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Implied Volatility and Predictability of GARCH Models 

Vivek Rajvanshi1, Arijit Santra2, and  Saunak Basu3 

 

 

ABSTRACT: We have examined the predictive power of GARCH model to forecast return 

volatility for Nifty 50 index. Realized volatility, which is the sum of intraday squared returns, 

is used as the proxy for the true volatility. Three models of the GARCH family have been 

used to forecast return volatility i.e., GARCH, GJR-GARCH and EGARCH along with their 

implied volatility (IV) augmented counterparts i.e., GARCH IV, GJR-GARCH IV and EGARCH IV. 

Implied Volatility forecasting has been done using AR, MA, ARMA, ARIMA and Random 

Walk. But GARCH model augmented with implied volatility perform better than GARCH 

models without augmentation or implied volatility alone. Forecasting performance of the 

competing models is judged by using mean absolute error (MAE) and root mean squared 

error (RMSE). MAE and RMSE show that GARCH IV model is best suited for the volatility 

forecasting in the context of Nifty 50 index.
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INTRODUCTION 

Estimation and forecast of volatility plays a very important role in finance as it is used as a 

proxy for the risk. It is used as an input for the option pricing, margin setting and risk 

management techniques. Forecasting the movement of stock market indices is of prime 

importance for investors and several models have been developed to achieve the same. 

Return volatility is defined as the fluctuation or variations associated with the stock returns. 

A number of factors are responsible for these fluctuations and arrival of relevant 

information is the cause of fluctuations in the prices of the assets. Uncertainty about the 

relevant information makes the investments riskier. Risk is an integral part of any financial 

investment and to gauge the risks effectively, we need to accurately estimate the volatility 

in returns from assets.  

LITERATURE REVIEW 
To estimate the return volatility, several models has been discussed in the finance literature. 

The autoregressive conditional heteroskedastic (ARCH) models developed by Engels (1982) 

and the generalized ARCH (GARCH) models by Bollerslev (1986) have proven to be quite 

effective in predicting volatility. Major studies (Akgiray, 1989; West et al., 1993) have shown 

that volatility predictions by GARCH-type models are more accurate than Moving Averages 

or Exponentially Weighted Moving Averages (EWMA). Christensen and Prabhala (1998) 

shows that future volatility can be accurately forecasted by implied volatility using S&P 100 

index options. Blair, Poon, and Taylor (2001) show that VIX (implied volatility index) provides 

better forecasts than GARCH models as the time span to forecast increases. 

Andersen, Bollerslev, Diebold and Labys (2003) established a link between realized volatility 

and conditional covariance matrix. GARCH models are successful in capturing the 

characteristics of the return distribution. However, for forecasting return volatility, these 

models are not very successful. The information contained VIX may be used to improve the 

predictability of GARCH models. In this paper, we have tested the predictability of the 

GARCH models after augmenting VIX. Our findings show that predictability of the GARCH 

model improves after the augmentation of VIX. 
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DATA 

In this paper, we have taken daily and intraday data of the Nifty 50 index and VIX index Jan 

2011 to December 2015. We used data from 1st January 2011 to 31st December 2014 as in-

sample period and 1st January, 2015 to 31st December 2015 as out-of-sample period. Both 

the Nifty index and VIX have been obtained from NSE India, while the realized variance data 

has been taken from Oxford-Man Institute’s Realized Library. Descriptive statistics given in 

table below show that daily returns are close to 0 with a negative skewness and kurtosis 

greater than 3, indicating a left skewed leptokurtic distribution. Jarque-Bera test shows that 

daily returns are and normal. Descriptive statistics shows the presence of fat tails and non-

normality in returns which is a similar to the findings in financial literature. Augmented 

Dickey Fuller test reject the null hypothesis of the presence of unit-root in daily returns and 

VIX. Thus, the daily return series is not normal and return distribution is stationary. 

Table 1 : Descriptive Statistics 

 Daily Returns VIX 

Mean 0.000545 0.183444 

Median 0.000741 0.170400 

SD 0.009875 0.044519 

Max 0.037380 0.377050 

Min -0.060973 0.115650 

Skewness -0.346732 1.313351 

Kurtosis 5.425860 4.667420 

JB Test 262.8499343 399.697243 

JB Test p-value 0.0000 0.0000 

ADF Test -29.27994 -4.13119 

ADF Test p-value 0.0000 0.0009 

 

VOLATILITY FORECASTING MODELS 

GARCH 

The GARCH model developed by Bollerslev (1986) and Engle (1982) involves simultaneous 

estimation of the mean and variance equations as follows: 
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The return process follows the mean equation: 

rt = µ + εt  

where µ is the constant mean and εt = htzt 
 is the innovation with zt ~ N(0,1) 

The variance equation: ht
2

 = α0 + α1 ε
2

t-1
 + β1h2

t-1                                                     (1) 

GARCH model has been very successful in estimating and forecasting return volatility and 

capturing the stylized facts, such as long memory, of return volatility. 

With IV augmented, the equation becomes: ht
2

 = α0 + α1 ε
2

t-1
 + β1h2

t-1 + θ IV2
t-1                              (2) 

GJR-GARCH 

 

GJR-GARCH model, proposed by Glosten, Jagannathan, and Runkle (1993), takes into 

account the leverage effect along with long memory. 

The variance equation:  

ht
2

 = α0 + α1 ε
2

t-1
 + β1 h

2
t-1 + γ ε2

t-1 It-1                                                                                              (3) 

With IV augmented, the variance equation becomes 

ht
2

 = α0 + α1 ε
2

t-1
 + β1 h

2
t-1 + γ ε2

t-1 It-1 + θ IV2
t-1                                                                                          (4) 

Here, the leverage effect is captured by γ, such that, It-1= 1 if εt-1 < 0 and It-1 = 0 if εt-1 > 0. 

EGARCH  

EGARCH model, proposed by Nelson (1991) captures the leverage effect as well with the 

long memory property of the return volatility.  

The variance equation:  

ln (ht
2) = α0 + α1 | εt-1 | / ht-1 + γ εt-1 / ht-1 + β1 ln(h2

t-1)                                      (5) 

With IV augmented, the equation becomes 

ln (ht
2) = α0 + α1 | εt-1 | / ht-1 + γ εt-1 / ht-1 + β1 ln(h2

t-1) + θ IV2
t-1                                                     (6) 

Where the coefficient γ captures the presence of the leverage effects if γ < 0. 
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Implied Volatility and Realized Volatility 

Here we want to forecast the actual volatility using implied volatility and realized volatility. 

In order to investigate whether the IV index model forecast or RV forecast will be more 

accurate than the GARCH type models, AR, MA, ARMA, ARIMA and Random Walk models 

are going to be used. 

India VIX is a volatility index computed by NSE based on the order book of NIFTY Options. 

For this, the best bid-ask quotes of near and next-month NIFTY options contracts which are 

traded on the F&O segment of NSE are used. India VIX indicates the investor’s perception of 

the market’s volatility in the near term i.e. it depicts the expected market volatility over the 

next 30 calendar days. 

Daily implied volatility is obtained from VIX index using the formula VIX/100/sqrt(250). 

Realized Variance is the sum of 5-minute intraday squared returns. It is calculated using the 

formula σt
2 = Σ r2

t,j where  rt,j is the return in interval j on day t 

Correlogram Test for Implied Volatility 

 

Autocorrelation Partial Correlation 
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Correlogram Test for Realized Volatility 

Autocorrelation Partial Correlation 
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        |**    |         |*     | 
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        |**    |         |      | 

        |**    |         |      | 

        |**    |         |      | 

 

From the correlogram test, we observe that both implied volatility and realized volatility 

series have a large partial correlation at AR(1). 

So, for each IV and RV series, AR(1), MA(1), ARMA(1,1) and ARIMA(1,1,1) models are used. 

The mean equations of the 5 models are as follows: 

AR Model 

IVt = c0 + φ1 IVt-1  + εt                                                                                                 (7)                                                                                                                                                             

RVt = c0 + φ1 RVt-1  + εt                                                                                                                                             (8) 

MA Model 

IVt = c0 +  θ1 εt-1 + εt                                                                                                                        (9) 

RVt = c0 +  θ1 εt-1 + εt                                                                                                                          (10) 

ARMA Model 

IVt = c0 + φ1 IVt-1  +  θ1 εt-1 + εt                                                                                                          (11) 

RVt = c0 + φ1 RVt-1  + θ1 εt-1 + εt                                                                                                                                                            (12) 
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ARIMA Model 

A generalization of the ARMA models is the autoregressive integrated moving average 

(ARIMA) model. It is usually denoted as ARIMA (p, d, q) and is employed to capture the 

possible presence of short memory features in the dynamics of implied volatility. The ARIMA 

(1,1,1) specification is given by 

ΔIVt = c0 + φ1 ΔIVt-1 + θ1 εt-1 + εt                                                                                             (13) 

ΔRVt = c0 + φ1 ΔRVt-1 + θ1 εt-1 + εt                                                                                                  (14) 

Random Walk 

IVt = IVt-1 + εt                                                                                                                                     (15) 

RVt = RVt-1 + εt                                                                                                                                   (16) 

IN-SAMPLE RESULTS 

As mentioned, the in-sample period is from 1st January 2012 to 31st December 2014. 

Table 2: Estimation Output of GARCH models 

 GARCH GJR GARCH EGARCH 

α0 1.40E-06 

(0.0485) 

1.94E-06 

(0.0046) 

-0.203765 

(0.0017) 

α1 0.038811 

(0.0011) 

-0.004671 

(0.6763) 

0.069476 

(0.0011) 

β1 0.944393 

(0.0000) 

0.942231 

(0.0000) 

0.983968 

(0.0000) 

γ  0.080098 

(0.0001) 

-0.066159 

(0.0000) 

Log-Likelihood 2422.352 2430.868 2428.474 

(Values in brackets indicate the p-values) 

The constant term α0 is statistically significant at the 5% level for all the three GARCH 

specifications. α1, β1 and γ are statistically significant at the 1% level except for α1 in GJR 

GARCH. 
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Table 3: Estimation Output of GARCH IV models 

 GARCH IV GJR GARCH IV EGARCH IV 

α0 1.20E-06 

(0.2509) 

9.64E-07 

(0.2197) 

-0.395493 

(0.0003) 

α1 0.043593 

(0.0068) 

-0.033805 

(0.0067) 

0.048884 

(0.0403) 

β1 0.907242 

(0.0000) 

0.927462 

(0.0000) 

0.964916 

(0.0000) 

γ  0.121604 

(0.0000) 

-0.099616 

(0.0000) 

θ 0.022255 

(0.0744) 

0.022445 

(0.0162) 

196.0586 

(0.0004) 

Log-Likelihood 2425.053 2438.24 2435.457 

(Values in brackets indicate the p-values) 

The constant term α0 is not statistically significant except for EGARCH IV where it is 

significant at the 1% level. α1, β1 and γ are statistically significant at the 1% level for all the 

GARCH specifications, except for α1 in EGARCH IV, where it is significant at the 5% level. All 

the IV augmented GARCH specifications have a higher log-likelihood than their restrictive 

counterparts, indicating that lagged IV terms contain some extra information useful for 

forecasting conditional variance. 

Table  4:  Estimation Output of Implied Volatility 

 AR MA ARMA ARIMA 

c0 0.011366 

(0.0000) 

0.011751 

(0.0000) 

0.011379 

(0.0000) 

-9.82E-06 

(0.7053) 

φ1 0.973101 

(0.0000) 

 0.972083 

(0.0000) 

-0.645865 

(0.0059) 

θ1  0.866007 

(0.0000) 

0.020426 

(0.5878) 

0.706264 

(0.0012) 
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The constant term c0  is statistically significant at the 1% except for ARIMA where it is 

insignificant. φ1 and θ1 are statistically significant at the 1% except for θ1 in ARMA.  

Table 5: Estimation Output of Realized Volatility 

 AR MA ARMA ARIMA 

c0 0.00742 

(0.0000) 

0.007427 

(0.0000) 

0.007331 

(0.0000) 

-3.23E-06 

(0.8102) 

φ1 0.427376 

(0.0000) 

 0.961977 

(0.0000) 

0.13047 

(0.0026) 

θ1  0.311523 

(0.0000) 

-0.794037 

(0.5878) 

-0.88091 

(0.0000) 

 

Like implied volatility, here also the constant term c0  is statistically significant at the 1% 

except for ARIMA where it is insignificant. φ1 and θ1 are statistically significant at the 1% 

except for θ1 in ARMA. 

FORECAST EVALUATION 

The out-of-sample period is from 1st January 2015 to 31st December 2015. We have used 

static forecasting method for all the models. Since volatility is latent, realized volatility has 

been assumed to be actual volatility. In static forecasting, the estimated parameters remain 

fixed throughout. It takes into account actual values to make one-step ahead forecast. For 

example, if we are standing t=T, we will use the actual value at t=T to forecast for t=T+1. 

Then, we will use the actual value at t=T+1 to forecast for t=T+2 and so on. We have 

calculated MAE and RMSE for all the forecasting outputs. MAE and RMSE have been 

calculated as follows: 

MAE = 
 

 
 ∑     

      ht – σt | 

RMSE =   {
 

 
 ∑     

      ht – σt )
2

} 

Here, ht is GARCH volatility, implied volatility or realized volatility forecast. The benchmark 

σt is always the realized volatility.   is the number of out-of-sample observations. 
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Table 6:  GARCH Models 

  MAE RMSE 

GARCH 0.003048636 0.003503677 

GARCH IV 0.002790281 0.003240706 

GJR GARCH 0.003693603 0.004198322 

GJR GARCH IV 0.003511671 0.004059830 

EGARCH 0.003463845 0.003909024 

EGARCH IV 0.003513606 0.004062078 

 

Among the restrictive specifications, GARCH outperforms GJR-GARCH AND EGARCH. 

Among the IV augmented specifications, GARCH IV has the lowest MAE and RMSE. Overall, 

GARCH IV is the best predictor. 

Table 7: Implied Volatility 

 
MAE RMSE 

AR 0.004108810 0.004508168 

MA 0.004384109 0.004728894 

ARMA 0.004107242 0.004507025 

ARIMA 0.002244576 0.003046050 

Random Walk 0.007396625 0.007867259 

 

Here ARIMA model is significantly better than the others when we are using implied 

volatility to predict actual volatility. The Random Walk performs poorly in this case. 

Table 8: Realized Volatility  

 MAE RMSE 

AR 0.001813105 0.002507961 

MA 0.001867198 0.002562000 

ARMA 0.001777585 0.002439231 

ARIMA 0.001789978 0.002455826 

Random Walk 0.002251863 0.003066360 
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As depicted in table above ARMA model is seems to be best predictor when we are using 

realized volatility to forecast. 

Overall, among GARCH volatility, implied volatility and realized volatility, realized volatility, 

the best predictor is realized volatility using ARMA Model. 

In the following diagram, we have chosen the best method from each of GARCH volatility, 

implied volatility and realized volatility and compared the forecasts in the out-of-sample 

period with the actual volatility. 

.04
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.16

.20

.24

.28

.32

.36

I II III IV

2015

RV Forecast IV Forecast
GARCH IV Forecast GARCH Forecast
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CONCLUSION 

This paper provides a comparative evaluation of the ability of a range of GARCH, IV and RV 

models to forecast the Nifty 50 return volatility. A total of six GARCH models have been 

considered, i.e., GARCH, GJR GARCH, EGARCH, GARCH IV, GJR GARCH IV, EGARCH IV. 

Additionally, AR, MA, ARMA, ARMA and Random Walk Models have been used for 

forecasting with implied volatility and realized volatility. 

ARIMA performs the best when we are analysing the forecasting ability of IV. In case of RV, 

ARMA performs the best. As for the GARCH models, the inclusion of IV in the GARCH 

variance equations improves the out-of-sample performance of the GARCH models. 
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