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ABSTRACT:This paper studies the performance of Heston Model and Black-Scholes Model in pricing 

index options. I have compared the two models based on 1074 call option prices of S&P 500 on1st 

November, 2016. I have calibrated the parameters of the Heston Model by non-linear least square 

optimization using call option prices from a period of 20 days (3rd October, 2016 to 31st October, 

2016). The in-sample data had a total of 25,392 call options and thus 20 strike prices for each time-

to-maturity. We observe that both Heston Model and Black Scholes Model under-price in-the-money 

options and over-price out-of-the money options, but the degree of error is different.Black Scholes 

Model slightly outperforms Heston Model for short term ITM, DITM and ATM options where Heston 

Model is unable to capture the high implied volatility.But Heston Model starts to give better 

estimates for ITM, DITM and ATM options as the time-to-maturity increases. For OTM and DOTM 

options, Heston Model significantly outperforms Black Scholes Model. In most of the cases, the 

implied volatility calculated from Heston model prices is found to be less than that calculated from 

market prices for different combinations of moneyness and time-to-maturity. 

 

1. INTRODUCTION 

 

The Black Scholes model (1973) is frequently used to price European options. But this model is 

based on various assumptions which are not representative of real world financial markets. It 

assumes that the volatility remains constanttill maturity of the options. Due to the volatility skewof 

equity options, Black-Scholes (1973) formula tends to misprice OTM and ITM options if the VIX 

value is used. During the last decades, several alternatives have been proposed to model volatility 

for pricing options. One such approach is introducing uncertainty in the behaviour of volatility, i.e., 

making volatility a stochastic quantity. By estimating the parameters of a stochastic process, it can 

be used to estimate prices close to the market values.One of the most widely used stochastic 

volatility modelsto price options was proposed by Heston (1993).  

The paper is structured as follows: In Section 2, I give a brief background and literature review of 

option pricing models. In Section 3, I present the valuation framework of Heston and Black Scholes 

model and how characteristic equations can be used to price the options. In Section 4, I elaborate 

on the methodology of calibrating the Heston parameters using Local Optimization method. 



Finally,in Section 5, I estimate the option prices using the calibrated parameters and analyse the 

results.   

 

2. LITERATURE REVIEW 

 

In 1900, Louis Bachelier introduced the concept of Brownian motion in financial markets. In 1973, 

Fischer Black and Myron Scholes proposed a famous model, based on Geometric Brownian Motion, 

for pricing European options. In a Geometric Brownian motion, the logarithm of the randomly 

varying quantity, for example, stock price follows a Brownian motion. It assumes that the volatility 

of stock returns remains constantand the distribution of logarithmic returns is normal. But the 1987 

crash revealed some of the shortcomings of the Black-Scholes Model. In fact, the returns exhibit 

skewness and kurtosis which is not considered in the model. When the volatility surface is plotted 

using the implied volatility from Black Scholes equation with respect to time-to-maturity and strike 

price of options, it is flat. But in reality, the implied volatility surface is skewed, i.e., the volatility is 

different for various combinations of strike prices and time-to-maturity. This disparity led to many 

attempts to create models which will estimate the option prices better.  A real breakthrough came 

when Steven Heston (1993) incorporated stochastic volatility into the option pricing model. Unlike 

Black Scholes model where only the stock price followed a stochastic process, Heston model had 

two stochastic processes, one for the stock price and the other for the volatility. Bates (1996) 

extended the model by incorporating jumps in the stock price dynamics, which is useful for pricing 

out-of-the-money options. But as the complexity of the model increases, more parameters need to 

be estimated which may not be useful in real life. In this paper, I will use Heston’s model to 

estimate the option prices and compare it with Black Scholes prices. 

 

3. VALUATION FRAMEWORK 

The Black Scholes price can be calculated without using characteristic functions. But Heston model 

has two stochastic processes and these processes have characteristic functions which are easier to 

code. Therefore, I will use the characteristics functions instead of density functions to calculate 

Heston prices. 

 

3.1. BLACK SCHOLES MODEL 

The risk-neutral dynamics of an assetcan by described by                  



where Stis the price of the asset, i.e., the index level at time t, r is the risk-free rate,    is the return 

volatility, and Wtis a Brownian process. From this, we can derive 
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where Z is the standard normal distribution. The Black Scholes Price can be calculated as 
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3.2. HESTON MODEL 

In 1993, Heston proposed a stochastic volatility model where both volatility and underlying asset 

follow stochastic processes. These can be described as follows: 
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Where,    is the price of the index level in this case at time t,    is the risk-free rate r,   is the 

variance at time t,   ̅is the long-term variance V,   is the variance mean-reversion speed,    is the 

volatility of the variance process,   
 and   

 are two correlated Brownian motion and is the 

correlation coefficient. 

 

The price of a European call option can be obtained by using the following equation: 

         
       

where    is the delta of the option and   is the risk-neutral probability of exercise (i.e. when ST>K) 

 

For j=1,2 the Heston characteristic function is given as 
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The characteristic functions can be inverted to get the required probabilities 
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4.METHODOLOGY 

From the in-sample data, I have calibrated the Heston parameters and using these parameters, I 

have estimated the options prices for out-of-sample period. 

4.1 DATA 

I have collected the call option data for S&P 500 index from ivolatility.com. I have considered the in-

sample period as 3rd October to 31st October, 2016 and out-of-sample period as 1st November, 

2016. First, I have removed the arbitrage violations from the data to avoid anynegative 

impliedvolatility. A call option price must satisfy C ≥ max(0, S − D – Ke-rt) to remove arbitrage 

possibilities. Second, I have excluded the options with less than 7 days to expiration or more than 

180 days to expiration because they are very sensitive to liquidity-related biases. Third, I have 

excluded very deep out-of-the-money and very deep in-the-money options, because they are not 

liquid options and their market prices may be quite different from their true values. An option is 

very deep in-the-money if its moneyness is greater than 9% and very deep out-of-the-money if its 

moneyness is less than-9%. 

The option moneyness is defined as the percentage difference between the current underlyingprice 

and the strike price: Moneyness(%) = S / K −1 

The in-sample data has 25,392 call options for 20 days (i.e., 20 strike prices for each maturity). The 

out-of-sample initially had 1,236 call options. But since some Heston prices and implied volatilities 

were negative, I removed these out-of-sample data points to create arbitrage free option prices. 

Finally, I was left with 1074 call options in the out-of-sample. 

4.2 CALIBRATION TO MARKET PRICES 



I intend to determine the set of parameters which minimizes the distance between model prices 

and market prices. The Heston model has five unknown parameters i.e., initial variance, long-term 

variance, correlation between the two stochastic processes, volatility of variance and mean 

reversion speed.  

In order to find the optimal parameter-set, we need to minimize the mean sum of squared 

differences 
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Where   
  (     ) are the option prices using the Heston parameter set   and   

   (     ) are the 

market observed option prices. 

Initial variance: Bounds of 0 and 1 have been used. Volatility above 100% is quite unrealistic. 

Long-term variance: Same bounds as above have been used. 

Correlation:Correlation between the stochastic processes (volatility and underlying price) takes 

values from -1 to 1. Although, the correlation is usually negative, positive correlations are also 

possible. 

Volatility of variance:It exhibits positives values. Since the volatility of assets may increase in the 

short term,a broad range of 0 to 5 will be used. 

Mean-reversion speed:This will will be dynamically set using a non-negativity constraint (Feller, 

1951).The constraint    ̅       guarantees that the variance in a CIR process is always strictly 

positive. 

Local Optimization: For local optimization, the MATLAB function lnsqnonlin will be used. 

 

 

 

Heston Calibrated Parameters under non-linear least square optimization 

     ̅       

0.0112 0.0156 0.5010 -0.9723 168.1191 

Initial volatility = √   = 10.58% 

Long term volatility = √   = 12.49% 



Volatility of the variance process = 50.10% 

Correlation Coefficient = -0.9723 

Mean Reversion Speed = 168.1191 

5. RESULTS AND ANALYSIS 

The outputs have been divided in terms of moneyness and time-to-maturity. 

ATM – moneyness lies between -2% and 2% 

ITM – moneyness lies between 2% and 6% 

OTM – moneyness lies between -2% and -6% 

DITM – moneyness is greater than 6% 

DOTM – moneyness is less than -6% 
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Implied volatility has been calculated by equating the market price or the Heston price to the Black 

Scholes price. I have used the MATLAB function blsimpv to calculate the implied volatilities. 

 

 

In-the-Money Call Options 

MRPE 

Maturity <=45 days 45-90 days >90 days 

BSM 0.0224 0.0374 0.0686 

Heston (lnsqnonlin) 0.0714 0.0703 0.0560 

 

Implied Volatility 

Maturity <=45 days 45-90 days >90 days 

Market 17.76% 15.86% 15.10% 

Heston (lnsqnonlin) 12.75% 13.16% 13.16% 

 



In this case, the Black Scholes model outperforms the Heston Model for short term ITM options, 

because Heston model is not able to capture the short term high volatility. As time-to-maturity 

increases, Heston starts to give better estimates and finally outperforms Black Scholes model for 

maturity greater than 90 days. 

Out-of-the-Money Call Options 

MRPE 

Maturity <=45 days 45-90 days >90 days 

BSM 2.5070 1.3681 0.8426 

Heston (lnsqnonlin) 0.3748 0.0751 0.1461 

 

Implied Volatility 

Maturity <=45 days 45-90 days >90 days 

Market 12.15% 11.48% 11.78% 

Heston (lnsqnonlin) 11.86% 11.33% 10.42% 

 

For out-of-the money options, Black Scholes model performs poorly as can be seen from the high 

MRPE values. Heston performssignificantly better than the Black Scholes model for all moneyness 

and time-to-maturity combinations. 

At-the-Money Call Options 

MRPE 

Maturity <=45 days 45-90 days >90 days 

BSM 0.1755 0.2507 0.2684 

Heston (lnsqnonlin) 0.2561 0.1162 0.1155 



 

Implied Volatility 

Maturity <=45 days 45-90 days >90 days 

Market 15.94% 13.90% 13.53% 

Heston (lnsqnonlin) 11.62% 12.20% 11.89% 

 

For at-the-money options, Heston model outperforms Black Scholes model for middle term and 

long term. As the time-to-maturity increases, Heston model gives better estimates. 

Deep In-the-Money Call Options 

MRPE 

Maturity <=45 days 45-90 days >90 days 

BSM 0.0060 0.0061 0.0244 

Heston (lnsqnonlin) 0.0133 0.0322 0.0148 

 

Implied Volatility 

Maturity <=45 days 45-90 days >90 days 

Market 15.47% 16.58% 15.83% 

Heston (lnsqnonlin) 12.55% 13.22% 15.03% 

 

Like ITM options, Black Scholes model performs better than Heston Model for short-term and 

middle- term DITM options. But as maturity increases to 90 days, Heston Model starts 

outperforming Black Scholes Model. 

Deep Out-of-the-Money Call Options 

MRPE 



Maturity <=45 days 45-90 days >90 days 

BSM 10.4604 7.8657 3.9206 

Heston (lnsqnonlin) 3.6306 0.7989 0.4783 

 

Implied Volatility 

Maturity <=45 days 45-90 days >90 days 

Market 11.95% 10.01% 10.01% 

Heston (lnsqnonlin) 13.49% 11.12% 8.16% 

 

Both models perform very poorly for short term DOTM options. But Heston Model significantly 

outperforms Black Scholes model for all maturities. 

 

Volatility Surfaces 

 



 

From the volatility surface, it is evident that for short term ITM and DITM options, market implied 

volatility is quite higher than Heston implied volatility. As a result, Black Scholes model gives better 

estimates for short term ITM and DITM options. On an average, the implied volatility from Heston 

model is lower than market implied volatility for different combinations of moneyness and time-to-

maturity. 

 

6. CONCLUSION 

We observe that Heston model outperforms Black Scholes model in many combinations of 

moneyness and time-to-maturity combinations. For short term ITM, DITM and ATM options, Black 

Scholes performs better because Heston model is not able to capture the high implied volatility. 

But, Heston Model provides better estimates in case of ITM, DITM and ATM options as time-to-

maturity increases. For OTMand DOTM options, Heston model gives significantly better estimates 

than Black Scholes model. In fact, Black Scholes performs very poorly in case of OTM and DOTM 

options, given the high error values. So, Black Scholes model can be used for short term ITM, DITM 

and ATM options, while Heston model can be used for other combinations of moneyness and time-

to-maturity combinations. 
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8. APPENDIX 

MATLAB code for Heston Characteristic Function 

function f=heston_chfun(x,v,t,r,a,u,b,rho,sigma,phi) 

h=b-rho.*sigma.*phi.*1i; 

d=sqrt(h.^2-(sigma.^2).*(2.*u.*phi.*1i-phi.^2)); 

g=(h+d)./(h-d); 

D=(h+d)./(sigma.^2).*(1-exp(d.*t))./(1-g.*exp(d.*t)); 

k=(1-g.*exp(d.*t))./(1-g); 

C=r.*phi.*1i.*t+a./(sigma.^2).*((h+d).*t-2.*log(k)); 

f=exp(C+D.*v+1i.*phi.*x); 

MATLAB code for Heston Price 

 

function C=heston_price(St,K,r,t,vt,theta,kappa,sigma,rho) 

integrand1=@(phi,St,K,r,t,vt,theta,kappa,sigma,rho)real(exp(-

1i.*phi.*log(K)).*heston_chfun(log(St),vt,t,r,kappa*theta,0.5,kappa

-rho*sigma,rho,sigma,phi)./(1i.*phi)); 

P1=0.5+(1/pi)*integral(@(phi)integrand1(phi,St,K,r,t,vt,theta,kappa

,sigma,rho),0,100); 

integrand2=@(phi,St,K,r,t,vt,theta,kappa,sigma,rho)real(exp(-

1i.*phi.*log(K)).*heston_chfun(log(St),vt,t,r,kappa*theta,-

0.5,kappa,rho,sigma,phi)./(1i.*phi)); 

P2=0.5+(1/pi)*integral(@(phi)integrand2(phi,St,K,r,t,vt,theta,kappa

,sigma,rho),0,100); 

C = St*P1-K*exp(-r*t)*P2; 

 

MATLAB code for Local Optimization 

 

load data1.txt 

x0 = [.01,.01,0.5,-0.9,5];  

lb = [0, 0, 0, -1, 0];  

ub = [1, 1, 1, 1, 10];  

x = lsqnonlin(@costfunction,x0,lb,ub);   

heston_sol=[x(1),x(2),x(3),x(4),(x(5)+x(3)^2)/(2*x(2))]  

x  

minimum = totalcost 

 

MATLAB Code for Cost Function 

function [cost] = costfucntion(x)  

fori=1:length(data1)  

cost(i)= data1(i,5)-

heston_price(data1(i,1),data1(i,2),data1(i,3),data1(i,4),x(1),x(2),

(x(5)+x(3)^2)/(2*x(2)),x(3), x(4));  

end 

totalcost=sum(cost)^2 

end 

 

 



MATLAB Code for Calculating Out-of-Sample Heston Prices 

load data2.txt 

fori=1:length(data2) 

    z(i)=heston_price(data2(i,1),data2(i,2),data2(i,3),data2(i,4), 

0.001193, 0.015575, 168.119125, 0.501032, -0.9723); 

end 

 

MATLAB Code for Black Scholes Price 

 

function c=bsm_price(St,K,r,t,sigma) 

d1=(log(St./K)+(r+0.5.*sigma.^2).*t)./(sigma.*sqrt(t)); 

d2=d1-sigma.*sqrt(t); 

c=normcdf(d1)*St-normcdf(d2)*exp(-r*t)*K; 

 

MATLAB Code for Calculating Out-of-Sample Black Scholes Prices 

load data2.txt 

fori=1:length(data2) 

    y(i)=bsm_price(data2(i,1),data2(i,2),data2(i,3),data2(i,4), 

0.1706); 

end 

MATLAB code for plotting volatility surface 

 

load volsurfacedata.txt 

fori=1:length(volsurfacedata) 

    time(i)=volsurfacedata(i,1); 

    moneyness(i)=volsurfacedata(i,2); 

implied_vol(i)=volsurfacedata(i,3); 

end 

 

hTime=median(abs(time-median(time)));     

surface.hTime=hTime; 

hMoneyness=median(abs(moneyness-median(moneyness)));     

surface.hMoneyness=hMoneyness; 

sorted_time= sort(time);      

sorted_moneyness = sort(moneyness); 

NT = histcounts(time,sorted_time);  

NM = histcounts(moneyness,sorted_moneyness); 

NT(NT==0) = [];    

NM(NM==0) = []; 

N=length(NM); 

kernel=@(z)exp(-z.*z/2)/sqrt(2*pi); 

surface.T=linspace(min(time),max(time),N); 

surface.M=linspace(min(moneyness),max(moneyness),N); 

surface.IV=nan(1,N); 

fori=1:N 

for j=1:N 

    z=kernel((surface.T(j)-time)/hTime).*kernel((surface.M(i)-

moneyness)/hMoneyness);  

surface.IV(i,j)=sum(z.*implied_vol)/sum(z); 

end 



end 

surf(surface.T,surface.M,surface.IV) 

axis tight; grid on; 

title('Implied Volatility Surface'); 

xlabel('Time to Maturity (Days)'); 

ylabel('Moneyness'); 

zlabel('Implied Volatility'); 

 


