quantum representation and initialization

The solution makes α and β dependent on the distance/cost and demand between any two

markets i and j with i, j ∈ M . For an |M | = n markets/nodes TPP, we consider an n × n

cost/distance matrix. We compute αij using

αij = µ ∗ Cij
Si
− ν ∗ Aj

SAi
, i, j = 1, 2, · · · , n. (19)

To build a route in this mechanism, we incentivize the markets to be visited from the most recently

visited one by considering the traveling cost and product availability. While an increase in the

travel cost reduces the probability of visiting that market, an increase in availability motivates the

procurement manager to include it. In Eq. 19, µ and ν are constant parameters, node i represents

the most recently visited market, and node j refers to any market in the set of markets connected

to market i but yet to be visited. Cij is the traveling cost from the ith to the jth market and Si
is the sum of the traveling costs to the connected (with i) unvisited markets j. Similarly, Aj is

the product availability at the jth market and SAi is the sum of the availability at the markets

connected to node i but as yet unvisited. When the value of αij has been obtained, the value of

βij is obtained using Eq. 18. Thus, we obtain a quantum representation of the TPP with each

state represented in two qubits by an n×n matrix. Now, to find the initialized population for the

GA, we convert the above qubit matrix with 0s and 1s by applying some threshold to β2 values.

A row is randomly generated and a column on that row is randomly selected. If it is 1s,

then the corresponding market is chosen; else, another column is selected. By repeating the same

procedure, maintaining the TPP condition, a path that is considered a chromosome for the GA

is generated.

10



Here, a complete route traversing Mk(∈ M) markets represents a solution. We represent a

solution of visited markets by an Mk dimensional integer vector Xi = (xi1, xi2, ..., xiMk). A number

N of chromosomes for the GA is generated randomly before the GA operators are applied. The

pseudocode of quantum initialization is as follows.

Step 1. Start

Step 2. Calculate α and β from Eqs. 18 and 19.

Step 3. Determine the superposition value of each qubit as follows.

if (β2 ≥ qubit initialization threshold (predefined))

α|0〉+ β|1〉 = 1;

else

α|0〉+ β|1〉 = 0;

Step 4. Form the matrix of 0s and 1s.

Step 5. Each edge of a TPP has a qubit superposition α|0〉+ β|1〉 having a value of either 0 or

1. “1 means the edge is taken into consideration and “0 means the edge is not taken into

consideration.

Step 6. For i=1 to pop-size

Step 7. Randomly select a row and randomly pick a column. If it is 1s, then choose the cor-

responding market. Similarly, the rest of the markets are connected according to the TPP

conditions to be satisfied.

Step 8. Generate a TPP path (chromosome).

Step 9. End for

Step 10. End.

3.2.2. Quantum selection

We obtain an average value of β2 by considering the chosen markets in a solution (chromosome).

In addition, we define a threshold value of β2 to select solutions for the mating pool, as β2 defines

the attractiveness of a market based on cost and availability. We use the set of steps below to

create the mating pool:

Step 1. Start

Step 2. For i=1 to pop-size,

Step 3. Evaluate sum and average of β2 of each path,

Step 4. If (average β2 > threshold value of β2),

Select corresponding path for mating pool,

i=i+1

11



else

Choose the path corresponding with maximum β2,

i=i+1

Step 5. End for

Step 6. End

3.2.3. In vitro fertilization (IVF) crossover

In our proposed IVF crossover, except for the original parents, there is one additional mother,

known as a surrogate mother, who takes an active part in enhancing the diversity and solution

quality of the child. Figure 1 shows a schematic view of the proposed crossover. First, we randomly

select the three parents to generate two offspring using standard crossover techniques by selecting

markets using the β2 values, adhering to the TPP restriction and demand constraints. Thus, the

crossover procedure is as follows.

We begin by selecting three path/solutions (parents) from the mating pool and generate a

random number r in the range [0,1] with probability of crossover (pc) exogenously defined. If

r < pc, then we select the corresponding solution as the first parent (say Pr1). Similarly, we find

the other two parents, i.e., Pr2 and Pr3.

To explain the purpose, we define the three parents as Pr1: a1, a2,..., aMR
; Pr2: s1, s2,..., sMk

,

and Pr3: r1, r2,..., rMk
.

Here, (a1, a2,..., aMk
), (s1, s2,..., sMk

), and (r1, r2,..., rMk
) are markets within (1, 2, 3,..., M).

Then, we choose a market randomly from 1 to M , say ai = sp=rq (i, p, q=1, 2, ..., M) to modify

the parents by placing ai, sp, or rq in the first position of Pr1, Pr2, and Pr3. Now, the modified

parents are

Pr1: ai, a1, a2,.., ai−1, ai+1,....aMk

Pr2: sp, s1, s2,., sp−1, sp+1,....., sMk

Pr3: rq, r1, r2,., rq−1, rq+1,....., rMk

To obtain the first child (Ch1), we fix ai in the first place of Ch1. We compare the β2 values

of a1, s1, and r1 to choose the next market (with the maximum β2 value) to be visited after ai.

For example, if s1 has the maximum β2 value, we update the child solution as Ch1 : ai, s1. We

continue this process to construct an offspring until the demand is satisfied. In each step, we

concatenate a market such that the travel path satisfies the TPP restrictions. First, in each step,

we check whether the market already visited is among the offspring; then, the β2 values of the

next market among the parents will be considered, i.e., repetition of the markets is not appraised.

Second, the concatenation is continued until all the markets are visited or the demand is satisfied.

For the next generation, we replace the first two parents by the generated offspring.

The steps of an IVF crossover algorithm are as follows.

Step 1: Start,

Step 2: Initialize the three parents (Pr1, P r2, P r3) depending on probability of crossover pc,

Step 3: Generate a random number between 0 and the number of markets (ai say),

Step 4: Update the parents by placing ai in the first position of each parent,

Step 5: The first child initiates the route with market ai,

Step 6: Find the maximum β2 value from ai to the next visited market in among the three

parents, i.e., a1, s1, r1 in solutions Pr1, P r2, P r3, respectively,

Step 7: Repeat Step 6 until the terminating conditions are satisfied, i.e., the demand is

12



fulfilled or all markets have been visited,

Step 8: End.

Figure 1: In vitro fertilization crossover.

3.2.4. Sigmoid random mutation

We follow the steps below for mutation.

(a) Generation dependent pm: We acquire the probability of mutation (pm) by

pm= k
1+e−g , k∈[0,1], where g is the current generation number.

(b) Selection for mutation: To select the chromosome for mutation, we produce a random

number r ∈ [0, 1]. When r < pm, the corresponding chromosome is selected for mutation. Here,

pm decreases smoothly as the generation increases. In a single point random mutation, two markets

are randomly chosen from each chromosome and interchanged to create the new offspring set.

3.2.5. Procedure of QiMA

Consolidation of the above steps leads to the following QiMA algorithm.

Procedure name: Quantum-inspired Genetic Algorithm (QiMA).

Input: Max Gen, Population Size (pop−size), Probability of Crossover (pc), Max Initialization,

Problem Data (cost, availability, demand and distance matrices).

Output: Set of optimum solutions,

Step 1. Start

Step 2. Quantum initialization,

Step 3. Set initialization s ← 1,

Step 4. Check the condition while (s ≤ Max Initialization) do up to Step 28,

Step 5. Evaluate α and β from cost and availability matrices,

Step 6. Create the matrix of 0s and 1s with a certain threshold of α2,

Step 7. Randomly select the row and column by choosing 1s until the demand is satisfied,

and construct the path,

Step 8. Set starting generation t← 0,

Step 9. Initialize population p(t), where f(xi), i = 1, 2, · · ·, pop−size are the chromosomes,

Mk numbers of the nodes in each chromosome represent a solution/path of the TPP,

Step 10. Check the condition while (t ≤MaxGen) do up to Step 26,

Step 11. Quantum selection procedure,

Step 12. Fix the β2 of each chromosome of p(t) according to Subsection 3.2.2,
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Step 13. Generate the mating pool based on β2,

Step 14. IVF crossover procedure,

Step 15. Select the parents depending on the value of pc from mating pool,

Step 16. Modify the parents using crossover,

Step 17. According to Subsection 3.2.3 perform the crossover operation on selective chromo-

somes/ solutions,

Step 18. Generate offspring and replace it with the first two parents,

Step 19. Repeat Steps 15 to 18 depending on the value of pc.

Step 20. Generation-dependent sigmoid mutation P according to Subsection 3.2.4,

Step 21. Evaluate pm= 1
1+e−t ,

Step 22. Choose the offspring for mutation based on the value of pm,

Step 23. Exchange the place of these markets,

Step 24. Store the new offspring into offspring set,

Step 25. Compare the fitness and store the local optimum and near optimum solutions,

Step 26. t = t+ 1,

Step 27. Repeat Steps 10 to 26,

Step 28. s = s+ 1,

Step 29. Repeat Steps 4 to 28,

Step 30. (Optimum Solution) Store the global optimum and near optimum values,

Step 31. Terminate.

4. Computational Experiment on QiMA

We conducted three sets of experiments to understand the effectiveness of the proposed meta-

heuristic and to derive insights from the chosen problem context under the crisp and fuzzy en-

vironments. We coded the algorithm in C and C++ with the Codeblock compiler under 6th

Generation Intel Core i3, CPU@3.

4.1. Testing and some results on test problems from TSPLIB

This section establishes the effectiveness of proposed metaheuristic by comparing the results

with traditional GA on benchmark instances. We have taken standard benchmark problems

from Reinelt [52] repository. We introduce capacity (or availability) of each market by gener-

ating a random number in a range ensuring that total depot demand cannot be met by one

market. Table 1 illustrates results in terms of solution quality and computational time. The

percentage values represent the improvement of QiMA over traditional one using the formula
CostGA−Trad−CostQiMA

CostGA−Trad
∗ 100 %, where CostQiMA and CostGA−Trad denote the costs obtained by run-

ning QiMA and traditional GA respectively. For effective comparison, we have selected benchmark

problem instances between 100 to 202 cities with market capacity values chosen to ensure that at

least 70% of the markets should be traversed to meet the aggregate demand of the depot. The

results compare the worst, average and best costs obtained after 100 individual runs. Difference

in CPU times column reports the time difference between traditional GA and QiMA to obtain

the best solution. Considering numbers of depots 1, 5, 10 and 20 respectively. From the results,

it is evident that QiMA performs better than traditional GA in terms of solution quality with

significant reduction in computational time.

How the multi-depots are significantly distributed and shared the markets that are found in

the present figures. In the Figure 2 shows that the market planning for the different problem for
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List of parameters with values chosen for numerical experiment
Parameters Domain Value/Range Parameters Domain Value/Range
Number of Chromosome 50-150 Tk 85 hr/unit
Max Initialization 100-500 θik0 -
Max Generation 300-1000 pik -
pc 0.20-0.75 amk -
pm 0.01-0.20 ξk -
Qubit Initialization Limit 0.51-0.75 ξk0 -
Qubit Selection Limit 0.61-0.75 d -
Number of Chromosome 50-150 t -
Max Initialization 100-500 Ωik 0-1
Max Generation 300-1000 Rc 0-1
pc 0.20-0.75 Vc 0-1
pm 0.01-0.20 d
θik 0-1 ηik 0-1
ξk – ψ -
Qik 0-1
nf 0-1 dk 10%-90%
wf – q0 0-1
W f – -

29 nodes in Figure 2(a) and 100 nodes problem in Figure 2(b), Figure 2(c) and 200 nodes problem

in Figure 2(d) with two depot under availability 70-100 units of each products.

(a) Market planning for Bayg29 (b) Market planning for kroA100

(c) Market planning for kroC100 (d) Market planning for kroA200

Figure 2: Market planning for benchmark problems
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Table 1: Comparison of QiMA and traditional GA on benchmark instances

Algorithm Instance Depot Worst Avg Best Difference in Cpu time
(%) (%) (%) (seconds)

KorA100 1.23 1.04 0.05 1597
kroB100 2.54 0.78 0.21 2198
kroC100 0.56 0.18 0.78 2765
kroD100 2.01 1.54 2.14 1932
kroE100 0.75 1.102 0.49 1534
eil101 0.015 01.25 0.001 1779

QiMA & GA lin105 1 0.075 0.012 0.045 2984
gr120 0.048 1.023 0.851 2745

kroA150 0.025 0.78 0.034 1956
kroB150 0.078 0.15 0.04 3176

ch150 0.073 0.045 0.008 2849
gr202 1.024 0.046 0.97 3187

KorA100 1.05 1.78 0.13 1256
kroB100 3.41 0.31 0.45 1865
kroC100 0.35 0.06 0.32 1534
kroD100 1.87 0.85 1.13 1783
kroE100 0.75 1.102 0.49 1534
eil101 0.055 0.47 0.054 1479

QiMA & GA lin105 5 0.42 0.14 0.021 2018
gr120 0.18 0.87 0.54 1691

kroA150 0.014 0.08 0.72 1359
kroB150 0.19 0.76 0.002 2971

ch150 0.17 0.97 1.21 3215
gr202 0.054 0.74 0.015 3152

KorA100 0.32 0.71 0.01 1146
kroB100 1.01 0.017 0.01 1574
kroC100 0.24 0.56 0.015 1892
kroD100 1.46 0.97 1.08 1564
kroE100 0.082 0.95 0.028 1279
eil101 0.01 01.78 0.43 1658

QiMA & GA lin105 10 0.018 0.003 0.84 2058
gr120 0.178 0.298 0.671 2175

kroA150 0.087 0.91 0.009 1296
kroB150 0.75 0.19 0.87 2584

ch150 1.54 0.95 0.018 2053
gr202 0.98 0.51 0.07 3286

KorA100 1.57 1.84 0.92 1687
kroB100 1.78 1.06 0.91 2357
kroC100 1.01 0.97 2.54 3208
kroD100 2.58 1.87 1.35 2017
kroE100 1.04 1.51 0.74 1657
eil101 0.57 0.92 0.88 1895

QiMA & GA lin105 15 0.97 1.09 0.58 2875
gr120 0.098 0.07 0.75 3021

kroA150 0.025 0.81 0.079 2015
kroB150 0.21 0.67 0.87 3457

ch150 0.15 0.28 0.14 3124
gr202 1.31 1.02 1.32 5188

KorA100 2.12 1.52 1.15 2241
kroB100 2.13 1.97 0.87 2973
kroC100 0.56 0.21 0.91 2812
kroD100 1.98 2.51 2.73 2654
kroE100 1.21 1.85 0.65 2138
eil101 0.015 01.25 0.001 1779

QiMA & GA lin105 20 1.05 1.21 0.64 4577
gr120 1.02 1.51 1.034 3751

kroA150 0.57 1.84 0.41 2452
kroB150 0.32 0.87 0.25 4521

ch150 0.72 0.51 0.12 3862
gr202 1.71 0.28 1.81 5582
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4.2. m-depot 4DTPP

4.2.1. Availability in multi-depot 4DTPP

In the present section, we study the different parameters with their importance relevant to the

model. The importance of the availability of the products with chosen of numbers of markets are

found in Figure 3(a) again the pricing strategy with uniform and different number market visits

sharply visible in Figure 3(b). Now the availability increases and corresponding transportation

cost decreases which found in Figure 3(c). In Figure 3(d) shows that higher capacity vehicles are

chosen as availability increases. The product quality is an important factor of this investigation

since low-quality product in very short time goes to perishable, so the markets are chosen in that

area where quality is goods as well as availability also high which got in the Figure 3(f).

4.2.2. Perishability in multi-depot 4DTPP

Here the relevance of the perishability is established with the Figure 4. In Figure 4(a), shows

that the perishability cost effect the selection of transportation vehicles. Again the total cost of

perishability is decreased when product quality increases which founds in figure 4(b). Again the

road disruption is measure role in perishability that given in Figure 4(c).

4.3. Disruption in multi-depot 4DTPP

In this section, we study the disruption in vehicles and roads. Since between two markets

multiple paths are available with different road condition so disruption creates the different pro-

curement policies. In Figure 5(a), numbers of chosen markets are initially increase but not steady

when disruption increases. Similar style founds in Figure 5(b) where changes of path and dis-

ruption presented. Again low disruption rate influence the procurement manager to choose the

markets near about the depot. Most of the markets centered to the depot given in Figure 5(c).

Road conditions also motivated the appropriate vehicles selection because in high disrupted zone

low capacity vehicles produces more breakable products which founds in the Figure 5(d). Lastly

in Figure 5(e), average product quality increases as disruption increases sharply.

4.4. Breakability in multi-depot 4DTPP

Here we investigate the breakability condition depends on road, vehicles and distance from the

depot. In Figure 6(a) found the types vehicles scenario changed. Again road condition influences

the breakablity of the product firmly shows in Figure 6(b) and Figure 6(c) identify that when

average distance from depot to the market increases corresponding brekability of the product

increases.

5. Conclusion

In this paper, we develop a quantum initialization and selection with an IVF crossover memetic

algorithm with generation dependent sigmoid mutation to solve a multi-depot multi path traveling

purchaser problem with perishable and breakable items under disruptions.

Our problem directly relates to any typical purchasing and distribution problem valid for

sourcing organizations. It can also be used in other optimization applications like network op-

timization, graph theory, solid transportation problems, production planning, vehicle routing.

While the standard model description involves multiple markets with varying purchase prices

and distance matrix to understand the traveling cost, our problem improves on it in many ways.

Firstly we introduce multiple central warehouses (called multi-depots) to which the purchased
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(a) Availability Vs Market Visit (b) Availability Vs Pricing Strategy

(c) Availability Vs Transportation Cost (d) Availability Vs Vehicles Choose

(e) Availability vs No of Vehicles (f) Availability Vs Product Quality

(g) Availability vs Traveling and Transporting Cost

Figure 3: Availability Vs Different Parameters
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(a) Perishability Vs Number of Vehicles (b) Perishability Vs Product Quality

(c) Perishability Vs Disruption

Figure 4: Perishability Vs Vehicles, Product Quality,and Risk Factors
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(a) Disruption vs Market Selection (b) Disruption vs Path Selection

(c) Disruption vs Distance from Depot (d) Disruption vs Vehicles Selection

(e) Disruption vs Product Quality

Figure 5: Disruption vs Market, Path, Distance from Depot, Vehicle selection and quality of product
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(a) Breakability Vs No Of Vehicles (b) Breakability Vs Road Condition

(c) Breakability Vs Average Distance from depot

Figure 6: Breakability
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products will be despatched. This adds one more cost component, i.e., transportation cost, to

minimize. Between markets and depots, multiple routes and vehicles are included in the present

investigation which makes a more realistic one. We have considered a capacitated version of the

problem by restricting the market availability randomly decided within a range. In the product

types considering perishable and breakable items which depend on a different vehicle, road, initial

quality, etc., specific parameters. Our first contribution is in making a methodological improve-

ment by developing quantum inspired GA (QiMA) with IVF crossover technique and sigmoid

mutation. With minor customization, we believe that QiMA will emulate similar success in other

combinatorial optimization problems. We have clearly established its dominance over traditional

GA in terms of solution quality and computational time.

Practically purchase managers try to exploit the arbitrage opportunity from differential pur-

chase prices across markets. For this kind of complex problems, GA should be followed by a

post-optimization procedure that we did not incorporate. For example, while doing a crossover,

we identify a market position and swap the set of markets from this position onward. While this

is fine for route optimization considering traveling cost, a post-optimization process is necessary

to understand whether the same set of transporting vehicles will be valid for the revised solution

or not.
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