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I. Abstract 

The objective of the paper is to generate a volatility curve for the USDINR currency pair based on the 

Heston model. For any tenor, I will be using the ATM implied volatility, the 25 Delta Risk Reversal 

implied volatility, and the 25 Delta Butterfly implied volatility as inputs. I intend to use MATLAB as the 

programming tool. The aim is to compare the generated volatility curve with the observed market 

volatility curve and consequently examine the efficacy of the Heston model.The paper will be confined 

to the USDINR currency market and the stochastic Heston model for the purposes of volatility curve 

generation. 

This working paper is structured as follows. We first introduce the FX variant of the Black Scholes model 

and typical quoting conventions in the FX options market. We then illustrate the Heston model and the 

methodology of the calibration process. We then summarize the results obtained from the calibration 

and analyze the success of the Heston model in replicating the actual implied volatility curve observed in 

the USDINR market. MATLAB was used for simulating the pricing and calibration routines demonstrated 

in this paper; the relevant code is presented in the appendix.  

 

II. Introduction 

Options play a crucial role in the financial markets. The earliest model to provide a framework to price 

options was the Black Scholes model. It makes several assumptions, the most crucial one being that the 

underlying asset follows geometric Brownian motion with constant volatility. However, it has been 

empirically established over the past few decades that implied volatilities for different strikes are almost 

never constant.  This disparity is called the volatility skew or smile. Generally, it is observed that at-the 

money options have lower implied volatilities than in-the-money or out-of-the-money options. 

To account for this discrepancy, option pricing models began to model volatility as a stochastic process. 

All such pricing models are broadly referred to as “Stochastic Volatility Models”. The most widely used 

SV model is the Heston model. There are two key reasons behind the popularity of the Heston Model. 

Firstly, it is better at predicting the shape of the implied volatility curve than the Black Scholes Model. 

Secondly, the Heston model is easier to implement than more complicated SV models. However the 

Heston model is limited in that it fails to predict far in-the-money or far out-of-the-money option 

implied volatilities. This can be mainly attributed to that fact that we use at-the-money or close to at-

the-money volatilities to calibrate the Heston model parameters. I intend on using the Heston model to 

generate a volatility curve for the USDINR currency pair. 

 

The FX Market 

It is general convention in most markets to quote option prices at different strikes, but the FX market is 

unique in the sense that quotes provided in this market are implied volatilities at different deltas. The 

standard quotes are the at-the-money (ATM) volatility, 25Delta Risk Reversal and the 25Delta Butterfly; 



for a better calibration of the volatility surface, the 10Delta Risk Reversal and the 10Delta Butterfly. For 

the purposes of completion, I now define some regularly used terms in this paper. 

Volatility Curve:It is a plot of the implied volatility as a function of either the strike price or the delta. In 

the FX market and therefore for the purposes of this working paper, we plot the implied volatility as a 

function of the delta. 

Risk Reversal: It is the difference between the implied volatility of the call price and the implied volatility 

of the put price at a specified moneyness level. For example, the 25 Delta Risk Reversal would be the 

difference between the implied volatility of the 25 Delta call and the implied volatility of the 25 Delta 

put.  

                 

 

Butterfly: It is the difference between the average volatility of a call and put option at a specified 

moneyness level and the implied volatility of an ATM option. 

       
         

 
      

Given the ATM volatility and the risk reversal, butterfly for a specific delta, the implied volatility for a 

call/put option at that delta can be calculated: 

             
       

 
      

             
       

 
      

 

The typically quoted volatilities in the interbank market are the ATM volatility, 25D and 10D Risk 

Reversal and the Butterfly. Using these, it is possible to construct the implied volatility surface using a SV 

model. 

The Garman Kohlhagen Model: 

This is the variant of the Black-Scholes model used in pricing FX options given by the following 

equations. 
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IV. The Heston Model 

Heston proposed that the stock price and the volatility follow the below given processes: 
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Recognize that   here does not represent the volatility itself but rather the volatility of the variance and 

   represents the variance of the underlying. The positive value for   is responsible for the smile in the 

volatility curve and a nonzero correlation   generates a skew in the volatility curve. 

Parameters in this model: 

  Long term mean of variance 

   Variance of the underlying at time t 

  Volatility of the variance 

This parameter affects the kurtosis of the underlying asset price distribution. When   is 0, there is no 

kurtosis, as   increases, so does the kurtosis of the distribution. At high values of  , there is a greater 

chance of extreme market movements. 

  Correlation between the two Weiner processes 

If  >0, the volatility increases as the stock price increases. If  <0, the volatility increases as the stock 

price decreases. When   =0, there is no skewness to the distribution. 

  Rate of mean reversion for the variance 

This parameter represents how fast the variance reverts to its long term mean. In a way, it also signifies 

the degree of “volatility clustering”, viz., the likelihood that large price variations will be followed by 

large price variations. 

The closed form solution to the Heston Model for European FX options is as follows: (  =1 for call,   =-1 

for put, u1= 0.5, u2=-0.5) 
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The following are the constraints on the parameters: 

       

     

      

      

       

 

V. Methodology 

There are five parameters (          ) which need to be estimated in the Heston Model. We do this by 

observing the real market data, and minimizing the sum of squared errors between the Heston model 

prices and the real time data. To elaborate, we calculate the heston model prices at the 25D call and 

put, the 10D call and put and at-the-money. From our observation, we know the actual market prices at 

these five points. We calculate the sum of the squared errors at these 5 points and choose the set of 

parameters which minimizes this sum. 



       (          )  ∑( (          )                        ) 

 

   

 

We use MATLAB for the implementation of the Heston Model. The data being used for calibration and 

testing is from the Bloomberg terminal at the end of day on 27th Nov, 2015; the currency is USDINR and 

the 2M,3M,6M,12M maturity volatility curves have been analyzed. In the following graphs, the values 

on the X axis are the values of the call option deltas (for the purposes of this working paper, the put 

option delta at any given strike and maturity is simply the volatility of the call option minus 1), the 

values on the Y axis are the volatilities. 

 

VI. Results 

2M Maturity 

ObservedVol Curve

 



Model Volatility Curve

 

 
Market Vols Model Vols 

10P 6.55 6.59 
15P 6.44 6.47 
20P 6.40 6.41 
25P 6.38 6.38 
30P 6.41 6.38 
35P 6.45 6.41 
40P 6.52 6.47 
45P 6.59 6.56 
ATM 6.69 6.67 
45C 6.82 6.81 
40C 6.98 6.98 
35C 7.17 7.17 
30C 7.40 7.40 
25C 7.70 7.67 
20C 7.99 7.99 
15C 8.36 8.36 
10C 8.82 8.81 
 

Mean Absolute % Error=0.279% 

 



3M Maturity: 

ObservedVol Curve:

 

Model Vol Curve: 

 



 
Market Vols Model Vols 

10P 6.79 6.77 

15P 6.71 6.69 

20P 6.67 6.65 

25P 6.67 6.66 

30P 6.75 6.7 

35P 6.83 6.77 

40P 6.92 6.86 

45P 7.05 6.98 

ATM 7.18 7.13 

45C 7.33 7.3 

40C 7.51 7.49 

35C 7.73 7.72 

30C 8.00 7.98 

25C 8.32 8.28 

20C 8.68 8.63 

15C 9.13 9.07 

10C 9.68 9.63 
 

Mean Absolute Percentage Error=0.502%                        

6M Maturity: 

Observed Vol Curve: 

 



Model Vol Curve: 

 

 
Market Vols Model Vols 

0.9 7.06 6.99 

0.85 6.99 6.95 

0.8 6.97 6.97 

0.75 7.00 7.04 

0.7 7.15 7.14 

0.65 7.30 7.28 

0.6 7.47 7.44 

0.55 7.67 7.64 

0.5 7.87 7.86 

0.45 8.09 8.11 

0.4 8.35 8.39 

0.35 8.67 8.71 

0.3 9.05 9.08 

0.25 9.52 9.50 

0.2 10.02 10.00 

0.15 10.64 10.61 

0.1 11.34 11.40 
 

Mean Absolute Percentage Error=0.3637% 

 



12M Maturity: 

Observed Vol Curve: 

 

Model Vol Curve: 

 



 
Market Vols Model Vols 

10P 7.68 7.70 

15P 7.63 7.58 

20P 7.63 7.59 

25P 7.69 7.68 

30P 7.88 7.82 

35P 8.08 8.01 

40P 8.30 8.24 

45P 8.54 8.50 

ATM 8.79 8.79 

45C 9.06 9.12 

40C 9.38 9.48 

35C 9.77 9.89 

30C 10.26 10.34 

25C 10.85 10.85 

20C 11.51 11.45 

15C 12.29 12.17 

10C 13.14 13.14 
 

Mean Absolute Percentage Error=0.55% 

 

VII. Summary 

In this working paper, I presented my implementation of the Heston model for the purpose of 

generating the volatility curve of the USDINR FX market. I first reviewed the FX market and commonly 

used quoting conventions within the FX market. The Garman Kohlhagen Model and the Heston Model 

were then introduced and elaborated upon. I then presented the methodology of the calibration and 

the results of the simulation. 

The Mean Absolute Percentage Errors across different deltas for the 4 maturities ranged between 0.3% 

and 0.5%. The shape and structure of the volatility curves generated by the model are very close to 

those of the actual implied volatility curves observed in the market. This can partly be attributed to the 

fact that we used both the 25D as well as the 10D RR,BF for the purposes of calibration; if we had used 

only the 25D RR,BF it is fairly reasonable to assume that the fit would have been lower. However, it is 

clear that the Heston model volatility curve matches the observed volatility curve very well and clearly 

does a much better job than the Black Scholes Model which assumes constant volatility for all strikes. 
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IX. Appendix:  This is the MATLAB code used for implementing the Heston Model for the USDINR market 

functionbuildsmile(atm,rr25,bf25,rr10,bf10,s,rd,rf,t) 

 

 
    c10=atm+bf10+rr10/2; 
    p10=atm+bf10-rr10/2; 
    c25=atm+bf25+rr25/2; 
    p25=atm+bf25-rr25/2; 
atmk= s.*exp(-1.*norminv(0.5.*exp(rf*t),0,1).*atm.*sqrt(t)+(rd-

rf+0.5.*atm.^2).*t); 
test= s.*exp((rd-rf+0.5.*atm.^2).*t); 
    ck25= s.*exp(-1.*norminv(0.25.*exp(rf*t),0,1).*c25.*sqrt(t)+(rd-

rf+0.5.*c25.^2).*t); 
    ck10= s.*exp(-1.*norminv(0.1.*exp(rf*t),0,1).*c10.*sqrt(t)+(rd-

rf+0.5.*c10.^2).*t); 
    pk25= s.*exp(1.*norminv(0.25.*exp(rf*t),0,1).*p25.*sqrt(t)+(rd-

rf+0.5.*p25.^2).*t); 
    pk10= s.*exp(1.*norminv(0.1.*exp(rf*t),0,1).*p10.*sqrt(t)+(rd-

rf+0.5.*p10.^2).*t); 
atmgk=fxoptioncall(s,atmk,rd,rf,t,atm);  
    cgk25=fxoptioncall(s,ck25,rd,rf,t,c25); 
    cgk10=fxoptioncall(s,ck10,rd,rf,t,c10); 
    pgk25=fxoptionput(s,pk25,rd,rf,t,p25); 
    pgk10=fxoptionput(s,pk10,rd,rf,t,p10); 
    heston0=[0.1 0.1 0.1 0.1 0.1]; 
ub=[0.9999 0.9999 0.9999 0.9999 0.9999]; 
lb=[0.0001 -0.9999 0.0001 0.0001 0.001]; 
nonlcon_heston=@(heston) nonlcon(heston); 
opts = optimoptions('fmincon','Algorithm','sqp'); 
    

sse(heston0,s,rd,rf,t,atmk,ck25,ck10,pk25,pk10,atmgk,cgk25,cgk10,pgk25,pgk10) 
problem = createOptimProblem('fmincon','objective', ... 



    @(heston) 

sse(heston,s,rd,rf,t,atmk,ck25,ck10,pk25,pk10,atmgk,cgk25,cgk10,pgk25,pgk10),

'x0',heston0,'lb',lb,'ub',ub, ... 
'options',opts); 
gs= GlobalSearch; 
    [hest ans1]= run(gs,problem); 
    ans1; 
    p=1;vol=0; 
%calculate smile for calls 
for i=50:0.1:80  
        

smilecalls(p)=hestonfxcall(s,hest(1),i,rf,rd,t,hest(2),hest(3),hest(4),hest(5

)); 
symsx; 
        smilecallvols(p)=fzero(@(x)(s.*exp(-rf*t).*normcdf((log(s/i)+(rd-

rf+x^2/2).*t)./(x.*sqrt(t)))-i.*exp(-rd*t).*normcdf((log(s/i)+(rd-rf-

x^2/2).*t)./(x.*sqrt(t)))-smilecalls(p)),0.06); 
vol=smilecallvols(p); 
        smilecalldeltas(p)=exp(-rf.*t).*normcdf((log(s/i)+(rd-

rf+vol^2/2)*t)./(vol.*sqrt(t))); 
        p=p+1; 
end 
    i=1; 
    j=1; 
for i=1:length(smilecalldeltas) 
if(smilecalldeltas(i)>=0.1 &&smilecalldeltas(i)<=0.9) 
deltas(j)=smilecalldeltas(i); 
vols(j)=smilecallvols(i); 
          j=j+1; 
end 
end 
plot(deltas,vols) 
set(gca,'XDir','reverse'); 

 
    y90=interp1(deltas,vols,0.90) 
    y85=interp1(deltas,vols,0.85) 
    y80=interp1(deltas,vols,0.80) 
    y75=interp1(deltas,vols,0.75) 
    y70=interp1(deltas,vols,0.70) 
    y65=interp1(deltas,vols,0.65) 
    y60=interp1(deltas,vols,0.60) 
    y55=interp1(deltas,vols,0.55) 
    y50=interp1(deltas,vols,0.50) 
    y45=interp1(deltas,vols,0.45) 
    y40=interp1(deltas,vols,0.40) 
    y35=interp1(deltas,vols,0.35) 
    y30=interp1(deltas,vols,0.30) 
    y25=interp1(deltas,vols,0.25) 
    y20=interp1(deltas,vols,0.20) 
    y15=interp1(deltas,vols,0.15) 
    y10=interp1(deltas,vols,0.10) 

 
end 

 

 



function h=hestonfxcall(s,v,k,rf,rd,t,rho,sigma,kappa,theta) 
    integral1=@(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w) real(exp(-

1i.*w.*log(k)).*hestonfx1(s,v,k,rf,rd,t,rho,sigma,kappa,theta,w)./(1i.*w)); 
    integral2=@(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w) real(exp(-

1i.*w.*log(k)).*hestonfx2(s,v,k,rf,rd,t,rho,sigma,kappa,theta,w)./(1i.*w)); 
    

z1=integral(@(w)integral1(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w),0,500,'RelTo

l',1e-5,'AbsTol',1e-5); 
    

z2=integral(@(w)integral2(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w),0,500,'RelTo

l',1e-5,'AbsTol',1e-5); 
    P1=0.5+z1./pi; 
    P2=0.5+z2./pi; 
    P3=P1; 
    P4=P2; 
    h=exp(-rf.*t).*s.*P3-k.*exp(-rd.*t).*P4; 

 
end 

 
function h=hestonfxput(s,v,k,rf,rd,t,rho,sigma,kappa,theta) 
    integral1=@(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w) real(exp(-

1i.*w.*log(k)).*hestonfx1(s,v,k,rf,rd,t,rho,sigma,kappa,theta,w)./(1i.*w)); 
    integral2=@(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w) real(exp(-

1i.*w.*log(k)).*hestonfx2(s,v,k,rf,rd,t,rho,sigma,kappa,theta,w)./(1i.*w)); 
    

z1=integral(@(w)integral1(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w),0,500,'RelTo

l',1e-5,'AbsTol',1e-5); 
    

z2=integral(@(w)integral2(s,v,k,rf,rd,t,theta,kappa,sigma,rho,w),0,500,'RelTo

l',1e-5,'AbsTol',1e-5); 
    P1=0.5+z1./pi; 
    P2=0.5+z2./pi; 
    P3=1-P1; 
    P4=1-P2; 
    h=-1.*(exp(-rf.*t).*s.*P3-k.*exp(-rd.*t).*P4); 

 
end 

 
function f1=hestonfx1(s,v,k,rf,rd,t,rho,sigma,kappa,theta,w) 
    b1=kappa-sigma.*rho; 
    b2=kappa; 
    u1=0.5; 
    u2=-0.5; 
    x=log(s); 
    y=log(k); 
    d1=sqrt((1i*rho.*sigma.*w-b1).^2-(sigma.^2).*(2*u1.*w.*1i-w.^2)); 
    d2=sqrt((1i*rho.*sigma.*w-b2).^2-(sigma.^2).*(2*u2.*w.*1i-w.^2)); 
    g1=(b1-rho.*sigma.*w.*1i+d1)./(b1-rho.*sigma.*w.*1i-d1); 
    g2=(b2-rho.*sigma.*w.*1i+d2)./(b2-rho.*sigma.*w.*1i-d2); 
    c1=(rd-rf).*w.*1i.*t+kappa.*theta.*((b1-rho.*sigma.*w.*1i+d1).*t-

2.*log((1-g1.*exp(d1.*t))./(1-g1)))./(sigma.^2); 
    c2=(rd-rf).*w.*1i.*t+kappa.*theta.*((b2-rho.*sigma.*w.*1i+d2).*t-

2.*log((1-g2.*exp(d2.*t))./(1-g2)))./(sigma.^2); 
    D1=(b1-rho.*sigma.*w.*1i+d1).*((1-exp(d1.*t))./(1-

g1.*exp(d1.*t)))./(sigma.^2); 



    D2=(b2-rho.*sigma.*w.*1i+d2).*((1-exp(d2.*t))./(1-

g1.*exp(d2.*t)))./(sigma.^2); 
    f1=exp(c1+D1.*v+1i.*w.*x); 
    f2=exp(c2+D2.*v+1i.*w.*x); 

 
end 

 
function f2=hestonfx2(s,v,k,rf,rd,t,rho,sigma,kappa,theta,w) 
    b1=kappa-sigma.*rho; 
    b2=kappa; 
    u1=0.5; 
    u2=-0.5; 
    x=log(s); 
    y=log(k); 
    d1=sqrt((rho.*sigma.*w.*1i-b1).^2-(sigma.^2).*(2.*u1.*w.*1i-w.^2)); 
    d2=sqrt((rho.*sigma.*w.*1i-b2).^2-(sigma.^2).*(2.*u2.*w.*1i-w.^2)); 
    g1=(b1-rho.*sigma.*w.*1i+d1)./(b1-rho.*sigma.*w.*1i-d1); 
    g2=(b2-rho.*sigma.*w.*1i+d2)./(b2-rho.*sigma.*w.*1i-d2); 
    c1=(rd-rf).*w.*1i.*t+kappa.*theta.*((b1-rho.*sigma.*w.*1i+d1).*t-

2.*log((1-g1.*exp(d1.*t))./(1-g1)))./(sigma.^2); 
    c2=(rd-rf).*w.*1i.*t+kappa.*theta.*((b2-rho.*sigma.*w.*1i+d2).*t-

2.*log((1-g2.*exp(d2.*t))./(1-g2)))./(sigma.^2); 
    D1=(b1-rho.*sigma.*w.*1i+d1).*((1-exp(d1.*t))./(1-

g1.*exp(d1.*t)))./(sigma.^2); 
    D2=(b2-rho.*sigma.*w.*1i+d2).*((1-exp(d2.*t))./(1-

g1.*exp(d2.*t)))./(sigma.^2); 
    f1=exp(c1+D1.*v+1i.*w.*x); 
    f2=exp(c2+D2.*v+1i.*w.*x); 

 
end 

 
function 

y=sse(heston,s,rd,rf,t,atmk,ck25,ck10,pk25,pk10,atmgk,cgk25,cgk10,pgk25,pgk10

) 

 
    v=heston(1); 
rho=heston(2); 
sigma=heston(3); 
kappa=heston(4); 
theta=heston(5); 
atmhc=hestonfxcall(s,v,atmk,rf,rd,t,rho,sigma,kappa,theta); 
    hc25=hestonfxcall(s,v,ck25,rf,rd,t,rho,sigma,kappa,theta); 
    hc10=hestonfxcall(s,v,ck10,rf,rd,t,rho,sigma,kappa,theta); 
    hp25=hestonfxput(s,v,pk25,rf,rd,t,rho,sigma,kappa,theta); 
    hp10=hestonfxput(s,v,pk10,rf,rd,t,rho,sigma,kappa,theta); 
    y=sqrt((atmhc-atmgk)^2+(hc25-cgk25)^2+(hc10-cgk10)^2+(hp25-

pgk25)^2+(hp10-pgk10)^2); 

 

 
end 

 

 

 


