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Abstract

In Eurocrypt 2012, Groce and Katz provided a mathematical description about
‘incentive compatible’ setting in the context of fair two party computation with rational
players. They showed, how by modifying the utility values, ‘incentive incompatible’
setting can be converted into ‘incentive compatible’ setting for an XOR function. In this
paper, we try to understand, whether by modification of the utility values, ‘incentive
incompatible’ setting could always be converted into ‘incentive compatible’ setting for
any function. In this direction, we observe two distinct classes of functions which show
‘incentive incompatibility’ for any value of utilities assuming certain guessing strategies
and input distribution. One class includes all functions without an embedded XOR
and other class has a specific function containing an embedded XOR. Such functions
had been used to show the first fair two party secure computation with non-rational
players (Gordon et al., STOC 2008). Our observations help to understand the structure
of such ‘incentive incompatible’ functions.

Keywords: Secure two party computation, Embedded XOR, Rational players, Incentive
compatible

1 Introduction

In the last decade, a significant effort has been made to relate game theory and cryptography.
Cryptography deals with the worst case scenario and tries to analyse the robustness of a
system against the malicious behaviour of an adversary. On the other hand, in game theory,
a mechanism is designed considering rational behaviour of the players. In rational domain
there is no concept of trust. Rational players can never be classified as ‘good’ nor ‘bad’.
They participate in the game with a motivation to maximize their utility. In cryptography,
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one may consider this as a special type of attack vector. However, this does not impose any
special restriction on an adversary, rather adds more flexibility.

In 2004 Halpern and Teague [11] proposed rational adversarial model in Shamir’s secret
sharing scheme [17]. This work is one of the initial efforts to connect cryptography and game
theory. They proved that in the presence of rational adversary Shamir’s secret sharing scheme
achieves Nash equilibrium. This corresponds to the case when no player has any incentive to
broadcast the share to others. Since then, a large number of literature [1, 2, 6, 7, 12, 14, 15]
had been published in this domain.

Secure Multiparty Computation is one of the fundamental primitives of cryptography.
In SMC, n number of parties wish to compute a function f(x1, x2, · · · , xn) of their inputs
x1, x2, · · · , xn keeping the inputs secret from each other. SMC has wide application in online
auction, negotiation, electronic voting etc. Since Yao’s millionaire’s problem [19], which is
considered as the first attempt in the domain of SMC, a huge research interest has been
drawn towards this area. Recently, the concept of rational adversarial model has been
introduced [3, 10]. In [3], Asharov et al. showed the impossibility of computing a special
class of functions with complete fairness if the players have a specific set of utilities. Further,
in [10], Groce et al. claimed that the negative result had been achieved because Asharov et
al. assumed incentive incompatible setting. Thus, no player has any incentive to compute
the function even in the ideal world where everything is believed to be secure. However, they
claimed that if the setting is incentive compatible, then any function can be computed with
complete fairness in the presence of rational players. They showed that properly modifying
the utility values the functions considered in [3] can be mapped into incentive compatible
setting and thus the fairness can be guaranteed. However, it has not been studied that,
whether modifying the utility values ‘incentive incompatible’ setting could be converted
to ‘incentive compatible’ setting for any arbitrary functions. There could indeed be some
functions which are ‘incentive incompatible’ by nature, i.e., modifying the utility values one
can never convert the setting to an ‘incentive compatible’ one.

In this paper we identify two classes of functions for which some instances remain incentive
incompatible for any value of utilities.

• One class consists of functions having no embedded XOR within them.

• Another class deals with a specific function having an embedded XOR.

Such functions are of importance in secure multiparty computation for the following
reason. Since the negative result of Cleve [5], it had been conjectured that no function
can be computed securely in two party setting with complete fairness. However, Gordon
et al. [8, 9] presented the above mentioned functions and disproved the conjecture. It has
been shown that for such functions secure two party computation is possible with complete
fairness. The same classes of functions are studied in this work and we observe that such
functions are incentive incompatible in nature.
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2 Preliminaries

In this section we briefly explain what is meant by functionality, two party computation,
ideal and real world model, rational secret sharing, Byzantine and fail-stop adversary. We
also define utilities and fairness in rational setting which is used in this work.

2.1 Functionality

In classical domain and in two party setting, a functionality F = {fλ}λ∈N is a sequence of
randomized processes, where λ is the security parameter and fλ maps pairs of inputs to pairs
of outputs (one for each party). Explicitly, we can write fλ = (f 1

λ , f
2
λ), where f 1

λ represents
the output of the first party, say P1. Similarly, f 2

λ represents the output of the second party,
say P2. The domain of fλ is Xλ×Yλ, where Xλ (resp. Yλ) denotes the possible inputs of the
first (resp. second) party. If |Xλ| and |Yλ| are polynomial in λ, then we say that F is defined
over polynomial size domains. If each fλ is deterministic, we say that each fλ as well as the
collection F is a function [9].

2.2 Two Party Computation

In classical domain the two party computation of a functionality F = {f 1
λ , f

2
λ} is defined as

follows.
If party P1 is holding 1λ and an input x ∈ Xλ and party P2 is holding 1λ and an input

y ∈ Yλ, then the joint distribution of the outputs of the parties is statistically close to
(f 1
λ(x, y), f 2

λ(x, y)) [9].

2.3 Ideal vs. Real world model

In ideal world model we assume that there is an incorruptible Trusted Third Party (TTP)
who computes the function in behalf of P1 and P2. The parties send their inputs to the TTP
who computes the functionality and returns the value to each party. On the other hand, in
real world model there is no trusted party to compute the functionality. Instead, a protocol
is executed to compute the functionality.

There exists another model, called the hybrid world model, which is often used as a pow-
erful tool to prove the security of a protocol. In hybrid model there is an ‘ideal functionality’
ShareGen. One can think of this ideal functionality as a trusted third party (or dealer) who
computes the function like ideal world and distributes the shares of the function’s output
like a dealer in the secret sharing scheme [17]. It is now proven that this ‘ideal functionality
ShareGen’ can be replaced by sequential execution of a real-world protocol ρ that computes
some functionality G under certain computational hardness assumption. Consider that ρ is
a real world protocol which computes a functionality G securely and π is a protocol that
securely computes a functionality F in G-hybrid model. That is, G is computed according
to the ideal model with abort. Then it has been shown in [4] that there exists a composed
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two party protocol πρ which can securely compute F . In [10], a protocol in rational setting
is proposed assuming this hybrid model.

2.4 Rational secret sharing

In this subsection, we briefly describe what is meant by classical rational secret sharing. It
proceeds in two phases:

1. share generation and distribution, and

2. secret reconstruction.

The dealer generates the shares from the secret and distributes among the players in the
first phase. The dealer is assumed to be honest and can be online or offline. An online
dealer remains available throughout the secret reconstruction protocol, whereas an offline
dealer becomes unavailable after distributing the shares of the secret. Note that an online
dealer is not practical as it repeatedly interacts with the players. In 2008, Kol and Naor [12]
discussed rational secret sharing in the non-simultaneous channel model and in the presence
of an offline dealer, under certain information theoretic setting. Almost all the subsequent
works [2, 6, 15, 16] on rational secret sharing assumed the dealer to be offline.

Share generation and distribution: Consider that the dealer is online. At the beginning
of each round, the shares are distributed to each player Pw. This might be the actual share
with the probability γ or a fake one with probability (1 − γ). The value of γ is kept secret
from the parties and is dependent on the utility values of the parties [11, 7]. Now consider
the scenario with an offline dealer. In this case, the dealer distributes a list of shares to
each party Pw. Among those one is of the actual secret s and the remaining are from fake
secrets [12, 6, 15]. The position r of this actual share in the lists is not revealed to the players
and is chosen according to a geometric distribution G(γ), where the parameter γ in turn
depends on the utility values of players. The dealer generates shares using Shamir’s secret
sharing scheme [17].

Secret Reconstruction: In the l-th round of communication, each player Pw (either si-
multaneously or non-simultaneously) broadcasts (or sends individually to each other player
through synchronous, point-to-point channels) the share swl corresponding to that round.
The shares are signed by the dealer. Hence, no player can provide false shares undetected
and the only possible actions of a player are as follows.

1. send the message

2. or, remain silent.

The round, in which the shares of the actual secret are revealed and hence the secret is
reconstructed, is called the revelation or definitive round. When the dealer is offline, players
are made aware that they have crossed the revelation round by the reconstruction of an
indicator (a bit in [12], a signal in [6]).
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2.5 Fail-stop and Byzantine Adversarial model

In the fail-stop setting, each party follows the protocol as directed except that it may choose
to abort at any time [10] and a party is assumed not to change its input when running the
protocol. On the other hand, in Byzantine setting, a deviating party may behave arbitrarily.
It may change the inputs or may choose to abort. Since Byzantine adversary covers all the
characteristics of a fail-stop adversary, it is very natural to consider only Byzantine setting.
If a protocol is secure against a Byzantine adversary, it must be secure against a fail-stop
adversary.

2.6 Computation of a functionality with rational players

We define a functionality computation with rational players to be a pair (Γ,−→σ ), where Γ
is the game (i.e., specification of allowable actions) and −→σ = (σ1, . . . , σn) denotes the sug-
gested strategies followed by n players. We use the notations −→σ −w and (σ′w,

−→σ −w) for
(σ1, . . . , σw−1, σw+1, . . . , σn) and (σ1, . . . , σw−1, σ

′
w, σw+1, . . . , σn) respectively. The outcome

of the game is denoted by −→o (Γ,−→σ ) = (o1, . . . ,
on). The set of possible outcomes with respect to a party Pw is as follows.

1. Pw correctly computes f , while others do not, i.e.,
−→o (Γ,−→σ ) = (ow = f, o−w =⇁)

2. everybody correctly computes f , i.e., −→o (Γ,−→σ ) = (ow = f, o−w = f)

3. nobody correctly computes f i.e. −→o (Γ,−→σ ) = (ow =⇁, o−w =⇁)

4. others computes f correctly, while Pw does not, i.e.,
−→o (Γ,−→σ ) = (ow =⇁, o−w = f)

The output, when a wrong value is computed, is denoted by ⇁ and o−w indicates the output
of a party other than Pw.

2.7 Utilities and Preferences

The utility function uw of each party Pw is defined over the set of possible outcomes of the
game. The outcomes and corresponding utilities for two parties are described in Table 1.
The notations used in [10] for utility functions are mentioned in the first bracket.

Players have their preferences based on the different possible outcomes. In this work, a
rational player w is assumed to have the following preference:

R1 : UTN
w > UTT

w ≥ UNN
w ≥ UNT

w .
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Table 1: Outcomes and Utilities for a function reconstruction mechanism with rational
players in two party setting

P1’s outcome P2’s outcome P1’s Utility P2’s Utility
(o1) (o2) U1(o1, o2) U2(o1, o2)

o1=f o2=f UTT
1 (a0) UTT

2 (a1)
o1=⇁ o2=⇁ UNN

1 (d0) UNN
2 (d1)

o1=f o2=⇁ UTN
1 (b0) UNT

2 (c1)
o1=⇁ o2=f UNT

1 (c0) UTN
2 (b1)

2.8 Fairness

In non-rational setting, the security of a protocol is analyzed by comparing what an adversary
can achieve in a real world scenario to what it can do in an ideal one (the ideal one is secure
by definition [8, 9, 13]). This is formalized by considering an ideal computation involving
an incorruptible trusted party to whom all the parties send their inputs. The trusted party
computes the functionality on the inputs and returns to each party its respective output.
Loosely speaking, a protocol is secure if any adversary interacting in the real protocol (where
no trusted party exists) can do no more harm than if it were involved in the ideal world
computation.

A rational player, being selfish, desires an unfair outcome, i.e., it tries to compute the
function on its own without any collaboration. Therefore, the basic aim of rational compu-
tation is to achieve fairness. According to Von Neumann and Morgenstern expected utility
theorem [18], under natural assumptions, the individual would prefer one prospect O1 over
another prospect O2 if and only if E[U(O1)] ≥ E[U(O2)]. The work [10] implicitly uses this
expected utility theorem to derive its results. We also use the same approach and accordingly
redefine fairness as follows.

Definition 1 (Fairness) A function computation mechanism with rational players (Γ,−→σ ) is
said to be completely fair if for a party Pw, (w ∈ {1, 2}), who is corrupted by a probabilistic
polynomial time adversary, the following holds:

UTT
w ≥ E[Uw(Ol)],

where Ol = {o1w, . . . , on
′
w ; p1, . . . , pn′} is a prospect when the player deviates from the suggested

strategy (σw). Here n′ is the number of possible outcomes.

2.9 Correctness of the Output

Secure two party computation in hybrid model with rational players is the generalization
of [7, 11, 12]. In [7, 11, 12], the dealer is not a part of the reconstruction mechanism and
therefore the output is well-defined. Whereas, in secure two party computation, the parties
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may not be committed to their inputs, and therefore the output is not uniquely defined.
We here assume that the players have negligible probability to send arbitrary inputs. This
is quite justified in the sense that the players are rational in nature i.e., neither ‘good’ nor
‘bad’. They have no motivation to send incorrect inputs so that the functionality generating
protocol outputs a wrong value. Rather they try to maximize their utility [10].

3 Revisiting the Protocol by Groce and Katz

In this section we revisit the protocol of [10]. The protocol has been designed towards
computing an arbitrary function with complete fairness with the presence of rational players.
According to their model, given a deterministic function f : X × Y → {0, 1}∗ × {0, 1}∗, two
players P1 and P2 want to compute the function to their respective ends keeping the inputs
(x ∈ X for player P1 and y ∈ Y for player P2) secret from each other. Here, it has been
assumed that |X| = |Y | = λ, security parameter. The domain size of the inputs may be
unequal. Let f1(x, y) be the output generated at the end of the first player P1 and f2(x, y)
be the output generated at the end of the second player P2. x and y are chosen according
to some joint probability distribution.

The protocol is executed in two phases. In the first phase, the players P1 and P2 execute a
protocol called Functionality ShareGen. The functionality is parameterized by a real number
γ > 0. The number of rounds of the protocol is Ω(λ). The protocol for share generation is
given in Algorithm 1.

In the second phase the parties exchange their shares in the motivation to compute the
function. We describe the protocol Π for computing the function in Algorithm 2.

This protocol deals with fail-stop adversary whereas to deal with Byzantine adversary a
message-authentication code (MAC) is exploited to resist the players to send false shares.
The proof of fairness is same both in fail-stop as well as in Byzantine setting.

Inputs:
1 ShareGen takes the inputs x from P1 and y from P2. If one of the received inputs is not in the correct domain, then

both the parties are given ⊥.
Computation:

2 A value r ∈ {1, · · · } is chosen according to a geometric distribution G(γ) with parameter γ. This represents an
iteration (unknown to the parties) in which both the parties get the correct value of f(x, y).

3 The security parameter λ is chosen in such a way so that λ > r.
4 A set of values {al}λl=0 for P1 and a set of values {bl}λl=0 for P2 are chosen in such a way that

(i) For l < r, al = f1(x, ŷ) where ŷ is the random input variable chosen from the input domain of P2.
(ii) For l < r, bl = f2(x̂, y) where x̂ is the random input variable chosen from the input domain of P1.
(iii) For l ≥ r, al = ar = f1(x, y).
(iv) For l ≥ r, bl = br = f2(x, y).

5 For l ∈ {1, . . . , λ}, a1l is chosen randomly from {0, 1}∗, and a2l = a1l ⊕ al is set.
6 For l ∈ {1, . . . , λ}, b1l is chosen randomly from {0, 1}∗, and b2l = b1l ⊕ bl is set.

Output:
7 A list listw of shares is prepared for each party Pw, where w ∈ {1, 2} such that

(i) P1 receives the values of a11, a
1
2, . . . , a

1
λ and b11, b

1
2, . . . , b

1
λ.

(ii) P2 receives the values of a21, a
2
2, . . . , a

2
λ and b21, b

2
2, . . . , b

2
λ.

Algorithm 1: Functionality ShareGen: Protocol for the share generation
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Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
λ and b11, b

1
2, . . . , b

1
λ.

2 P2 obtains a21, a
2
2, . . . , a

2
λ and b21, b

2
2, . . . , b

2
λ.

Computation:
There are λ number of iterations. In each iteration l ∈ {1, 2, . . . , λ} do:

3 P2 sends a2l to P1 and P1 computes al = a1l ⊕ a
2
l .

4 P1 sends b1l to P2 and P2 computes bl = b1l ⊕ b
2
l .

Output:
5 If P2 aborts before P1 computes any value, P1 outputs W1(x) = f1(x, ŷ). If P2 aborts in a round l or the protocol is

ended successfully, P1 outputs the last computed value.
6 If P1 aborts before P2 computes any value, P2 outputs W2(y) = f2(x̂, y). If P1 aborts in a round l or the protocol is

ended successfully, P2 outputs the last computed value.

Algorithm 2: Π: Algorithm for computing the output value of the function

In [3], Asharov et al. showed that assuming independent uniform input distribution and
a specific set of utilities for each party computing a specific type of functions with complete
fairness is impossible following protocol Π. They characterized the functions as follows
(Definition 4.1 of [3]).

Definition 2 Let f be a two party function. Let (x00, x
1
0, x

0
1, x

1
1, n) be an input tuple such

that |x00| = |x10| = |x01| = |x11| = n, and for every b ∈ {0, 1} it holds that

• f1(x00, xb1) 6= f1(x
1
0, x

b
1)

• f2(xb0, x01) 6= f2(x
b
0, x

1
1).

From the above definition it is easily seen that a XOR function can be an example of f .
In this direction Groce et al. [10] identified that this impossibility result was achieved due

to the utility values assumed by Asharov et al. [3]. We enumerate the utility values assumed
in [3] below.

1. Getting correct answer when the opponent outputs a wrong value gives utility 1. In
other word, UTN

1 = UTN
2 = 1.

2. Getting incorrect answer while the opponent outputs a correct value gives utility −1
i.e. UNT

1 = UNT
2 = −1.

3. Any other outcomes gives utility 0 i.e. UTT
1 = UTT

2 = UNN
1 = UNN

2 = 0.

Let us assume that a XOR function is computed following the protocol Π. We now investigate
whether any player has any incentive to compute the function following the protocol. If a
player has no incentive to compute the function, he would abort before the game begins
i.e. before the other party will compute any value. Let us assume that P1 aborts before
P2 computes any value and outputs a random bit according to W1(x) = f1(x, ŷ) over the
input x. In case of XOR function he will be correct with probability 1

2
and will be wrong

with probability 1
2
. According to the protocol Π, in this case, P2 will output a random bit

according to W2(y) = f2(x̂, y), y is the input of P2. For a XOR function P2 is also correct
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with probability 1
2

and is incorrect with probability 1
2
. Thus in this case the expected utility

of P1 over the input x should be

E(U1) =
1

4
(UTN

1 + UTT
1 + UNN

1 + UNT
1 ).

Putting the utility values we get E(U1) = 0 = UTT
1 . This is true for any input of P1. Thus P1

has no incentive to run the protocol as aborting and cooperating gives him the same utility
value. Same argument can be drawn for P2. Hence the setting is incentive incompatible.
However, in [10] Groce et al. modified the utility values as follows.

1. Getting correct answer when the opponent outputs a wrong value gives utility 1. In
other word, UTN

1 = UTN
2 = 1.

2. Getting incorrect answer while the opponent outputs a correct value gives utility −1
i.e. UNT

1 = UNT
2 = −1.

3. Getting the correct answer by both the players gives utility 1
2

i.e. UTT
1 = UTT

2 = 1
2

4. Any other outcomes gives utility 0 i.e. UNN
1 = UNN

2 = 0.

Considering these utility values we get that the expected utility of P1 over any input becomes
1
8

which is strictly less than UTT
1 = 1

2
. The setting is now becomes incentive compatible.

In [10] it is proved that when the setting is incentive compatible, then assuming γ (in [10]

it is α) <
UTT1 −E(U1)

UTN1 −E(U1)
the protocol Π achieves fairness for any function. Here, E(U1) is

the maximum expected utility of P1 when he aborts at the beginning of the game. The
maximum is taken over all x that have non-zero probability as input to P1. It is claimed
that the protocol achieves fairness for any function with rational players due to incentive
compatibility. By the definition of incentive compatibility the strategy profiles (Cooperation,
W1(x)) and (Cooperation, W2(y)) achieve Bayesian Strict Nash equilibrium in ideal world.

However, we identify two classes of functions for which just by modifying the utility values
we can not make the setting incentive compatible and hence fairness can not be guaranteed.
There exist some inputs x for which E(U1(x)) is always greater than or equal to UTT

1 for any
value of the utilities and hence those instances are not incentive compatible.

One class deals with the functions which do not have any embedded XOR [8]. The subse-
quent work of Gordon et al. [9] proved that these type of functions converge to the “greater
than function” or more specifically into the millionaire’s problem [19]. In millionaire’s prob-
lem Alice and Bob, two millionaires, want to know who is richer amongst themselves keeping
the wealth secret from each other. We describe this function in the next section.

Another class of functions consists of a specific function having an embedded XOR [8].
This function checks whether the two inputs of Alice and Bob are equal or not. We also
discuss this function in the next section.

These two classes of functions have great significance in SMC. Since the seminal result
of Cleve [5], the community conjectured that two party fair computation is impossible.
However, Gordon et al. [8, 9] identified the above two classes of functions for which they
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proved that fair two party secure computation is indeed possible. This breaks the decade-old
belief about secure two party computation with complete fairness.

4 Incentive Compatible vs. Incentive Incompatible Func-

tions

In this section we recall the mathematical description for incentive compatible settings for a
function given in [10]. Then we will show how the functions under consideration do not follow
the criterion for any value of the utilities for given guessing strategies and input distribution.
We call these functions as incentive incompatible functions. We first describe the greater
than function followed by the embedded XOR function.

4.1 Incentive Compatibility

According to [10] incentive compatibility means that there exist two distributions W1 for P1

and W2 for player P2 such that (Cooperation, W1(x)) and (Cooperation, W2(y)) are Bayesian
strict Nash equilibrium in ideal world. More explicitly, let P1 aborts over a input x at the
beginning of the game. We write the expected utility of P1 in this case as E(U1(x)). If
cooperation is a Bayesian strict Nash equilibrium, then E(U1(x)) < UTT

1 . This is true for all
values of x. In [10] it has been claimed that for incentive compatible setting the maximum
expected utility

E(U1)
def
= max

x
{E(U1(x))} < UTT

1 ,

the maximum is taken over all x which have non-zero probability as input to P1. The
maximum expected utility for P2 has been defined similarly.

We observe that there are some functions which do not satisfy the above condition for
any value of the utilities. There exist some inputs x for which E(U1(x)) ≥ UTT

1 for all value
of utilities assuming the guessing strategies and input distribution as considered by Groce
et al. [10]. Thus, there is no possibility so that E(U1) < UTT

1 . We call these functions as
incentive incompatible functions. This observation helps us to get a clearer view about the
structure of incentive incompatible functions and how they differ from incentive compatible
functions (functions whose setting can be changed from incentive incompatible to incentive
compatible by modifying the utility values).

4.2 Greater than Function

In case of greater than function two players, say P1 and P2 posses two secret values i and
j respectively, where 1 ≤ i, j ≤ n and n is the domain size of each input. It is assumed
that n is polynomial in the security parameter λ. Both the players want to know whether
i > j or i ≤ j. The functionality f(xi, yj) is defined as a pair of outputs i.e. f(xi, yj) =
(f1(xi, yj), f2(xi, yj)) where xi (yj) is the input value and f1(xi, yj) (f2(xi, yj)) is the output
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value of the player P1 (P2). Here, before share generation, P1 is sent the ordered list X =
(x1, x2, · · · , xn) and P2 is sent the ordered list Y = (y1, y2, · · · , yn). Each party chooses the
input from the corresponding list in such a way so that the index of the input matches with
the secret value he possesses. This is why P1 chooses xi and P2 chooses yj. The function is
defined as follows [8, 9]. For w = 1, 2,

fw(xi, yj) =

{
1 if i > j;

0 if i ≤ j.
(1)

We illustrate the above function by the following table.

y1 y2 y3 y4 y5 y6 y7
x1 0 0 0 0 0 0 0
x2 1 0 0 0 0 0 0
x3 1 1 0 0 0 0 0
x4 1 1 1 0 0 0 0
x5 1 1 1 1 0 0 0
x6 1 1 1 1 1 0 0
x7 1 1 1 1 1 1 0

From the above table it is clear that when P1 chooses x1 i.e. when his secret value is
x1, he should have no incentive to play the game. In this scenario, he needs no cooperation
from P2 to compute the function as with certainty he knows that the output value must be
zero whatever be the input value of P2. In other words, his output does not depend upon
the input values of P2. In this situation, it is very natural for him to abort the game. In this
case if P1 aborts, P2 will outputs W2(yj) which is equal to f2(x̂, yj) according to the protocol
Π. Thus, the expected utility of P1 is

E(U1(x1)) = Pr(f2(x̂, yj) = 0)UTT
1 + Pr(f2(x̂, yj) = 1)UTN

1 .

From the above table it is clear that when yj = y7, Pr(f2(x̂, yj) = 1) = 0. In this case
E(U1(x1)) = UTT

1 . In all other cases E(U1(x1)) > UTT
1 . Thus this instance is incentive

incompatible. As E(U1(x1)) ≥ UTT
1 , there is no possibility that E(U1) < UTT

1 . Thus this
function is incentive incompatible for any value of utilities under the guessing strategies and
input distribution considered by Groce et al. [10].

4.3 Unequal Domain Size

For unequal domain size the above observation remains valid. Let the domain size of P1 be
7 whereas the domain size of P2 is 6. In this case the above matrix reduces to the following
one.
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y1 y2 y3 y4 y5 y6
x1 0 0 0 0 0 0
x2 1 0 0 0 0 0
x3 1 1 0 0 0 0
x4 1 1 1 0 0 0
x5 1 1 1 1 0 0
x6 1 1 1 1 1 0
x7 1 1 1 1 1 1

One can easily find that for both x1 and x7, P1 should have no incentive to play the game.
This is because when he chooses x1 or x7, immediately he comes to known the value of the
output. For both the instances it is straight forward to show that according to the protocol
Π, E(U1(xi)) is always greater than UTT

1 implies E(U1) ≮ UTT
1 .

4.4 Embedded XOR Function

Now we will discuss the embedded XOR function proposed by Gordon et al. [8].
Let us denote two players by P1 and P2. Player P1 is given an ordered list {x1, x2, x3}

and P2 is given an ordered list {y1, y2}. P1 randomly chooses the input from the ordered list
and sends to the Functionality ShareGen. P2 also randomly chooses the input from his list
and delivers to the ShareGen. For convenience, we here recall the table for f given in [8].

y1 y2
x1 0 1
x2 1 0
x3 1 1

The function can be described as, for w ∈ {1, 2}

f(xi, yj) =

{
1 if i 6= j;

0 if i = j.
(2)

Note that for the instance xi = x3, P1 has no incentive to play as he knows in certainty that
the output should be 1. In this case, according to the guessing strategies (W1(xi),W2(yj)),

P1 always has expected utility
[
2
3
UTT
1 + 1

3
UTN
1

]
, which is always greater than UTT

1 for any

value of utilities. Thus, this function is also incentive incompatible for any value of the
utilities assuming the guessing strategies and input distribution as in [10].

From the above examples we can define the above functions as follows.

Definition 3 f : X×Y → {0, 1} is a two-party function, for which there exists at least one
input x ∈ X such that f(x, y) = f(x), where |X| = |Y | = n, n be polynomial in security
parameter λ.
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We call these functions as incentive incompatible as for any value of utilities, P1 has no
incentive to compute the functions for some input x even in the ideal world.

Now, from the above analysis we can state the following result.

Theorem 1 Let f(x, y) be a two-party function defined in 3 and R1 : UTN
w > UTT

w ≥ UNN
w ≥

UNT
w (section 2.6) be the preferences of the players on the utility values, then for any value

of the utilities the function behaves as incentive incompatible function under the assumptions
that the inputs are chosen according to some joint probability distribution D and the parties
follow the guessing strategies W1(x), W2(y) specified by the protocol Π in case of abort.

Proof: Let f be an incentive compatible function for some input distribution D and some
utility values. According to the definition of incentive compatibility, the maximum expected
utility E(Uw) of a party w who aborts the game, is less than UTT

w . The maximum is taken
over all the inputs of the player. Let P1 aborts the game over the input x ∈ X for which
f(x, y) = f(x). In this case, as the output depends on P1’s input only, P1 can compute the
correct output with probability 1. In this case, according to the protocol Π, P2 will output
a bit which depends on W2(y). If W2(y) = f(x, y) = f(x), P2 will be correct, otherwise he
will be wrong. Hence the expected utility of P1 over the input x is

E(U1(x)) = Pr
(
W2(y) = f(x, y)

)
UTT
1 + Pr

(
W2(y) 6= f(x, y)

)
UTN
1

≥ UTT
1

as from R1 : UTN
w > UTT

w ≥ UNN
w ≥ UNT

w , we get UTN
w > UTT

w .
This implies that E(U1) ≮ UTT

1 which contradicts with the assumption that f is an
incentive compatible function for some input distribution D and some utility values.

5 Concluding remarks

In [10] Groce et al. claimed that in incentive compatible setting any function can be com-
puted with complete fairness in the context of two party computation when the players are
rational. They provided a mathematical description about incentive compatible setting and
showed that modifying some utility values incentive incompatible setting for a XOR func-
tion can be converted into incentive compatible setting. However, there is no answer to
the question that whether modifying the utility values incentive incompatible setting could
always be converted into incentive compatible setting for any arbitrary function. To find the
answer of the question, we observe that there exist two distinct classes of functions which
remain incentive incompatible for any value of the utilities for some guessing strategies and
input distribution. One class consists of the functions without any embedded XOR whereas
another class has one function with an embedded XOR. These functions had been used to
show the first fair two party computation with non-rational players [8, 9]. These observations
provide us clearer view about the incentive compatible and incentive incompatible functions.
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