

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

WORKING PAPER SERIES

WPS No. 735/ October 2013

Preprocessing Schemes for Tabu search on Asymmetric Traveling Salesman
Problem

by

Sumanta Basu
Assistant Professor, IIM Calcutta, D. H. Road, Joka P.O., Kolkata 700 104 India

&

Megha Sharma
Assistant Professor, IIM Calcutta, D. H. Road, Joka P.O., Kolkata 700 104 India

Preprocessing Schemes for Tabu search on
Asymmetric Traveling Salesman Problem

Sumanta Basu∗ Megha Sharma †

Abstract

The objective of this paper is to implement tabu search on moder-
ate sized asymmetric traveling salesman problems (ATSPs). We intro-
duce preprocessing schemes based on the cross entropy and the particle
swarm optimization method which allow us to reduce the number of
arcs in the graph defining an ATSP instance, without significantly
affecting the cost of the tour output by tabu search. This reduction
helps us to apply tabu search methods especially designed for ATSPs
defined on sparse graphs. We also provide a scheme to generate good
initial tours for multi-start tabu search to run on large problems. We
report our computational experiences on randomly generated prob-
lems as well as benchmark problems to show that our method yields
good quality tours for moderate sized ATSPs much faster than con-
ventional tabu search implementations.

Keywords: traveling salesman problem, tabu search, cross en-
tropy, particle swarm optimization

1 Introduction

The Traveling Salesman Problem (TSP) is an extensively studied class of
combinatorial optimization problems which finds its application primarily in
modeling the problems arising in transportation sector. Minor variations of
TSP are also used for modeling problems in other domains such as scheduling,
project planning etc. (Tang et al., 2000). Tabu search (Glover, 1989, 1990) is
a local search based metaheuristic which has been extensively applied to solve
a wide variety of combinatorial optimization problems. Since its inception,
many successful applications of tabu search on TSP have been reported in the

∗OM Area, Indian Institute of Management Calcutta. Email: sumanta@iimcal.ac.in
†OM Area, Indian Institute of Management Calcutta. Email: megha@iimcal.ac.in

1

published literature (Knox, 1994; Fiechter, 1994). Although tabu search has
been able to provide reasonably good results on TSPs for the last two decades,
its success is limited to smaller problem instances. Therefore, in this paper
we present a novel preprocessing method for applying tabu search on large
instances of TSP. Our preprocessing method reduces the computational time
for large instances with a minor sacrifice in the solution quality. Our work
is particularly suitable for those applications where one needs to repeatedly
solve many TSPs and for each TSP one requires a reasonably good quality
solution in relatively less time.

Consider a digraph G = (V,A), where V = {v1, v2, . . . , vn} is a set of n
nodes, and A = {(vi, vj)|vi, vj ∈ V } is a set of arcs. Each arc (vi, vj) has a
cost cij. Density of graph G is then defined as ρ = |A|/{|V | × (|V | − 1)}. If
ρ = 1, the graph is called complete, and if ρ is significantly less than 1, the
graph is called sparse. If the existence of an arc (vi, vj) in A implies that (a)
(vj, vi) ∈ A, and (b) cij = cji, then the graph is called symmetric, otherwise
it is called asymmetric.

A tour in G is a simple directed cycle covering all nodes in V . The cost of
a tour is the sum of costs of all the arcs in the tour. The traveling salesman
problem is one of finding a minimum cost tour in G. The cardinality n of V
is called the size of the TSP. If a TSP is defined on a symmetric digraph, it is
called a symmetric traveling salesman problem (STSP), otherwise it is called
an asymmetric traveling salesman problem (ATSP). This paper focuses on
developing fast implementations of tabu search for large instances of ATSPs.

Since the Hamiltonian Cycle problem is NP complete (see Karp, 1972)
and hence the TSP is NP hard, both exact algorithms (for an overview, see
e.g., Applegate et al., 2006; Fischetti et al., 2002; Roberti and Toth, 2012;
Laporte, 2010) and heuristic algorithms (for an overview, see e.g., Johnson
et al., 2002; Laporte, 2010) have been used in the literature to solve these
problems. Success of exact algorithms is limited to smaller problem sizes as
the computational time becomes prohibitive on larger instances. Prohibitive
computational time of larger instances explains the proliferation of heuristics
in published literature in recent years. The issue of excessive computational
time and therefore limited applicability of exact algorithms becomes more
relevant in the context of ATSP due to its more complex nature.

In practice, for example in logistics, ATSPs occur more commonly than
STSPs. However, most of the research in TSP has focused on the STSP. For
STSPs, researchers have been successful in obtaining results which allow us
to solve most of the large instances in very little time. However, such results
are not available for ATSPs. According to Johnson et al. (2002), a possi-
ble reason for this could be the absence of a general underlying structure for
ATSP instances which could enable algorithms to reduce computational time

2

by exploiting specific problem characteristics. One line of approach for solv-
ing ATSP attempts to convert an ATSP instance into an equivalent STSP
instance to obtain solutions (see, e.g., Cirassela et al., 2001). This approach
has limited success since the size of the equivalent STSP instance is typically
much larger than the size of the original ATSP instance. Even implementa-
tion of metaheuristics on ATSP instances also has limited evidence of success
in published literature. In this paper, we present tabu search based solution
method for moderate sized ATSP instances. We chose tabu search as the
base of our solution method as from the published literature it appears to
be one of the most successful metaheuristics for TSP. While tabu search has
been widely applied to TSPs, most of the literature on tabu search for the
TSP is restricted to the STSP (Basu, 2012). Even ATSP instances on which
tabu search implementations have been reported in the literature are quite
small, mostly restricted within 500 nodes.

In this paper we develop preprocessing schemes for tabu search imple-
mentations that enable us to apply tabu search on ATSP instances larger
than those reported previously in the literature in significantly shorter com-
putational time. Evidence of combining preprocessing schemes with exact
algorithms is present in published literature but similar idea is rarely imple-
mented in the context of metaheuristics. Our idea is novel in that sense and
is relevant because of failure of traditional metaheuristic implementations
on large problem sizes. To solve large instances of ATSPs, we use the tabu
search implementation presented in Basu et al. (2013) which speeds up tabu
search significantly on ATSP instances defined on sparse graphs. Note that
this method has been designed for ATSP instances defined on sparse graphs.
In this work, we focus on ATSP defined on complete graphs. Therefore, to
exploit the niceties of the tabu search implementation presented in Basu et al.
(2013), we devise schemes that reduce the density of the graph underlying
an ATSP instance. These reduction schemes, presented in Section 2, may
eliminate an optimal tour, but this fact is not of much concern to us as we
plan to use a tabu search algorithm which is itself not guaranteed to output
an optimal solution.

It is interesting to note that there is almost no literature on preprocessing
of TSP instances. On the contrary, preprocessing algorithms exist for other
well-studied combinatorial problems, see for example, Goossens and Baruah
(2001) for uniprocessor scheduling, and Khumawala (1975) for the uncapac-
itated facility location problem. While Toth and Vigo (1998) and Glover
and Laguna (1998) describe approaches that can be used for preprocessing,
none of these papers explicitly describes a preprocessing procedure. For pre-
processing, we chose two commonly used heuristics in recent times: cross
entropy and particle swarm optimization. Both cross entropy and particle

3

swarm optimization are population based heuristics which attempt to make
balance between search intensification and search diversification.

Tabu search, when designed to solve large problems is often implemented
in a multi-start manner, where it is run from multiple starting points which
are suitably separated in the solution space. The best solution encountered
by tabu search among all the runs is output as the final solution. In design-
ing a multi-start tabu search implementation, one needs to ensure that the
starting solutions are widely dispersed in the solution space. In Section 3, we
describe ways in which the preprocessing schemes described in Section 2 can
be modified to generate suitable initial tours for multi-start implementations
of tabu search.

In Section 4 we describe the results of our computational experience with
the proposed preprocessing schemes on randomly generated ATSP instances
as well as on benchmark problem instances. The randomly generated in-
stances used in our experiments include problem instances of sizes 200 to
600. The benchmark instances were obtained from the collection of ATSP in-
stances from Johnson et al. (2002). With our proposed preprocessing schemes
and initial tour generation methods, we created five different tabu search im-
plementations in such a way that comparisons among the implementations
provide us with information about the efficiency of our preprocessing and
initial tour generation methods. We obtained quite encouraging results from
our experiments. Our computational experiments recommend the use of
cross entropy based preprocessing scheme as it outperforms the conventional
tabu search implementation as well as the particle swarm optimization based
preprocessing scheme convincingly when solution quality and computational
times are compared. For some benchmark problem instances, it outperforms
some of the best heuristics described by Johnson et al. (2002) by reducing
computational time substantially with a minor decrease in solution quality.
We summarize the findings of our computational experiments in Section 5.
We also present a summary of the contribution of this paper along with
directions for future research in this section.

2 Preprocessing Schemes

Consider an ATSP instance defined on a complete graph. Within its set of
arcs, some are either too costly or too inconveniently located to be included
in any low cost tour. Preprocessing is a process which attempts to eliminate
such arcs from the graph. The sparse graph thus obtained can then be ad-
dressed efficiently using tabu search implementations designed especially to
work on sparse graphs (i.e., Basu et al., 2013). The implementation proposed

4

in Basu et al. (2013) exploits the fact that the neighborhood of a tour in a
sparse graph is much smaller than the neighborhood of the same tour in a
complete graph. In the remainder of this section, we describe two different
preprocessing algorithms which we have developed for sparsifying the com-
plete graphs underlying the ATSP instances. The preprocessing algorithms
are based on cross entropy (CE) and particle swarm optimization (PSO), two
heuristics with diverse mechanisms to explore the solution space.

2.1 Cross Entropy

Cross entropy was developed as a tool for rare event simulation in Rubinstein
(1997). This tool was later used in Rubinstein (1999, 2001) to solve combi-
natorial optimization problems. CE has been used for the TSP in Chepuri
and Homem-de Mello (2005); Boer et al. (2005). It is an iterative process in
which arcs that are less likely to be in good quality tours are progressively
eliminated until only those arcs that are in the “best” tour remain. We use
a truncated CE algorithm to reduce the number of arcs in a graph defining
a TSP instance.

In our preprocessing algorithm, we take a directed graph G = (V,A)
along with three parameters k, e, and iter as input. We define a probability
matrix P = [pij], where pij denotes the probability that the arc (vi, vj) will
be included in a random tour during a particular iteration.

At the beginning of the preprocessing algorithm the matrix P = [pij] is
initialized as pij = 1/(n − 1) and pii = 0 for all i, j ∈ {1, . . . , n}, i �= j and
|V | = n. The matrix P is updated after each iteration of the algorithm. A
typical iteration starts with the probability matrix P . During the iteration,
we generate k tours in G such that the probability of an arc (vi, vj) being
chosen in a tour is proportional to pij. We then create an elite tour list E
containing the e lowest cost tours from among the k tours generated above.
At the end of the iteration, we update P as follows. Let nij be the number
of times that arc (vi, vj) appears in the tours in E . Then pij = nij/e. After
iter iterations get over, a sparse graph G′ = (V,A′) is formed where A′ =
{(vi, vj) : pij > 0}.

From preliminary experiments we observed that in some cases at the end
of the specified number of iterations, the output graph became too sparse
and as a result some of the tours did not have any neighboring tour. In such
graphs, tabu search was unable to better the best tour in the E list output
after iter iterations. So motivated by Toth and Vigo (1998), we added a step
in our algorithm in which we chose a threshold τ , and added those arcs in A
whose costs were less than the threshold τ to A′. The value of τ was chosen
as 1.5 times the average cost of the arcs present in the tours in set E at the

5

end of the first iteration based on preliminary experiments. The result of
this operation is a denser G′ but one in which some neighboring tours do
exist for most of the tours. Algorithm 1 describes the set of steps required
for preprocessing by cross entropy.

To generate a random tour using P matrix, it takes O(n2) time. Moreover
we require to create k such tours to populate initial tour set K and hence
the computational complexity of Step 8 in Algorithm 1 becomes O(k.n2).
Finding out best e tours from set K requires O(klogk) time using heap sort
technique. Also the update of probability matrix P in Step 11 takes O(k.n2)
time. Hence the computational complexity of Algorithm 1 is O(k.n2).

Algorithm 1 Preprocessing by Cross Entropy

Input: A complete graph G = (V,A), k, e, iter

Output: Graphs G′ = (V,A′) with |V | = n and |A′| � n(n− 1)

1: INITIALIZATION
2: Initialize the parameter values and the probability matrix P
3: TERMINATION
4: If the number of iterations reaches iter, Go to Step 5, Else Go to Step 7
5: Terminate the program and
6: If (Arc a ∈ A appears within tours of set E or cost(a) < τ), Include arc

a in A′

7: ITERATION
8: Generate set K of k feasible tours using probability matrix P
9: Find the best e tours from set K to form set E

10: IF (iter = 1), then find threshold τ from tours in set E
11: Update probability matrix P using tours in set E
12: Go to Step 3

2.2 Particle Swarm Optimization

Particle swarm optimization was first proposed by Kennedy and Eberhart
(1995) for continuous optimization problems. Kennedy and Eberhart (1997)
later developed a variant for discrete optimization problems. Given a graph
G = (V,A), a typical PSO starts by generating a number (called the swarm
size and denoted by PSOSS) of feasible tours. The set of these feasible
tours is called the swarm and each tour in the swarm is called a particle.
Each tour i in the swarm is uniquely represented by its position xi and has
two associated characteristic called its velocity vi, its personal best position

6

pi which stores the lowest cost tour that this particle has achieved so far.
For the whole swarm, we also store the global best position pg which stores
the best tour found by the PSO so far. At the beginning of the algorithm,
the personal best position pi for each particle i is initialized by its current
position and the global best position pg for the swarm is initialized by the
best position in the swarm. At each iteration of the algorithm, the velocity
vi for each particle is updated based on its current position, its personal best
position and the global best position. The position of a particle in the next
iteration is obtained based on its velocity. Based on the new position of
the particles in the swarm, their personal best positions, and the global best
positions are updated, if the new positions are better than the previous ones.
The process is repeated for a prespecified number of iterations PSOiter. The
global best position at the end of PSOiter iterations is output as the solution
by the algorithm.

For our preprocessing scheme, we follow the discrete PSO algorithm for
TSP developed by Bin et al. (2012). The algorithm developed in this paper,
uses binary strings to denote the cities in a tour. Each tour is represented
as x = x11, . . . , x1c, x21, . . . , x2c, . . . , xn1, . . . , xnc, where n is the number of
cities and c is the smallest constant with 2c � n. All the operations such
as velocity determination and position updation for the particles are applied
on these binary strings. These strings are converted back to the sequence of
visited cities using Algorithm 2.

Algorithm 2 Conversion of cities in TSP from binary representation to a
sequence of cities

1: Tour T = {1, 2, ..., n}
2: Corresponding binary representation X =

x11, ..., x1c, x21, ..., x2c, ..., xn1, ..., xnc

3: For i=1 to n
4: Convert the binaries to decimal
5: While (X > |T |)
6: X = X − |T |
7: end While
8: Si = CX ; Si is the ith visited sequence and CX is the converted decimal

number from binary representation
9: C = C − CX ; remove city Si from the candidate set

10: end

Bin et al. (2012) introduced the concept of leader tours (xL
i) by identifying

some elite tours in each iteration. The number of elite tours is restricted by
a parameter PSOlead and the rest of the tours in swarm are recognized as

7

followers (xF
i). Leaders’ positions are updated using Equations 1 and 2.

vij(t+ 1) =vij(t) + c1r1(pij(t)− xL
ij(t)) + c2r2(pgj(t)− xL

ij(t)) (1)

xL
ij =

{
1, if rand() < S(vij)
0, otherwise

(2)

where S(vij) =
1

1+e−vij
and rand(), r1, r2 are a random numbers selected

from a uniform distribution in [0, 1]. c1 and c2 define the degree of influences
of pi and pg respectively on particle’s velocity. jth bit of ith tour is repre-
sented as xij with velocity as vij bounded within a range of [Vmin, Vmax] to
prevent large fluctuation of the solution during search process. Follower’s
positions are updated using Equations 3 and 4.

probFij(t+ 1) =

{
min(probFij(t) +

1
αLIF

, 1), if
∑PSOlead

i=1 xL
ij(t)

PSOlead
� 0.5

max(0, probFij(t)− 1
αLIF

), otherwise
(3)

xF
ij(t+ 1) =

{
1, if rand() < probFij(t+ 1)
0, otherwise

(4)

As can be seen from Equation 3, the probability probFij(t+1) that the bit
xF
ij will be set to 1 in iteration t+1 depends on the values of that particular bit

for all the leaders, leader impact factor αLIF , and the value of this probability
in the previous iteration. Equation 3 implies that if the value of a particular
bit j is equal to 1 for at least half of the leaders in the tth iteration then
the follower’s corresponding bit will have a higher probability to be set to 1
in (t + 1)th iteration. If the global best solution does not change from one
iteration top another, mutation is applied to all the tours in the swarm using
mutation probability PSOmp as described in Equation 5.

xij(t+ 1) =

{
1− xij(t+ 1), if rand() < PSOpm

xij(t+ 1), else
(5)

We use this PSO algorithm to sparsify the complete graph underlying
an ATSP instance. In our preprocessing scheme, the PSO is run for a pre-
specified number of iterations, PSOiter, to generate a reduced graph G =
(V,A′). The arc set A′ of the reduced graph is constructed by adding all
those arcs whose frequency in the leader tours across all iterations is more
than a threshold value (PSOthresh−lead). The density of the reduced graph

8

Algorithm 3 Preprocessing by PSO

Input: A complete graph G = (V,A), PSOSS, PSOiter, PSOαLIF
,

PSOmp, PSOlead, PSOthresh−lead, PSObest

Output: Graphs G′ = (V,A′) with |V | = n and |A′| � n(n− 1)

1: INITIALIZATION
2: Initialize the parameter values
3: ITERATION-STEP 0
4: Generate PSOSS initial feasible tours and calculate the fitness value

(length) of each tour
5: Identify PSOlead leaders based on fitness values
6: Initialize personal best tour for each particle and the global best tour
7: Store PSObest tours by sorting all the particles based on their tour lengths
8: TERMINATION
9: Terminate the program if the number of iterations reaches PSOtier, Else

Go to Step 10
10: ITERATION
11: Update leader positions using Equations 1 and 2
12: Update follower positions using Equations 3 and 4
13: If no change in global best is found, update leader and follower using

Equation 5
14: Update global best and the best tour in each position
15: Update PSObest tours, if required
16: Go to Step 8

is further increased by adding all those arcs that have ever appeared in the
best PSObest number of tours in any iteration.

Before initializing PSO preprocessing algorithm, conversion from deci-
mal to binary sequence of cities to form a tour takes O(nc) time. Up-
dating leader and follower tours in each iteration requires O(nc.PSOlead)
and O(nc.(PSOSS − PSOlead)) respectively. Hence the overall computa-
tional complexity of Algorithm 3 is O(nc.(PSOSS −PSOlead)) as (PSOSS −
PSOlead) > PSOlead.

3 Generation of Initial Tours

Performance of any local search heuristic like tabu search is often critically
dependent on the quality of the solution used as a starting point for the
algorithm. As the problem size increases, the solution space increases expo-

9

nentially, and the choice of initial solutions becomes increasingly important.
Since finding out a good initial solution itself is a difficult problem, for large
sized problems tabu search is implemented in the multi-start mode. In this
mode, tabu search is run multiple times, each time with a different initial
tour which is widely separated in the solution space from the other initial
solutions considered so far. The best tour obtained across all the runs is
output as the final solution by the algorithm. The preprocessing algorithms
described in Section 2 can be easily tweaked to generate initial tours. In
both CE and in PSO, we use the b best tours output by the algorithms (CE
and PSO respectively) after the pre-specified number of iterations as b initial
tours for multi-start tabu search.

4 Computational Experience

In this section, we first describe the different tabu search implementations
that we created to test our preprocessing and initial tour generation schemes.
We then describe the experiment design and setting of parameter values,
followed by the results of our computational experiments.

4.1 Tabu search implementations

Note that a conventional implementation of tabu search for ATSP instance
essentially works on a complete graph irrespective of whether the instance is
defined on a complete graph or a sparse graph. In conventional implemen-
tations, non-existent arcs in a graph, if any, are represented as infinite cost
arcs. Hence even though the neighborhood of a tour is much smaller for an
ATSP instance defined on a sparse graph than one defined on a complete
graph with the same number of nodes, conventional implementations of tabu
search actually search a complete graph in both the cases. Observing this
fact, Basu et al. (2013) designed an implementation of tabu search called
TS-SAG (tabu search on sparse asymmetric graph) especially for instances
defined on sparse asymmetric graphs. TS-SAG uses special data structures
to eliminate the need for infinite cost arcs and hence the tabu search ac-
tually searches a much smaller neighborhood. This speeds up the TS-SAG
algorithm significantly compared to the conventional implementation of tabu
search, referred to as TS-CI (tabu search with conventional implementation)
on ATSPs defined on sparse graphs.

To test the efficiency of the preprocessing schemes and initial tour gen-
eration methods proposed in this paper, we generated five different tabu
search based solution procedures for ATSP instances defined on complete

10

graphs. The first of these solution procedure, called RAND-CI, uses the
conventional implementation of tabu search with initial tours generated ran-
domly. This solution procedure is used for benchmarking the performance
of other solution procedures. The next two solution procedures (CE-CI and
PSO-CI respectively) test the efficiency and effectiveness of using initial tours
generated by the method based on cross entropy and the method based on
particle swarm optimization respectively. Both these solution procedure use
the conventional implementation of tabu search. Finally, we test the com-
bined effect of using the initial tours generated by the cross entropy based
method and the cross entropy based preprocessing scheme (in the solution
procedure CE-SAG) and the initial tours generated by the particle swarm
optimization based method and the particle swarm optimization based pre-
processing scheme (in the solution procedure PSO-SAG). Both CE-SAG and
PSO-SAG use the TS-SAG implementation of tabu search proposed by Basu
et al. (2013). Table 1 summarizes the details of these solution procedures
that we use for our computational experiments.

Table 1: Details of our solution procedures

Solution Preprocessing Initial Tabu Search
Procedure Scheme Solution Implementation

RAND-CI None Generated randomly TS-CI
CE-CI None CE TS-CI
PSO-CI None PSO TS-CI
CE-SAG CE CE TS-SAG
PSO-SAG PSO PSO TS-SAG

As mentioned above comparisons between different solution procedures
allow us to comment on the effectiveness of the preprocessing schemes and the
initial tour generation methods. Comparison of solution quality of the tours
output by procedures RAND-CI, CE-CI and PSO-CI indicates the effective-
ness of these methods to generate initial tours for multi-start tabu search. A
comparison between procedures pairs (CE-CI, CE-SAG) and (PSO-CI, PSO-
SAG) indicates the effectiveness of the preprocessing schemes combined with
the use of special tabu search implementation designed for ATSPs defined on
sparse graphs. Finally we compare among all five implementations to choose
the best one with respect to computational time and average tour quality.

All the implementations were coded in C, were run on a computer with an
Intel Quad Core 2.4GHz processor and 3 GB of RAM. The length of the tabu
list in all tabu search implementations was fixed at 8 based on the review of

11

literature (Basu, 2012).

4.2 Fixing of parameter values

To set the values of the parameters for our preprocessing schemes, and initial
tour generation method we conducted preliminary experiments. For solution
procedures based on cross entropy, we conducted preliminary experiments
with randomly generated ATSP instances on complete graphs of sizes 250,
500 and 750 nodes. For each problem size we randomly generated 30 prob-
lem instances and ran the cross entropy based solution procedure on these
instances. The average tour length and computational time for each problem
size is reported in the appendix. From the results, we chose the values of k,
e, and iter as 50000, 1.5n and 20 respectively. We chose the threshold value
τ as 1.5 times the average of the costs of arcs in E weighed by the frequency
of their appearance.

For solution procedures based on particle swarm optimization, some of the
parameter values such as PSOiter, c1, c2, Vmax, PSOαLIF

and PSOmp were
taken from the published literature (Bin et al., 2012; Kennedy et al., 2001)
as 500, 1, 1, 2, 100 and 0.01 respectively. To set the values of the remain-
ing parameters preliminary experiments were run on 30 randomly generated
ATSP instances defined on complete graphs of sizes 250, 500 and 750 nodes.
Based on our experiments, for an n city TSP, we fixed the value of swarm
size (PSOSS) as 2n and the number of leaders (PSOlead) as 15% of PSOSS.

To create the reduced graph, we include all those arcs that appear for
more than a certain fraction β of the maximum possible frequency of any
arc in leaders across iterations. For example, if the PSO is run for 500
iterations, then we include all those arcs that appear in the leaders for more
than 500 × PSOlead × β times. Based on our preliminary experiments we
found the value of β as 0.001. To ensure that a tour in the reduced graph
has neighboring tour(s), we added all those arcs that appear in the 0.2n
best tours (PSObest) to the reduced graph. For detailed rationale behind the
selection of parameter values, please refer to the appendix.

For tabu search, we used 2-opt neighborhood with tabu list of size 8. We
did not include intermediate or long term memory functions, aspiration cri-
teria and strategic oscillation components in our tabu search implementation
as out objective is to compare the effect of preprocessing and TS-SAG with
a basic tabu search implementation. We have chosen 2-opt neighborhood
because of its wide acceptance on TSP in published literature (Basu, 2012).
In the same paper, authors reported dominance of fixed tabu tenure with
tenure value lying between 5 to 10 therefore we chose tabu tenure as 8.

12

4.3 Test beds and computational experiments

To compare the performance of each of the five solution procedures mentioned
in Table 1, we ran each of these schemes on randomly generated ATSP in-
stances defined on complete graph as well as on benchmark ATSP instances
defined on complete graphs. We considered randomly generated instances
of sizes 200, 300, 400, 500, and 600 respectively, and for each problem size
we generated 30 problem instances. For generating these problem instances,
arc costs were chosen randomly as integers in the interval [1, 1000]. The
benchmark instances consisted of 25 ATSP instances from Johnson et al.
(2002) with 100 nodes or more. Note that these instances are also included
in TSPLIB (Reinelt, 1991).

We divided our computational experiments into two parts. In the first
part we ran tabu search for a fixed number of iterations and in the second
part we ran tabu search for a fixed execution time. While the first part allows
us to compare the quality of the solutions output by the different solution
procedures in general, the second part allows us to compare the quality of
the solutions output by the different solution procedures when the solution
is required in short time which is the objective of this work.

In the first part, we examined the performance of the five solution pro-
cedures when tabu search was allowed to run for 1000 iterations in each
implementation. The performance parameters used to compare the proce-
dure in this part for the randomly generated instances were (a) the average
of the costs of the best tours output by the procedure on all 30 instances of
a given problem size, and (b) the average of the execution times required by
the implementation over all 30 instances of a given problem size. For bench-
mark problem instances, the performance parameters were the cost of the
best tour output by the implementation for the instance, and the execution
time taken by the implementation.

The second part deals with the performance of the five implementations
when the execution time is fixed. We fixed the execution time for different
problem sizes in such a way that a sufficient number of tabu search iterations
are possible within the specified time limit. We define ti as the average
execution time required by RAND-CI to first encounter the tour it outputs
after 1000 iterations on an ATSP instance of size i. Then for ATSPs of size
s, we allot an execution time limit of 1000 ts/tk seconds, where k = 500. The
performance measures used in this part are the average of the costs of the
tours output by a given implementation on all 30 instances of a particular
size for randomly generated problems, and the cost of the tour output by a
given implementation on benchmark problem instances.

13

Computational results (first part): We present the average of the costs
of the tours output by the five solution procedures on randomly generated
ATSP instances in Table 2. In Table 3 we present the average time required
by the five implementations to run the 1000 tabu search iterations on problem
instances of a given size. The execution time is broken up into two parts,
the time for preprocessing and the time for executing tabu search on the
preprocessed instance. The time required to generate the initial tours is
included in the time for preprocessing, since the initial tours are generated
as a by-product of the preprocessing operation itself.

Table 2: Average of the costs of tours output by the solution procedures at
the end of 1000 tabu search iterations on randomly generated instances

200 300 400 500 600

RAND-CI 40520.70 61666.70 85110.10 107101.60 131068.90
CE-CI 19909.20 37726.10 58923.10 80903.00 103893.20
PSO-CI 39143.20 61061.20 83057.5 105113.00 125934.40
CE-SAG 20017.00 38628.30 59630.70 82305.40 106046.30
PSO-SAG 39516.10 70388.00 98272.10 133609.10 189036.00

From Table 2 we see that the tours output by the procedures CE-CI
and CE-SAG are significantly better than those output by other procedures.
Within procedures involving cross entropy, CE-CI produces slightly better
tours than procedure CE-SAG although the tour costs are not significantly
different when tested at a significance level of 0.01 (in a paired-t test). Pro-
cedures involving PSO, PSO-CI and PSO-SAG, were not able to produce
tours of comparable quality as produced by CE after tabu search. Quality of
tours output in procedure PSO-CI is marginally better than those produced
by RAND-CI, with PSO-SAG producing the worst tour quality among the
five procedures experimented.

To compare the effectiveness of initial tours developed by CE and PSO, we
compare the output of three procedures: RAND-CI, CE-CI and PSO-CI. For
all the three procedures, tabu search was run on a complete graph starting
from different initial tours as mentioned in Section 4.1. CE-CI was clearly
the best implementation to produce better initial tours for tabu search. To
measure the effectiveness of preprocessing schemes in graph reduction, we
compared qualities of tours output by CE-CI and CE-SAG for cross entropy
and PSO-CI and PSO-SAG for particle swarm optimization. As expected,
quality of tours output on a reduced graphs is inferior to the tours output on
a complete graph because tabu search is unable to generate all neighboring

14

Table 3: Average execution time (in seconds) required by the solution pro-
cedures to run 1000 tabu search iterations on randomly generated instances

200 300 400 500 600

Avg. preproc. time 0.00 0.00 0.00 0.00 0.00
RAND-CI Avg. of time for TS 43.16 127.94 277.31 497.39 821.05

Avg. of total time 43.16 127.94 277.31 497.39 821.05

Avg. preproc. time 117.40 264.10 469.20 732.70 1052.50
CE-CI Avg. of time for TS 42.32 131.77 287.32 533.45 873.23

Avg. of total time 159.72 395.87 756.52 1266.15 1925.73

Avg. preproc. time 47.79 128.65 248.56 391.00 600.90
PSO-CI Avg. of time for TS 42.56 127.04 275.08 490.12 816.35

Avg. of total time 90.35 255.69 523.64 881.12 1417.25

Avg. preproc. time 117.40 264.10 469.20 732.70 1052.50
CE-SAG Avg. of time for TS 3.14 7.44 12.83 19.69 29.18

Avg. of total time 120.54 271.54 482.03 752.39 1081.68

Avg. preproc. time 48.44 128.55 248.68 392.05 600.68
PSO-SAG Avg. of time for TS 27.87 12.64 12.31 13.66 14.03

Avg. of total time 76.31 141.19 260.99 405.71 614.71

tours. Although the average tour cost in CE-SAG is marginally higher than
CE-CI and the difference in average tour costs is well within acceptable limit.
In case of PSO, the difference between final tour costs between PSO-CI and
PSO-SAG is significant and it increases with problem size. The impact of
preprocessing schemes on computational time can be observed from Table 3.

From Table 3 we note that the time required by tabu search in procedure
CE-SAG is much less than that required by tabu search in implementa-
tion CE-CI. Similar observation is observed while comparing PSO-CI and
PSO-SAG. In both cases, difference in computational time increases with in-
creasing problem size. Overall, procedure PSO-SAG takes the least amount
of total time among the five implementations followed by implementation
CE-SAG.

Table 4 summarizes the quality of tours output by the five solution pro-
cedures on the 25 real life benchmark ATSP instances. Since the costs of
optimal tours for these problems are very different, we expressed the quality
of tours output by the five solution procedures as a multiple of the optimal
tour value known for that ATSP instance. Observe that procedures CE-CI
and/or CE-SAG produced the least cost tours in 19 out of the 25 instances.
The four problems in the rgb class form a notable exception, where proce-

15

dures RAND-CI/PSO-CI generate the best tours to these problem instances.

Table 4: Costs of tours output by the solution procedures as a multiple of
optimal tour cost at the end of 1000 tabu search iterations

Implementation
Instance Size RAND-CI CE-CI PSO-CI CE-SAG PSO-SAG

atex8 600 5.330 5.117 5.54 5.12 5.54
big702 702 5.22 5.30 1.37 5.36 3.13
dc112 112 1.01 1.01 1.01 1.01 1.95
dc126 126 1.00 1.00 1.00 1.03 2.12
dc134 134 1.01 1.01 1.02 1.02 4.85
dc176 176 1.02 1.01 1.01 1.03 3.87
dc188 188 1.00 1.00 1.01 1.02 3.38
dc563 563 1.04 1.05 1.04 1.08 5.94
dc849 849 1.05 1.05 1.05 1.05 2.93
dc895 895 1.02 1.02 1.02 1.13 1.03
dc932 932 1.00 1.00 1.00 1.11 1.01
ftv100 100 2.70 2.00 2.48 2.00 2.48
ftv110 110 2.73 2.13 2.25 2.25 2.57
ftv120 120 2.62 2.16 2.16 2.16 2.45
ftv130 130 3.08 2.23 2.23 2.23 3.09
ftv140 140 3.17 2.67 2.69 2.69 3.03
ftv150 150 3.32 2.25 2.43 2.43 3.08
ftv160 160 3.40 2.60 2.67 2.67 3.34
ftv170 170 3.59 2.80 2.80 2.85 3.49
kro124p 100 1.33 1.24 1.24 1.24 1.35
rbg323 323 2.86 3.16 2.88 3.16 3.16
rbg358 358 3.55 4.20 3.52 4.20 4.20
rbg403 403 2.11 2.48 2.05 2.48 2.48
rbg443 443 2.05 2.43 2.02 2.43 2.43
td100 1 100 1.32 1.12 1.30 1.12 1.12

Table 5 presents the execution times required by the procedures on the
benchmark problem instances. Between procedures CE-CI and CE-SAG,
which provide the best quality tours in most cases, procedure CE-SAG re-
quires much less time, and is hence the preferred procedure. Notice that
here too, the difference between the execution times of procedures CE-SAG
and CE-CI increases with increasing problem size. Although PSO-SAG takes
much less time than the other procedures, it fails to produce good quality
tours at end of 1000 TS iterations. Hence, we conducted the second part

16

of our computational experiment to analyze effectiveness of the procedures
within a limited time.

Table 5: Execution time (in seconds) required by the procedures to complete
1000 tabu search iterations on benchmark instances

Implementation
Instance Size RAND-CI CE-CI PSO-CI CE-SAG PSO-SAG

atex8 600 848.90 854.90 712.50 119.40 10.60
big702 702 1188.60 1238.90 1452.80 61.50 8.80
dc112 112 8.10 7.70 8.40 1.60 7.50
dc126 126 10.40 9.80 8.90 2.00 7.80
dc134 134 12.90 13.80 12.80 2.70 6.90
dc176 176 25.90 22.30 26.50 4.30 14.00
dc188 188 31.60 29.30 28.00 4.70 7.90
dc563 563 675.00 556.00 646.00 31.30 11.90
dc849 849 2139.10 1948.30 2264.30 57.20 7.70
dc895 895 2541.10 2750.30 2317.10 72.50 8.90
dc932 932 2978.90 2932.30 2615.70 75.10 9.00
ftv100 100 6.80 7.10 7.30 2.20 4.50
ftv110 110 9.30 8.60 8.90 2.20 7.70
ftv120 120 14.70 10.70 11.10 4.20 10.50
ftv130 130 12.90 13.40 13.90 6.20 12.60
ftv140 140 15.60 14.60 17.10 4.70 15.90
ftv150 150 20.10 20.10 20.90 7.60 8.40
ftv160 160 24.00 22.90 21.00 6.00 19.50
ftv170 170 29.10 26.50 29.00 10.00 24.50
kro124p 100 6.40 6.10 6.80 4.40 4.60
rbg323 323 138.90 139.80 142.20 12.80 14.60
rbg358 358 319.00 167.50 155.60 15.40 8.60
rbg403 403 208.70 208.10 236.70 18.00 6.30
rbg443 443 351.80 294.10 333.00 21.90 7.50
td100 1 100 6.60 7.20 6.80 4.40 4.70

Computational results (second part): Recall that in the second part of
our experiments, we allow each procedure to run for a pre-specified duration,
and compare the quality of tours output by the procedure at the end of that
duration. Table 6 presents the average of the costs of the tours output by
the different procedures over the 30 randomly generated ATSP instances of
a given size.

17

Table 6: Average of the cost of tours output by the procedures at the end of
a pre-specified execution time on randomly generated instances

200 300 400 500 600

RAND-CI 39977.60 61282.20 85110.10 107101.60 131616.50
CE-CI 19915.00 37993.60 58871.10 81610.10 105054.20
PSO-CI 39143.20 61061.20 83057.50 105113.00 125934.40
CE-SAG 19819.50 37726.10 59032.90 81428.80 104865.30
PSO-SAG 39516.10 70388.00 98272.10 133609.10 189036.00

The trends in the results from these experiments closely follow their coun-
terparts in the first set. Here too, procedures CE-CI and CE-SAG produce
the least cost tours, with CE-SAG producing slightly better quality tours
than CE-CI in most cases. We conducted a small set of experiments to see
whether the difference in tour quality increases if the time restriction becomes
tighter and found that CE-SAG outperformed CE-CI as computational time
was further restricted.

For benchmark problem instances, we set the time limit so as to ensure
that for each instance tabu search could run from at least three initial tours.
The allowable time limits were made proportional to the problem size. The
execution times for the 25 instances are given in Table 7.

Table 7: Execution time limits (in seconds) for benchmark problems

Problem Time Limit

atex8 2000
big702 3000
dc112 50
dc126 75
dc134 80
dc176 120
dc188 140
dc563 1500
dc849 4500
dc895 5500
dc932 7000
ftv100 50
ftv110 60

Problem Time Limit

ftv120 70
ftv130 80
ftv140 90
ftv150 100
ftv160 110
ftv170 120
kro124p 50
rbg323 1000
rbg358 1100
rbg403 1200
rbg443 1300
td100 1 50

Table 8 reports the costs of tours output by the procedures as multiples

18

of the optimal solution value for the corresponding problem. We see that
procedures CE-CI and/or CE-SAG produced the best tours in 22 of the 25
benchmark instances.

Table 8: Costs of tours output by the procedures as a multiple of optimal
solution value at the end of the pre-specified execution time

Implementation
Instance Size RAND-CI CE-CI PSO-CI CE-SAG PSO-SAG

atex8 600 5.45 5.19 3.17 4.99 5.42
big702 702 12.65 4.91 1.89 5.19 2.63
dc112 112 1.01 1.01 1.97 1.01 1.96
dc126 126 1.00 1.00 1.00 1.02 1.00
dc134 134 1.01 1.01 4.92 1.02 4.85
dc176 176 1.02 1.01 4.15 1.03 4.15
dc188 188 1.00 1.01 3.66 1.02 3.38
dc563 563 1.05 1.08 4.60 1.05 5.94
dc849 849 1.05 1.05 5.09 1.05 5.78
dc895 895 1.03 1.03 1.86 1.13 2.48
dc932 932 1.00 1.11 1.00 1.01 1.00
ftv100 100 2.62 1.88 3.71 1.88 2.93
ftv110 110 2.73 1.90 10.60 1.90 10.49
ftv120 120 2.63 2.12 10.87 2.12 10.87
ftv130 130 3.01 2.28 11.13 2.28 11.13
ftv140 140 3.17 2.50 10.83 2.40 11.58
ftv150 150 3.31 2.57 11.34 2.57 11.98
ftv160 160 3.40 2.74 11.89 2.64 11.89
ftv170 170 3.59 2.81 12.25 2.80 11.45
kro124p 100 1.33 1.24 1.35 1.24 1.35
rbg323 323 3.61 2.19 49.30 2.20 49.81
rbg358 358 859.84 2.72 64.76 2.78 70.87
rbg403 403 405.68 1.69 34.04 1.74 47.48
rbg443 443 367.65 1.74 35.31 1.79 44.82
td100 1 100 1.32 1.13 1.36 1.12 1.30

To summarize, we observe that the preprocessing schemes and the initial
tour generation method described in this paper combined with the TS-SAG
implementation of tabu search produce results for moderate sized ATSP in-
stances which are superior to conventional tabu search implementations for
this problem.

Next we compare the efficiency of CE-SAG with two well known heuristics
on ATSP: KP heuristic by Kanellakis and Papadimitriou (1980) and repeated

19

local search heuristic by Helsgaun (2000). Selection of these two heuristics is
motivated by the following findings from the paper by Johnson et al. (2002).
In this paper, four heuristics were chosen based on their performances on
ATSP: Patch heuristic (Karp and Steel, 1985) (PATCH), KP heuristic by
(Kanellakis and Papadimitriou, 1980) (KP), Helsgaun heuristic (Helsgaun,
2000) (HG) and cycle cover heuristic by Zhang (2000) (ZH). Although TS-
SAG takes less computational time compared to all four heuristics on most of
the benchmark instances, PATCH and ZH obtain significantly better results
than CE-SAG in most of the benchmark instances. Therefore, we do not
report the results obtained on these instances, but report results on some ’dc’
instances in Table 9 on which CE-SAG produces results of comparable quality
with those output by KP and HG with significant reduction in computational
time. The time in seconds for KP and HG are taken from results reported in
a paper by Johnson et al. (2002) with experiments conducted using 196 MHz
MIPS R10000 processors. The difference in computational time between
CE-SAG and other heuristics increases with problem size. Like on ’dc112’
instance, heuristics KP and HG take 14 and 3 seconds more respectively
than CE-SAG whereas on ’dc932’ instance, heuristics KP and HG take 44
and 72300 seconds more respectively than CE-SAG.

Table 9: Comparison of solution quality and computational time with stan-
dard heuristics

% Excess over Optimal Running Time (in secs)

Instance CE-SAG KP HG CE-SAG KP HG OPT
dc112 1.25 0.39 0.28 1.6 15.47 4.5 76.2
dc126 2.65 0.65 0.54 2 22.69 5.5 48.3
dc134 1.59 0.57 0.02 2.7 13.43 6.5 63.7
dc176 2.53 0.67 0.49 4.3 20.48 105 195.1
dc188 1.58 0.59 0.13 4.7 12.98 28.5 122.8
dc563 8.29 0.79 0.12 31.3 111.95 2231.5 1449.7
dc849 4.59 0.62 0.23 57.2 114.8 2180 378.3
dc895 12.97 0.6 0.25 72.5 144.43 22077 35926.1
dc932 10.64 0.26 0.26 75.1 119.17 72373 14722.4

5 Summary

In this paper, we develop a tabu search implementation to solve asymmet-
ric traveling salesman problems (ATSPs). In our implementation, we first

20

develop two different preprocessing algorithms based on cross entropy and
particle swarm optimization to reduce the density of the graph describing
the problem instance, and to generate good starting tours for tabu search to
operate in a multi-start mode. We then use a tabu search implementation
specially designed to solve ATSPs defined on sparse graphs.

We created five solution procedures, RAND-CI without any of the en-
hancements suggested in the paper, CE-CI and CE-SAG in which cross en-
tropy is used to generate initial tours and to preprocess, PSO-CI and PSO-
SAG to create initial tours and to preprocess using particle swarm optimiza-
tion. The special tabu search implementation designed for sparse graphs
from Basu et al. (2013) could only be used in CE-SAG and in PSO-SAG. We
compared the solution procedures based on extensive computational exper-
iments using randomly generated ATSP instances and benchmark problem
instances. We performed two types of experiments, one in which we fixed
the number of tabu search iterations, and another in which we fixed the total
execution time. Our experiments indicate that the best tabu search imple-
mentation for medium sized ATSPs is the one in which both the preprocessing
and the initial tour generation are done based on the cross entropy method,
and on the resulting sparse graph the TS-SAG tabu search implementation
(see Basu et al., 2013) is applied.

The work in this paper contributes to the existing literature of metaheuris-
tic applications on combinatorial optimization problems like ATSP. Although
we have considered ATSP as our problem context in this paper, the idea of
combining preprocessing methodology with metaheuristic implementation is
novel and can be extended to other combinatorial optimization problems with
minor modification. Combining preprocessing with metaheuristics enabled
us to speed up standard tabu search implementation significantly and our
results are comparable to some of the best known heuristics in ATSP litera-
ture. As emphasized in the introduction, objective of our work is to address
large sized ATSPs which requires significant reduction in computational time
without much deterioration in quality of the final tour output. CE-SAG, con-
ceptually simple and easy to understand, shows significant improvement in
computational time on randomly generated problem instances till 600 nodes
and real life benchmark instances. We have also used these preprocessing al-
gorithms to generate diversified good initial solutions suitable for multi-start
tabu search. Relevance of multi-start local search approach increases with
large solution space present in large problem sizes.

The solution procedures in this paper are restricted to developing pre-
processing algorithms using cross entropy and particle swarm optimization.
Although we are able to show some encouraging results in terms of reduction
of computational time, our experiments can be extended by considering other

21

well known construction heuristics (Glover et al., 2001) or population heuris-
tics (Choi et al., 2003) for graph preprocessing and initial tour generation.
Also in this paper, we intended to see the effect of preprocessing mecha-
nisms on a basic metaheuristic framework. Our effort can be extended by
making suitable changes within the components of the metaheuristic itself,
e.g. random tabu tenure, aspiration criteria etc., which may lead to further
improvement in solution quality. In future, we plan to test the effect of sim-
ilar preprocessing mechanisms on other combinatorial optimization problem
instances.

References

Applegate D, Bixby R, Chvatal V and Cook W (2006). The Traveling Sales-
man Problem: A Computational Study. Princeton University Press.

Basu S (2012). Tabu search implementation on traveling salesman problems
and its variations: A literature survey. American Journal of Operations
Research 2: 163–173. W.P. No. 2008-10-01.

Basu S (2012). Neighborhood reduction strategy for tabu search implementa-
tion in asymmetric traveling salesman problem. OPSEARCH 49: 400–412.

Basu S, Gajulapalli R and Ghosh D (2013). A fast tabu search implemen-
tation for large asymmetric traveling salesman problems defined on sparse
graphs. OPSEARCH 50: 75–88.

Bin W, Qinke P, Jing Z and Xiao C (2012). A binary particle swarm optimi-
sation algorithm inspired by multi-level organisational learning behavior.
European Journal of Operational Research 219: 224–233.

Boer P, Kroese D, Mannor S and Rubinstein R (2005). A tutorial on the
cross-entropy method. Annals of Operations Research 134: 19–67.

Chepuri K and Homem-de Mello T (2005). Solving the vehicle routing prob-
lem with stochastic demands using the cross entropy method. Annals of
Operations Research 134: 193–181.

Choi I-C, Kim S-I and Kim H-S (2003). A genetic algorithm with a mixed
region search for the asymmetric traveling salesman problem. Computers
& Operations Research 30: 773–786.

Cirassela J, Johnson D, McGeoch L and Zhang W (2001). The asymmetric
traveling salesman problem: algorithms, instance generators, and tests. In:

22

Buchsbaum A and Snoeyink J (eds). Algorithm Engineering and Experi-
mentation. Third International Workshop, ALENEX 2001, Lecture Notes
in Computer Science 2153, pp 32–59. Springer-Verlag.

Fiechter C-N (1994). A parallel tabu search algorithm for large traveling
salesman problems. Discrete Applied Mathematics 51: 243–267.

Fischetti M, Lodi A and Toth P (2002). Exact methods for asymmetric trav-
eling salesman problem. In: Gutin G and Punnen P (eds). The Traveling
Salesman Problem and Its Variations 4, pp 169–206. Kluwer Academic
Publisher: London.

Glover F (1989). Tabu Search-Part I. INFORMS Journal of Computing 1:
190–206.

Glover F (1990). Tabu Search-Part II. INFORMS Journal of Computing 2:
4–32.

Glover F and Laguna M (1998). Tabu Search. Kluwer Academic Publisher:
London.

Glover F, Gutin G, Yeo A and Zverovitch A (2001). Construction heuristics
for the asymmetric TSP. European Journal of Operational Research 129:
555–568.

Goossens J and Baruah S (2001). Multiprocessor preprocessing algorithms
for uniprocessor on-line scheduling. In: The 21th International Conference
on Distributed Computing Systems.

Held M and Karp R (1970). The traveling salesman problem and minimum
spanning trees. Operations Research 18: 1138–1162.

Held M and Karp R (1971). The traveling salesman problem and minimum
spanning trees: Part II. Mathematical Programming 1: 6–25.

Helsgaun K (2000) An effective implementation of the Lin-Kernighan trav-
eling salesman heuristic. European Journal of Operational Research 12:
106–130.

Johnson D, Gutin G, McGeoch L, Yeo A, Zhang W and Zverovich A (2002).
Experimental analysis of heuristics for the ATSP. In: Gutin G and Punnen
P (eds). The Traveling Salesman Problem and Its Variations 10, pp 445–
488. Kluwer Academic Publishers: London.

23

Kanellakis P C and Papadimitriou C H (1980) Local search for the asym-
metric traveling salesman problems. Operations Research 28: 1066–1099.

Karp R (1972). Reducibility among combinatorial problems. Complexity of
Computer Computations, pp 85–103. Plenum Press.

Karp R and Steel J M (1985). Probabilistic analysis of heuristics. In A H
G Rinnooy Kan, E L Lawler, J K Lenstra and D B Shmoys, editors. The
traveling salesman problem: A guided tour of combinatorial optimization
Wiley, Chichester.

Kennedy, J. and Eberhart, R (1995). Particle swarm optimization Proceed-
ings of IEEE International Conference on Neural Networks 1-6: 1942–
1948.

Kennedy J, Eberhart R C, Chvatal V and Shi Y (2001). Swarm Intelligence.
Morgan Kaufman.

Kennedy, J. and Eberhart, R (1997). A discrete binary version of the particle
swarm algorithm Proceedings of IEEE International Conference on Sys-
tems, Man, and Cybernatics, Computational Cybernatics and Simulation
Cat No. 97CH36088-5.

Khumawala B (1975). An efficient branch and bound algorithm for the ware-
house location problem. Management Science 18: B718–B731.

Knox J (1994). Tabu search performance on the symmetric traveling salesman
problem. Computers & Operations Research 21: 867–876.

Laporte G (2010). A concise guide to the traveling salesman problem Journal
of Operational Research Society 61: 35–40.

Lin S and Kernighan B W (1973) An effective heuristic algorithm for the
traveling salesman problem. Operations Research 21: 972–989.

Reinelt G (1991). TSPLIB – A traveling salesman problem library. ORSA
Journal on Computing 3: 376–384.

Roberti R and Toth P (2012). Models and algorithms for the Asymmet-
ric Traveling Salesman Problem: an experimental comparison. European
Journal of Transportation and Logistics 1: 113–133.

Rubinstein R (1997). Optimization of computer simulation models with rare
events. European Journal of Operational Research 99: 89–112.

24

Rubinstein R (1999). The simulated entropy method for combinatorial and
continuous optimization. Methodology and Computing in Applied Proba-
bility 2: 127–190.

Rubinstein R (2001). Combinatorial Optimization, Cross-Entropy, Ants and
Rare Events. In: Uryasev S and Pardalos P M (eds). Stochastic optimiza-
tion: algorithms and applications, pp 445–488. Kluwer Academic Publish-
ers: London.

Tang L, Liu, J, Rong, A and Yang, Z (2000). A multiple traveling salesman
problem model for hot rolling scheduling in Shanghai Boston Iron and Steel
Complex. European Journal of Operational Research 124: 267–282.

Toth P and Vigo D (2003). The granular tabu search and its application
to the vehicle-routing problem. INFORMS Journal on Computing 15:
333–346.

Zhang W (2000). Truncated branch-and-bound: Case study on the asym-
metric TSP. n Proceedings of 17th National Conference on Artificial In-
telligence AAAI 2000: 930–935. Austin, TX.

25

Appendix

1 Tabu search implementation for sparse asymmetric traveling

salesman problem

We developed a modified tabu search implementation suitable for sparse asymmetric

travels salesman problem instances. This implementation exploits the sparse nature

of the underlying graph to reduce computational time. Two main data structures

used in any tabu search implementation for TSPs are structures to store the graph

describing the problem and structures to store information about tours. In this sec-

tion we first describe the data structures in our implementation to store graphs in

Subsection 1.1. We then describe the data structures to store tours in Subsection 1.2.

We finally describe how we use these data structures to increase the speed of tabu

search iterations in Subsection 1.3. In this section, we will assume that the graph

defining the ATSP has n nodes, and each node is directly connected to k other nodes

in the graph on average.

1.1 Data structures to store graphs

Complete graphs are predominantly used in tabu search literature and therefore the

most efficient data structure for storing the costs of edges or arcs is the adjacency

matrix. Given a TSP with n nodes, this is a n × n matrix A = [aij], in which aij

stores the cost of the arc from node i to node j. In case the TSP is symmetric, it is

sufficient to store aij values only when i < j. If an arc (p, q) does not exist in the

graph then apq is set to ∞.

If the graph is sparse, storing costs of infeasible arcs is inefficient. Some papers

elaborate on different data structures used to store sparse matrices, of which the

compressed row format is especially effective. In our tabu search implementation, we

use a minor modification of this format to store the arc costs for a given problem.

Given an asymmetric graph G = (V,A,C), we define an array arcs and a vector

arc position ptr. Without loss of generality, let us assume that the nodes in the

1

1 Tabu search implementation for sparse asymmetric traveling salesman problem 2

graph are numbered 1 through n and |A| = m. arcs is a m × 3 matrix, in which

each row represents one arc in A. The first column stores the tail of an arc, the

second column stores its head, and the third column its cost. The arcs are ordered in

non-decreasing order of their tail nodes, and then according to the increasing order

of their head nodes. arc position ptr is a vector of size n. The i-th element of

arc position ptr stores the smallest row number in arcs which represents an arc

with i as its tail. Figure 1 presents an example of the data structures that we use to

store graphs in our implementation.

tail head cost
1 2 3
2 1 2
2 3 1
2 6 5
3 2 6
3 4 4
3 5 9
4 3 5
4 5 1
4 6 7
5 1 8
5 6 5
6 1 9
6 3 8
6 5 3

arcs

1 2 5 8 11 13

arc position ptr

Fig. 1: A graph for an ATSP instance and its representation in our implementation

With our data structures, the time required to search whether a particular node is

directly connected to another node is O(log(k)) on average, and the time required to

list all neighbors of a node is O(k) on average. In an adjacency matrix representation,

the first operation is constant time, while the second requires O(n) time.

1.2 Data structures to store tours

In conventional implementation, tours are either stored as a permutation of nodes in

V or as a linked list of arcs. Storing tours in the latter format has obvious advan-

tages when one is dealing with symmetric TSPs on complete graphs; in such cases,

converting a tour to neighboring tours is a constant time operation of modifying four

pointers. However, this is not true when one is dealing with ATSPs, since a 2-opt

1 Tabu search implementation for sparse asymmetric traveling salesman problem 3

move in an ATSP requires the sequence of intermediate nodes to be reversed. In

addition, when dealing with ATSPs defined on sparse graphs, the existence of a chain

of nodes in one direction is no guarantee that the chain will remain feasible when

the arc directions are reversed. Hence, in our implementation, we store the tour as a

n×6 array tour arcs where each row corresponds to data about one arc in the tour.

Consider a row in the array which corresponds to arc (i, j). Columns 1 and 2 store

i and j, and column 3 stores c(i, j). Column 4 stores a value of 1 if arc (j, i) exists

in the graph, and 0 otherwise. Column 5 stores the value of c(j, i) if it exists, and

column 6 stores a value of 1 or 0 depending on whether the arc (j, i), if it exists, is

in the tabu list or otherwise. Notice that the information being stored in the fourth

and fifth columns can be obtained by looking up the graph data structure, but by

storing them in the tour data structure, we can obtain these in constant time rather

than spend O(log(k)) time to look it up from the graph data structure. We also store

a n × 2 array called tour node ptr. The first column of the i-th row of this array

stores that row in the tour arcs matrix which has node i as its tail. The second

column stores that row in the tour arcs matrix which has node i as its head.

Example: Consider the tour 1 → 2 → 3 → 4 → 5 → 6 → 1 in the graph in Figure 1.

Assume that the tabu list is {(2, 6), (3, 2), (3, 5), (4, 3)}. Figure 2 represents the tour
arc rever- rev. arc rev. arc

tail head cost sible? cost tabu?
1 2 3 1 2 0
2 3 1 1 6 1
3 4 4 1 5 1
4 5 1 0 * *
5 6 5 1 3 0
6 1 9 0 * *

tour arcs

tail head
1 6
2 1
3 2
4 3
5 4
6 5

tour node ptr

Fig. 2: Representation of a tour in our implementation

structure used to store the tour in our implementation. In the representation a ‘*’ at

any position implies that the value at that position is not important for storing tour

information. For example, for arc (4,5) represented in the fourth row of tour-arcs,

columns 5 and 6 have a ‘*’ since the arc (5,4) does not exist in the graph, as noted

in column 4 of the array. �

1.3 Tabu Search for Sparse Asymmetric Graph (TS-SAG)

We make tabu search efficient for problems defined on sparse graphs by devising a

method to quickly find legitimate candidate arcs for 2-opt moves given a tour and a

1 Tabu search implementation for sparse asymmetric traveling salesman problem 4

tabu list, by utilizing the sparseness of the graph defining the ATSP. Given a graph

G = (V,A,C), a tour τ and a tabu list L, Algorithm 1 presents our method of finding

the best neighboring tour which does not include any arc present in L. This algorithm

therefore defines the main part of a tabu search iteration for our implementation. For

notational convenience, a tour τ is a vector of arcs (a1, a2, . . . , an) where the head of

arc ai is the tail of arc ai+1 for i = 1, . . . , n− 1, and the head of arc an is the tail of

arc a1, and [τ � (ai, aj)] is the tour obtained from tour τ through a 2-opt operation

involving the deletion of arcs ai and aj.

Algorithm 1 Finding the best neighbor of a tour in our implementation

Input: G = (V,A,C), A tour τ , tabu list L
Output: The best neighbor τbest of τ
1: /* INITIALIZATION */
2: set b ← ∞
3: set τ ′ ← φ

4: /* ITERATION */
5: for all ai = (p, q) ∈ τ do

6: set flag(aj) ← 0 for each aj ∈ τ
7: for all aj = (r, s) ∈ τ such that (s, r) ∈ A \ L do
8: set flag(aj+1) ← 1
9: end for
10: for all aj = (r, s) ∈ τ such that flag(aj−1) = 1 and (p, r) ∈ A \ L do
11: set flag(aj) ← 2
12: end for
13: for all aj = (r, s) ∈ τ such that flag(aj) = 2 and (q, s) ∈ A \ L do
14: set flag(aj) ← 3
15: end for

16: for all aj(�= ai) ∈ τ such that ai and aj are not adjacent
and flag(aj) = 3 do

17: if c([τ � (ai, aj)]) < b then
18: set a∗1 ← ai, a

∗
2 ← aj, and b ← c([τ � (a1, a2)])

19: end if
20: end for
21: end for

22: set τbest ← [τ � (a∗1, a
∗
2)]

23: return τbest

Our implementation is fast because we are able to, without explicit computation,

eliminate infeasible 2-opt neighbors of a given tour. We do this by manipulating a

1 Tabu search implementation for sparse asymmetric traveling salesman problem 5

flag value (see steps 6 through 15 in Algorithm 1). To understand how the flag value

is manipulated, note that two arcs ai and aj will yield a feasible 2-opt neighbor only

if the following three conditions are met.

1. For each arc (p, q) between ai and aj in the tour, the arc (q, p) must exist in the

graph, and not be in the tabu list;

2. there must exist an arc from the tail of ai to the tail of aj in the graph and it

should not be in the tabu list; and

3. there must exist an arc from the head of ai to the head of aj in the graph and

it should not be in the tabu list.

Now suppose, without loss of generality, that we want to find those arcs with which

arc a1 can pair to yield feasible 2-opt neighbors. We start by initializing the flag value

for each arc to 0, and incrementing the flag value for each arc by 1 for each one of

the three conditions that it satisfies. Step 6 in Algorithm 1 performs this operation.

Steps 7 through 9 implement condition 1, steps 10 through 12 implement condition 2,

and steps 13 through 15 implement condition 3. At the end of the incrementing,

only those arcs which have a flag value of 3 satisfy all the conditions to be eligible to

participate in a 2-opt operation with a1. Of course a2 and an, being adjacent to a1

cannot participate in a 2-opt operation with it and can be ignored. Also, if we set flag

values starting from a3 and going up to to an−1, and if we find an arc ai which does

not satisfy condition 1, then we can conclude that none of the arcs from ai+1 through

an−1 will satisfy condition 1. So we do not need to check those arcs for conditions 2

and 3. This observation speeds up the update of flag values significantly. Through

this process, Algorithm 1 identifies the same number of neighboring tours as done in

a conventional 2-opt move. While implementing in a sparse asymmetric graph, our

algorithm identifies the pairs of arcs to be deleted in a 2-opt move to yield a feasible

neighboring tour before actually executing it.

We now compute the complexity of Algorithm 1. Consider the flag value compu-

tation to identify all arcs which can participate in a 2-opt operation with a particular

arc ai in the tour. Given our tour data structure, checking condition 1 for all arcs

in a tour requires O(n) time. Finding the list of nodes that are directly connected

to a node in the graph requires O(k) time on average. Checking if an arc connecting

two nodes is in the tabu list requires O(log(|L|)) time. So performing steps 2 and 3

require O(k log(|L|)) time on average. Therefore the flag value computation requires

max{O(n), O(k log(|L|))} time on average. If k and |L| are small compared to n, as

is the case in large sparse ATSPs, the computation of flag values require O(n) time.

2 Preliminary experiments for parameter settings 6

At the end of the flag value computation, let us assume that we have a list of

K (� n − 3) arcs which yield feasible tours through a 2-opt operation with ai.

Finding the best among these K tours takes O(nK) time, which can be reduced

through intelligent book-keeping. Since there are n arcs in a tour Algorithm 1 requires

O(n2Kavg) time, where Kavg denotes the average number of arcs that can participate

in a 2-opt operation with any given arc in a tour. Note that in a conventional

implementation, the equivalent time complexity is O(n3).

2 Preliminary experiments for parameter settings

In this section, results of our preliminary experiments were reported to fix parameter

values for the final experiment. We conducted preliminary experiments in two stages.

In the first stage, we ran preprocessing schemes to check solution values and compu-

tational time. If the first stage results after preprocessing were not sufficient to fix

the parameter values, we ran tabu search on reduced graph. Using final tour values

and computational time, we decided on parameter values.

2.1 Cross Entropy Intensification

For the basic cross entropy method, we require to fix the following parameter values:

• Number of random tours to form set k = |K |
• Number of elite tours to form set e = |E |
• Maximum number of cross entropy iterations (ceitermax)

In the first stage of experiments, we implement cross entropy on a complete graph

data set. Problem characteristics and ranges for parameter values tested are as fol-

lows:

Preliminary Experiments - Stage I

size: 100, 250, 500;

k: 1000, 3000, 5000, 7000, 9000;

e: n, n+ 100, n+ 200, n+ 300 for a n node TSP;

ceitermax: 0 to 49;

We took ten problem instances in each problem size category. We report the

results for one problem size as similar results were obtained for other problem sizes.

We show the results from Figures 3a to 3c for a 250 node ATSP.

2 Preliminary experiments for parameter settings 7

k (number of random tours)
0 2000 4000 6000 8000 10000

A
ve

ra
ge

 T
im

e
(s

ec
)

0

5

10

15

20

(a) Change in average time taken in 250 node
TSP with change in k value

k (number of random tours)
0 2000 4000 6000 8000 10000

A
ve

ra
ge

 D
en

si
ty

0.10

0.15

0.20

0.25

0.30
e = 250

e = 350

e = 450

e = 550

(b) Change in average density on 250 node
TSP with changes in k and e values

k (number of random tours)
0 2000 4000 6000 8000 10000

A
ve

ra
ge

 M
ea

n
S

ol
ut

io
n

V
al

ue

0

10000

20000

30000

40000

50000

60000

70000

e = 250

e = 350

e = 450

e = 550

(c) Change in average tour distance on 250
node TSP with changes in k and e values

Fig. 3: Impact of changes in values of k and e

2 Preliminary experiments for parameter settings 8

Cross Entropy Iterations
0 10 20 30 40 50

A
ve

ra
ge

 D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Change in average density with CE itera-
tions on 500 node TSP

Cross Entropy Iterations
0 10 20 30 40 50

A
ve

ra
ge

 S
ol

ut
io

n
V

al
ue

0

50000

100000

150000

200000

250000

(b) Change in average tour quality with CE
iterations on 500 node TSP

Fig. 4: Impact of changes in CE iterations

In Figure 3a, we observe a linear increase in total time with increase in k values.

There is no effect of the change in value of e on total time taken for cross entropy.

From Figure 3b, we observe that increase in values of k leads to a decrease in average

graph density whereas increase in number of elite tours chosen (e) obviously increases

graph density. Average tour quality gets better with increase in values of both k and

e as shown in Figure 3c. From these three figures, we had fixed the value of k as 5000

and e as 1.5n to obtain a reasonably good initial tour for tabu search without taking

significant amount of computational time. We also intended to keep the density of

the reduced graph at least in the range of 15− 25% to allow tabu search to find some

neighbouring tours.

After fixing the values of k and e, we ran experiments to decide on number of CE

iterations. Results of this experiment on a 500 node ATSP is presented in Figures 4a

and in 4b. In both the graphs, average tour diastase and graph density reduce with

increase in number of iterations. Based on these observations, We set number of cross

entropy iterations as 20 to get a balance between density level and tour quality.

Through this experiments, although we were able to find initial tours of good

quality for tabu search, it might lead to a solution domain where tabu search were

unable to improve much on that. To test this argument, we ran tabu search using the

best 10 tours and worst 10 tours from the elite list and presented the average tour

quality in Figures 5a and in 5b. The effect of initial tour quality on the final tour

output after tabu search is analyzed in Figures 5a and in 5b. We chose the best 10

tour and worst 10 tours to see their impact on final tour distance. From the figures,

we conclude that starting tabu search from good initial tours has a definite impact

2 Preliminary experiments for parameter settings 9

Cross Entropy Iteration No.
0 5 10 15 20

A
ve

ra
ge

 S
ol

ut
io

n
V

al
ue

190000

200000

210000

220000

230000

240000

Worst Solution

Best Solution

(a) Change in average tour quality after TS on
complete graph with different initial tours

Cross Entropy Iteration No.
0 5 10 15 20

A
ve

ra
ge

 S
ol

ut
io

n
V

al
ue

300000

350000

400000

450000

500000

Worst Solution

Best Solution

(b) Change in average tour quality after TS on
reduced graph with different initial tours

Fig. 5: Impact of initial tours on TS performance

on final tour value when implemented on reduced graph.

2.1.1 Cross Entropy with Elite Arc Criteria by Toth and Vigo

We have used the concept of THRESHOLD DISTANCE from the paper by Toth and

Vigo, which is the average length of all arcs present in the elite tour set. To accom-

modate more number of arcs into the reduced graph, we increase the THRESHOLD

DISTANCE by multiplying it to a parameter named MULTIPLIER. To look into

the influence of this parameter, we took 10 instances of 500 node TSP and con-

structed reduced graphs after cross entropy for different values of MULTIPLIER.

Tabu search was performed on these reduced graphs to find the variation in final tour

quality obtained. We illustrate the results in Figure 6 with MULTIPLIER value in

X-axis, average tour distance after tabu search and average graph density after CE

in primary and secondary Y axes respectively. Based on the results, we chose MUL-

TIPLIER value as 1.5 to keep a balance between average graph density and average

tour quality.

2.2 Particle Swarm Optimization

From the set of parameters values required for PSO, we fixed values of following

parameters from the literature:

• PSOiter : 500

• c1 = 1

2 Preliminary experiments for parameter settings 10

MULTIPLIER
0.4 0.6 0.8 1.0 1.2 1.4 1.6

A
ve

ra
ge

 S
ol

ut
io

n
V

al
ue

90000

100000

110000

120000

A
ve

ra
ge

 D
en

si
ty

0.00

0.20

0.40

0.60

0.80

1.00
Average Solution Value

Average Density

Fig. 6: Change in average tour quality after tabu search and average density after CE
for different MULTIPLIER values

• c2 = 1

• PSOαLIF
= 100

• PSOmp = 0.01

• PSOVmax = 2

For remaining parameter values, we conducted a set of preliminary experiments

with a problem size of 500 node TSP with 30 problem instances. To determine

swarm size (PSOSS), we ran experiments to see the change in average tour distance

and preprocessing time. We consider swarm size as a function of problem size and

tested for swarm size values from n to 2.5n with a problem size of n. The results are

illustrated in Figures 7a and 7b. We chose swarm size as 2n because it provided with

the best tour quality within reasonable computational time. We also investigated

with larger swarm sizes but the solution quality had improved marginally with linear

increase in preprocessing time.

We chose a set of leader tours from the swarm size to influence follower tours

in the next iteration. Number of leaders (PSOlead) was considered as a function of

swarm size. We took PSOlead as a fraction of PSOSS by considering fraction values

0.10, 0.15, 0.20 and 0.25. The results are reported in Figures 8a and 8b. We found

that taking PSOlead as 15% of PSOSS yielded better results in terms of average tour

quality and computational time for most of the cases. Hence we fixed number of

leaders as 15% of swarm size.

To create a reduced graph G(V,A′), we had included the arcs (A′
L) present among

the leaders with a frequency more than the threshold frequency defined for the leaders

(PSOthresh−lead). To further increase the density of the graph, set of best tours (TB

2 Preliminary experiments for parameter settings 11

(a) Change in average tour quality with
changes in swarm size for a 500 node TSP

(b) Change in average preprocessing time
with changes in swarm size for a 500 node
TSP

Fig. 7: Impact of swarm size on solution quality and preprocessing time

(a) Change in average tour quality with
changes in selection of number of leaders

(b) Change in average preprocessing time
with changes in selection of number of
leaders

Fig. 8: Selection of number of leaders as a fraction of swarm size

2 Preliminary experiments for parameter settings 12

Fig. 9: Change in graph density with change in PSOlead−thresh

with |TB| = PSObest) are tracked throughout iterations to add the corresponding

arcs from arc set AT . For a formal definition, we use the expressions below:

A′ ← A′
L ∪ AT with A′

L = {a : na
L ≥ TL} and AT = {a : a ∈ TB}

A′
L is an arc set considering the arcs with frequency in leaders (na

L) is at least equal

to the threshold frequency PSOthresh−lead. Additionally, we added the arcs (from

set AT) present in the best TB tours found across PSO iterations to increase graph

density.

To define PSOthresh−lead, we took it as a fraction of maximum possible frequency

of an arc in leaders (MAXL). For different fraction values of MAXL = (PSOlead ×
PSOiter), the results were shown in Figure 9. Selection of threshold values has an

impact on the density of the reduced graph and hence we chose to report accordingly.

While reporting the graph density, we did not include the arcs present in AT to find

the impact of threshold values independently.

From the previous set of preliminary experiments involving cross entropy, we found

that the required graph density should be in the range of 50−70% to run tabu search

effectively. Apart from fraction values of 0.001 and 0.002 of MAXL, graph densities

obtained were too low. Hence we did the next set of experiments with these two

fractional values along with adding the arcs presents in AT . To find a suitable number

of tours in AT , we experimented with values of 0.05n, 0.1n, 0.15n, 0.2n and 0.25n

with n as problem size. The results were illustrated in Figures 10a and 10b.

Based on the results shown, we chose threshold frequency as 0.1% of MAXL along

with |AT | = 0.2n for our final experiments. It gave us the required density level in

between 0.5 to 0.6. Increasing the number of best tours may increase the density

further but only in expense of more computational time. Also we have used tours

in leaders to choose arcs for reduced graph as the preliminary experiment shows a

3 Setting of time limits for experiments with fixed execution time 13

(a) Change in graph density with change in
TL and AT

(b) Change in graph density with change in
TS and AT

Fig. 10: Selection of arcs based on threshold frequency and number of best tours

slightly higher density level than selecting from swarms. To summarize the selection

of parameters values (expression), please see the following table for a TSP with n

nodes:

Tab. 1: Final parameter values (expressions) for preprocessing with PSO

Parameter Values (expressions)

PSOiter 500
c1 1
c2 1

PSOVMAX 2
PSOαLIF 100
PSOmp 0.01
PSOVmax 2
PSOSS 2n
PSOlead 0.15.PSOSS

PSOthresh−lead 0.001.MAXL

AT 0.2n

3 Setting of time limits for experiments with fixed execution

time

The second part of our computational experiment deals with the performance of tabu

search implementations when the execution time was fixed. We fixed the execution

time for different problem sizes ensuring that a sufficient number of tabu search it-

erations are possible from at least two initial tours within the specified time limit.

3 Setting of time limits for experiments with fixed execution time 14

We assigned the execution time of 1000 seconds for a 500 node TSP seeing the pre-

processing and tabu search time it requires in our first set of experiment (with fixed

number of iterations). We defined tk as the execution time that implementation A

required to first encounter the tour it output after 1000 iterations on a ATSP instance

of size k. Then for ATSPs of size s, we allot an execution time limit of 1000 ts/t500

seconds (T1). We also see the minimum time it requires to run tabu search from at

least two initial tours (T2). Then we chose the maximum of T1 and T2. Final time

limits set for different problem sizes are as follows:

Tab. 2: Execution time limits (in seconds) for different problem sizes

Problem size Execution time (secs)

200 150
300 400
400 700
500 1000
600 1500

