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Abstract 
 
Since we find that GARCH(1,1) model fails to provide accurate one day volatility 
forecasts, we attempt to provide better forecasts using autoregressive neural 
networks. We hypothesize that due to their nonlinear nature, autoregressive neural 
networks are more effective in capturing the distribution of realized volatility. 
 
We use radial-basis-function and feed-forward back-propagation autoregressive  
neural networks to make one day volatility forecasts, and find that an overwhelming 
majority of simulated networks produce forecasts that are in order of magnitude 
more accurate than GARCH(1,1) model is. In addition, we learn that in India, realized 
volatility does not have an especially long memory, and approximately one week of 
trading sessions holds all the information a researcher may require to generate one 
day volatility forecasts. 
 
 
1. Introduction 
 
The importance of estimating volatility needs no introduction. Volatility is a key input 
to option pricing and portfolio optimization. Moreover, volatility is linked to liquidity in 
financial markets and to news arrivals at the markets. Thus, estimation of volatility is 
essential for the pricing of assets and derivatives as well as for trading and hedging 
strategies. Among the most common techniques to estimate volatility are GARCH 
models,  historical volatility, and implied volatility. Each technique has its strengths 
and weaknesses, which we briefly discuss below, however, none has managed to 
consistently exhibit a satisfactory low estimation error when is used to make 
forecasts. As we show below, GARCH(1,1) model generates a mean-square-error 
(MSE), which is in order of magnitude larger than the mean-square-errors generated 
by our simulated autoregressive neural networks. 
 
We found that during the financial crisis of 2008-2009, which included extended 
periods in which volatility of stocks was record high, one day volatility forecasts 
made by GARCH(1,1) model exhibited large estimation errors. Hence, we decided to 
examine whether autoregressive neural networks generate better forecasts of 
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volatility than GARCH(1,1) model does. To make our research comparable in 
simplicity to GARCH(1,1) model, we use autoregressive neural networks that neither 
are particularly complex nor take as an input much data. 
 
Unlike other approaches, autoregressive neural networks do not make assumptions 
regarding the distribution of the data, but adapt to them. We hypothesize that due to 
their nonlinear nature, autoregressive neural networks are more effective in 
capturing the distribution of stock index volatility, and as a result produce more 
accurate forecasts. 
 
We also intend to test how sticky stock index volatility is in India. When a researcher 
uses an autoregressive model to make forecasts, he or she is required to decide 
how many lagged variable to include in the model. If volatility has a long memory, 
that is to say that relatively old trading sessions affect a trading session at the 
present, then the researcher is required to include more lagged variables. However, 
if the memory of volatility is not long, the model need not include too many lagged 
variables. As we do not know how sticky volatility is in India, we aim to investigate it 
using autoregressive neural networks. 
 
The rest of this paper is organized as follows. In section 2, we discuss the traditional 
methods to estimate volatility and their limitations. In section 3, we survey several 
applications of neural networks in financial markets. In section 4, we discuss the 
methodology used in our research. The data and their characteristics are introduced 
in section 5. In section 6, we present out results. Our conclusions and suggestions 
for further research are provided in section 7. 
 
 
2. Traditional Methods 
 
 
2.1. GARCH Models 
 
Perhaps the most popular volatility estimation technique is GARCH(1,1) model. 
GARCH models use historical data to produce estimates of current and forecast of 
future volatility. GARCH models recognize that volatility is not constant, and attempt 
to keep track of its evolution throughout time. GARCH models appear to be effective 
in explaining autocorrelation in squared returns time series [11]. However, volatility 
term structure estimated by GARCH models is not usually the same as the actual 
volatility term structure. To illustrate the point, when the current volatility is higher 
than the long term volatility, GARCH models estimate a downward sloping volatility 
term structure, and vice versa. As a result, GARCH models often fail to capture 
highly irregular phenomena such as wild market fluctuations, and other unanticipated 
events that can lead to significant term structural changes. In other words, GARCH 
models often fail to fully capture the fat tails observed in asset returns series. 
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2.2. Historical Volatility 
 
Historical volatility is defined as the standard deviation of the return provided by an 
asset’s returns. In most estimation endeavors, more data lead to more accuracy, but 
in the case of historical volatility, more data ignore the fact that volatility does change 
over time, and data that are old may not be relevant for predicting future volatility. 
Historical volatility is backward looking, and when a market practitioner uses it, he or 
she assumes that the past will repeat itself. This assumption has been proven 
unjustifiable time and time again, and therefore, one may conclude that the use of 
historical volatility is a bit naive, and does not suit financial market characteristics in 
effect. 
 
 
2.3. Implied Volatility 
 
Implied volatility is the volatility implied by option prices observed in the market. 
Unlike historical volatility, and similar to GARCH models, implied volatility is forward 
looking in nature. One may perceive it as the market’s expectation of future volatility. 
However, implied volatility is based on Black-Scholes model, which assumes that 
asset prices follow a lognormal distribution. Two of the conditions for an asset price 
to follow a lognormal distribution are: (a) the volatility of the asset is constant, and (b) 
the price of the asset changes smoothly without discontinuities. If these conditions 
are not satisfied, and they rarely do, there is no theoretical basis to the assumption 
that the implied volatility does indeed estimate future volatility. In addition, options 
with different maturities produce different implied volatility estimates, and create what 
is known as a volatility smile. Consequently, implied volatility does not produce a 
unique forecast to the latent volatility in the market. 
 
 
3. Literature Survey 
 
In this section we survey previous applications of neural networks in financial 
markets. Our intention is not to produce a complete list, and should not be taken as 
such. 
 
Nabney and Cheng [17] predicted the conditional variances of daily exchange rate 
data of five currencies using mixture density networks, which combine a multilayer 
perceptron and a mixture model. They trained the networks using a maximum 
likelihood approach, and compared their proposed networks with a linear ARIMA 
model and a conventional neural network trained with a sum-of-squares error 
function. Their results demonstrated that the mixture density networks method 
performed best in all currencies tested. They also empirically showed that early 
stopping had very little effect on generalization performance. 
 
Early stopping is a popular technique in neural networks aimed at avoiding over-
fitting. If a neural network over-fits a training dataset, it exhibits poor results when 
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simulated using different datasets. Instead of building a model that explains a 
general phenomenon - that is to say generalizes, the model merely ‘explains’ a 
specific dataset. 
 
Malliaris and Salchenberger [15] developed a neural network to forecast future 
implied volatility of S&P 100 Index options. They tested their neural network on 
seven independent out-of-sample datasets, and used mean absolute deviations, 
mean-square-errors, and the number of correct direction forecasts to measure the 
accuracy of their network. They used a feed-forward back-propagation network with 
three layers, 13 nodes in the input layer, 7 nodes in the hidden layer, and 1 node in 
the output layer. Malliaris and Salchenberger found that their network provided very 
accurate estimates of future implied volatility. 
 
Bartlmae and Rauscher [8] forecasted one day DAX Index volatility using 
autoregressive neural networks. The neural networks used were feed-forward back-
propagation single hidden-layer networks with hyperbolic tangent as a transfer 
function. The networks are very similar to the networks we construct using feed-
forward back-propagation architecture. The forecasts generated by the 
autoregressive neural networks where compared with GARCH(1,1), and were found 
more accurate for risk management purposes, but not for option pricing. Bartlmae 
and Rauscher did not try to make point estimation of volatility, and then to use it for 
option pricing. Instead, to test the effectiveness of autoregressive neural networks, 
they set value-at-risk limits with volatility estimates generated by autoregressive 
neural networks and GARCH(1,1), and then compared the number of breaches of 
each limit. 
 
Kim et. al. [13] argued that over-fitting was useful in complex financial series analysis 
by predicting the movement of KOSPI Index. They proposed three autoregressive 
feed-forward back-propagation neural networks with number of nodes in hidden layer 
equal to number of autoregressive variables, activation function was chosen to be 
the logistic function. They trained their networks twice; first, with a validation dataset, 
and second, without a validation dataset. Then Kim et. al. used the errors generated 
by each trained network to plot its autocorrelation function. They showed that the 
errors of the models with a validation dataset suffered from autocorrelation more 
than the models without a validation dataset. Consequently, they concluded that 
autocorrelation imposed a bigger threat on neural networks which use early stopping 
to avoid over-fitting than on networks that do not. 
 
Samur and Temur [19] used multi-layers perceptron neural networks to predict the 
price of call and put options on the S&P 100 Index. They trained their neural 
networks with 1 to 5 hidden layers, and 1 to 15 neurons in each hidden layer. Then, 
Samur and Temur evaluated the accuracy of their neural networks using mean-
square-errors. Their research found that all neural networks performed best, both for 
call and put options, with 2 hidden layers. However, the number of neurons in each 
hidden layer was not fixed, but varied from 2 to 9. They also found that their 
proposed neural networks performed better when they made forecasts of call options 
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price than of put options price. A very interesting finding was that volatility of the S&P 
100 Index should be omitted as an input to the neural networks. Neural networks 
without volatility of the S&P100 Index as an input performed better than neural 
networks with volatility as an input. They hypothesized that since volatility was not 
observable, but estimated, their estimation of volatility using historical volatility was 
not fit to the model. Instead, they reckoned, the neural networks learned the impact 
of volatility on option prices through the effect of other variables. 
 
Malliaris and Salchenberger [16] estimated the market price of options using neural 
networks, which took as input the inputs of Black-Scholes model. They found that in 
about half of the cases they examined, the mean-square-error generated by their 
neural networks was lower than than that generated by Black-Scholes model. They 
also pointed out that unlike Black-Scholes model, neural networks do not make 
assumptions regarding the distribution of the returns, and therefore, constitute a 
more resilient model. 
 
Dutta and Shekhar [9] predicted the rating of corporate bonds using feed-forward 
back-propagation neural networks with two and three layers. They tested neural 
networks with both 10 and 6 financial ratios as inputs, and bonds’ ratings as targets. 
Dutta and Shekhar empirically found that their neural networks predicted an issue’s 
rating much better than a comparable regression did. 
 
Salchenberger, Cinar, and Lash [18] used feed-forward back-propagation neural 
networks to predicted the probability of failure for saving and loan associations. Their 
neural networks inputs included 5 financial variables that signaled a deterioration in a 
saving and loan association financial condition. Each variable represented a CAMEL 
category. Salchenberger et. al. compared their results with results of logit model, and 
empirically found that their neural networks were at least as good as or better than 
logit model in predicting saving and loan associations failures. 
 
 
4. Methodology 
 
We model volatility with autoregressive neural networks. The structure of the 
autoregressive neural networks is not predetermined. To find the optimal designs, 
we loop through a wide range of structures. Then, to estimate their efficiency, we 
make one day volatility forecasts, and calculate the mean-square-errors they 
generate. We also use the mean-square-errors to compare the performance of the 
suggested autoregressive neural networks with GARCH(1,1) model as a benchmark 
model. 
 
In order to generate estimates using autoregressive neural networks, we have to 
measure the observed volatility in the market. Next, we use the observed volatility to 
train and parameterize the autoregressive neural networks. Unfortunately, volatility is 
not observable, but latent, and usually is measured by techniques as mentioned in 
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section 2. As discussed, all of these approaches, valuable as they may be, have 
significant weaknesses. 
We calculate realized volatility by summing intraday squared returns. In theory, by 
sampling intraday returns frequently enough, the summation of intraday squared 
returns approximates the underlying integrated volatility. Differently put, the integral 
of instantaneous volatility is the volatility measure itself. As a result, for all purposes 
we can treat volatility as observed [7]. Thus, we use the observed volatility both as 
input to our autoregressive neural networks, and as their target.  
 
Calculating realized volatility is not as simple as it may first seem. High sampling 
frequencies introduce a couple of difficulties. First, tick-by-tick quotes are available in 
unevenly spaced time points. Solving this issue requires interpolation, which by itself 
is an estimation procedure that introduces noise into the estimation process. 
Second, it is a well known fact that high frequency quotes suffer from autocorrelation 
[6]. 
 
A good choice of sampling frequency must balance between the aforementioned 
competing forces. Anderson et al. [1, 2, 3, 5, 6, 7] found that a 5 minutes sampling 
frequency was high enough to eliminate measurement errors, yet low enough to 
avoid microstructure biases. Accordingly, we use an approximate 5 minutes 
sampling frequency to calculate realized volatility. Since our data does not contain 
equally spaced quotes, if a quote is not available exactly 5 minutes after the last 
quote, we take the quote immediately after the 5 minutes mark. Consequently our 
sample of returns is not equally spaced, but contains small deviations of a couple of 
seconds that we assume to be insignificant. We are reluctant to use interpolation to 
avoid estimation errors that result from considering unobservable factors. The 
realized volatility found is used to train the autoregressive neural networks both as 
input in the form of lagged variables and as target, and again to calculate the error of 
the estimation using the test dataset. 
 
We break down the dataset to three independent subsets: training, validation, and 
test datasets. The training dataset includes 365 observations, and the validation and 
test datasets include 45 observations each. To render the datasets independent, we 
keep a buffer of 10 trading sessions. Since we do not consider, for complexity 
reasons, autoregressive neural networks with more than 10 lagged variables, the 
training, validation, and test datasets we create do not overlap, and therefore, are 
independent. 
 
To build our proposed autoregressive neural networks, we use two different 
architectures: radial-basis-function networks, and feed-forward back-propagation 
networks. In the next two sections we explain the methodology used in each 
architecture. 
 
 
4.1. Radial-Basis-Function 
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We build a radial-basis-function network with number of mean-square-errors failures, 
number of autoregressive variables, size of spread of the radial-basis-function 
neurons, and number of radial-basis-function neurons variable. We use MATLAB’s 
NEWRB function to build our radial-basis-function networks. NEWRB adds radial-

basis-function neurons, with as a transfer function, to the network until the 
network achieves a target accuracy using mean-square-error. We control the 
number of neurons in each network by setting the target mean-square-error to zero 
and limiting the number of radial-basis-function neurons NEWRB can add. 
 
Our algorithm contains four loops: 
 
The first, and outer-most, loop controls the maximum number of mean-square-error 
failures in the validation dataset allowed during the training process. When we train a 
specific structure, we optimize the network using the training dataset, and then 
simulate it using the validation dataset. We calculate and register the mean-square-
error generated by the simulation using the validation dataset, and compare it with 
the next step’s mean-square-error. The next step’s network has the same structure, 
but with an additional radial-basis-function neuron. If the mean-square-error of a step 
is not smaller than the mean-square-error of the previous step, we call it “mean-
square-error failure.” For complexity reasons, we allow mean-square-error failures to 
vary from 1 to 10 in our search for optimal network structures. 
 
This method is called “early-stopping,” and is used to prevent over-fitting of 
networks. However, we use early-stopping in an unconventional way. Usually, early-
stopping is used to stop the training process itself. We use it to stop increasing the 
number of radial-basis-function neurons to the network structures. 
 
The second loop controls the number of lagged variables in the autoregressive 
vector that is input into a network. We allow the number of lagged variables to vary 
from 1 to 10. Normally, 10 trading sessions represent two full weeks of trading, and 
we assume, for complexity reasons, that all the information in historical data that is 
required to make a one day volatility forecast can be extracted from the last 10 
trading sessions. 
 
The third loop controls the spread, which is also known as the radius, of the radial-
basis-function neurons. The use of large spreads smoothes the estimated function. 
However, if the spread is too large, the network requires many neurons to fit the 
estimated function to the dataset. In a like manner, if we use spreads, which are too 
small, the networks require many neurons to fit the estimated function to the dataset, 
and in addition, the network may not generalize well. 
 

In search of optimal network structures, we allow the spread of radial-basis-function 
neurons to vary from 0.01 to 1.14 in steps of 0.01. We choose 1.14 as an upper limit, 
because the range of the volatility series used in the dataset is 1.1354, and hence, a 
radial-basis-function neuron with a spread of 1.14 covers the whole range. 
 

ex2
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The fourth, and inner-most, loop controls the number of radial-basis-function neurons 
in a network structure. For a given number of mean-square-error failures allowed, 
lagged variables in a autoregressive vector, and spread size, we first train the 
network using the training dataset with one radial-basis-function neuron. Then, we 
simulate the trained network using the validation dataset, and calculate its mean-
square-error. We add a radial-basis-function neuron, and repeat the training 
exercise. If a new mean-square-error decreases, we continue to add neurons. On 
the other hand, if a new mean-square-error fails to decrease, we check how many 
mean-square-error failures have occurred, and according to the number of mean-
square-error failures allowed, we decide whether to add another radial-basis-function 
neuron, or to stop adding radial-basis-function neurons. Having stopped the training 
of the network, we simulate the trained network using the test dataset and calculate 
its mean-square-error. 
 
In search of the optimal network structures, we cap the number of radial-basis-
function neurons at 45. We choose 45 since the strength of both the validation 
dataset and the test dataset is 45, and a network with 45 radial-basis-function 
neurons can perfectly fit a dataset of 45 observations. Hence, we do not find a 
justification to fit a radial-basis-function network with more than 45 neurons to a 45 
observation dataset. 
 
 
4.2. Feed-Forward Backpropagation 
 
To find the most efficient feed-forward back-propagation network structures, we use 
a similar technique to the one we use to find the most efficient redial-basis-function 
network structures. We first build a single hidden layer network with tan-sigmoid as a 
transfer function. The networks use a gradient descent with momentum weight and 
bias learning function. We use MATLAB’s default setting of learning rate at 0.01 and 
of momentum constant at 0.9. 
 
The number of the neurons in the hidden layer is variable, and so is the number of 
variables in the autoregressive vector. For the same reason we mention in section 
4.1., we cap the number of neurons in the hidden layer at 45. 
 
In the case of feed-forward back-propagation networks, the outer loop controls the 
number of lagged variables in the autoregressive vector. Since we do not know the 
exact specification of the model, we allow the number of lagged variables to vary 
from 1 to 10. As explained in the section 4.1., an autoregressive vector with 10 
lagged variables encompasses two full weeks of trading sessions. For computational 
reasons, we assume that volatility does not have a memory of more than two trading 
weeks. Fortunately, the results support our presumption. 
 
The inner loop controls the number of neurons in the hidden layer. We start with a 
single neuron in the hidden layer. Using the training dataset, we train the network  
with MATLAB’s TRAINBR function. TRAINBR applies the Levenberg-Marquardt 
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optimization algorithm to update the weights and biases. The algorithm puts in use a 
Bayesian regularization that produces networks that generalize well. We allow the 
training process to run until it converges to a solution. Consequently, the training 
process results in solutions that are in order of magnitude unique. 
 
To evaluate the feed-forward back-propagation network structures, we simulate the 
trained networks using the validation dataset and the test dataset to calculate their 
mean-square-errors. Having trained all 450 possible structures (10 lags times 45 
neurons), we use the series of validation mean-square-errors to determine the 
number of mean-square-error failures as defined earlier. 
 
 
5. Data 
 
A vector of realized volatilities of the SENSEX Index3 is used both as input vector to 
the autoregressive neural networks, and as target vector for training, validating, and 
testing purposes. The realized volatility vector includes 485 trading sessions from 
January 1st, 2008 to December 31st, 2009. We estimate realized volatility of a trading 
session by sampling intraday returns of SENSEX Index once in approximately 5 
minutes from high frequency data provided by Bombay Stock Exchange4 and 
Bloomberg. Then, to arrive at the realized volatility estimate, we sum the squares of 
the returns as suggested by Anderson et al. [1, 2, 3, 5, 6, 7]. As we mentioned in 
Section 4, the summation of intraday squared returns approximates the underlying 
integrated volatility. 
 
As can be seen in Table 1, realized volatility varies significantly from 8.81% p.a. to 
122.35% p.a., with a mean of 27.15% p.a. and a median of 24.92% p.a. The fat right 
tail seen in Figure 2 results in realized volatility having a mean that is greater than its 
median. In addition, although the standard deviation may seem tamed at 13.36%, 
the dataset contains a 7.1 sigma event (October 27th, 2008) that according to a 
normal distribution, is supposed to occur once in almost 7.6 Billions years, a 6.3 
sigma event (January 22nd, 2008) that according to a normal distribution, is 
supposed to occur once in almost 26 Millions years, two 5 sigma events, and other 
events that according to a normal distribution, are supposed to occur very rarely. 
These events raise our suspicion that it is naive to assume that realized volatility of 
stock index in India follows a normal distribution. 
 

 
Table 1: Data Statistics of Realized Volatility Dataset 

 

                                                 
3 SENSEX Index is a value-weighted index composed of 30 largest and most actively traded stocks 
on the Bombay Stock Exchange representing 12 major sectors. 
4 Bombay Stock Exchange is the oldest stock exchange in Asia. Today, BSE is number 1 in the world 
in the number of listed companies and number 5 in the world in handling of transactions through its 
electronic trading system. As of July, 2009, the total market capitalization of companies listed on BSE 
is more than USD Trillion 1.  On July 31, 2009, BSE had almost 5000 listed companies. 
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Min 0.0881 Median 0.2492 

Max 1.2235 Standard Deviation 0.1336 

Mean 0.2715 Range 1.1354 

 
 

Figure 1 exhibits that realized volatility spikes at few turbulent periods such as the 
announcement of the general election results in India on May 16th, 2009 (3rd spike), 
and is significantly lower at most of the other periods. Figure 1 may suggest that 
realized volatility is non-stationary throughout time. To test for non-sationarity, we 
run an augmented Dickey-Fuller test, and get a test statistic of -3.7733 while the 
critical value is -1.9411. Hence, the p-value clocks at 0.001, and consequently, we 
reject the null hypothesis that the realized volatility series is non-stationary. 
 
Irrespective of the Dickey-Fuller test, we do not perceive non-stationarity as a major 
concern. Supposedly, non-stationarity hinders a model’s capability to accurately  
make forecasts as the parameters of the underlying distribution change throughout 
time. The accuracy of the forecasts we seek to make is captured by the mean-
square-error used to measure the accuracy of our autoregressive neural networks. If, 
in fact, non-stationarity does prevent us from making accurate forecasts, the mean-
square-errors of our autoregressive neural networks is expected to be higher than 
the mean-square-error of a benchmark model such as GARCH(1,1). On the other 
hand, if the mean-square-error generated by our autoregressive neural networks is 
found to be lower than the benchmark model’s mean-square-error, then non-
stationarity is, in practice, irrelevant. 
 
The reader can see in Figure 1 that there are 3 major spikes in realized volatility in 
the timeframe examined. The first occurred on January 21st, 2008 and January 22nd, 
2008. On January 21st, 2008 the SENSEX Index experienced its highest ever one 
day loss of 1,408 points. Media outlets explained that “investors panicked following 
weak global cues amid fears of a recession in the US.”5 On January 22nd, 2008, the 
SENSEX Index hit its lower circuit breaker in less than a minute after the markets 
had opened at 10:00 AM. Consequently, trading was suspended for an hour. After 
the market had reopened, it experienced its biggest intra-day fall, only to recover 
later that day on reassuring announcement made by the Finance Minister of India. 
The second spike occurred on October 27th, 2008 as SENSEX Index hit a new three 
years low. At one point SENSEX Index was down 11.5% on the day, but eventually 
the index closed a mere 2.2% down. The explanation given to the intraday crash was 
that Foreign Institutional Investors were fleeing the market to limit their exposure to 
risky assets. The third and last spike, occurred on May 19th, 2009 on the wake of the 
announcement of the general election results. The surprising win of the Indian 
Congress Party was perceived by investors as promising political stability and 
economic reforms that would benefit the stock market. 
 

 
                                                 
5 http://en.wikipedia.org/wiki/BSE_Sensex 
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Figure 1: Evolution of realized volatility throughout time from January 1st, 2008 to 
December 31st, 2009 

 

 
 

Figure 2 clearly shows that our observations are not sampled from a normally 
distributed population. To confirm the claim, we conduct a Jarque-Bera test. We find 
that the test statistic is 3,347.4, while the critical value is 5.85. Hence, the p-value is 
equal to 0.001, and consequently, we reject the null hypothesis that the realized 
volatility series is sampled from a normally distributed population. It is seen from 
Figure 2 that the realized volatility series suffers from a fat right tail. The observed fat 
right tail inhibits the ability of standard methods to make accurate forecasts of 
volatility, as simple distribution assumptions are rejected, and necessitate the use of 
alternative methods such as autoregressive neural networks, which, in their nature, 
do not assume a probability distribution of the subject matter. 
 
 
 
 
 
 
 

 
Figure 2: Histogram of annualized daily realized volatility from January 1st, 2008 to 
December 31st, 2009 
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As can be seen in Figure 2, the most frequent bin is the 3rd bin with 125 
observations, or 25.8% of all the observations. The first 5 bins are almost 
symmetrical around the 3rd bin, and include 422 observation, or 87% of all the 
observations. The fat right tale starts to take significant effect from the 6th bin 
onwards, as a left tail to balance it does not exist. 
 
 
6. Results 
 
 
6.1. GARCH(1,1) 
 
We parametrize GARCH(1,1) model using the observations in the training and 
validation datasets, and with these parameters make one day forecasts. Then, we 
use the one day forecasts made and the realized volatility in the test dataset to 
calculate the mean-square-error of GARCH(1,1) model. 
 
GARCH(1,1) model generates a mean-square-error of 0.0092, and a root-mean-
square-error of 0.096. The root-mean-square-error found amounts to 57.2% of the 
average realized volatility in the test dataset. An error in this magnitude indicates that 
GARCH(1,1) model is ineffective in making one day volatility forecasts. 
 
This result is generated in a test dataset, which is characterized by relatively calm 
stock market. In the test dataset, realized volatility ranges from 17.3% to 34.9%, 
while in the whole dataset, encompassing two full years, realized volatility ranges 
from 8.8% to 122.3%. We suspect that under extreme stock market conditions the 
error of GARCH(1,1) model may increase further in absolute terms, since, as we 
discussed in section 2, GARCH models, in their nature, regress to the mean, and do 
not to capture extreme market events. 
 
 
6.2. Radial-Basis-Function Networks 
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Table 2 presents the 10 most accurate radial-basis-function network structures. 
Columns 1 and 6 consist of the number of mean-square-error failures allowed before 
the training process is stopped in a specific network structure. Columns 2 and 7 
consist of the number of lagged variables in a specific network structure. Columns 3 
and 8 consist of the width, or the spread, in percentage points of the radial-basis-
function neurons in a specific network structure. Columns 4 and 9 consist of the 
number of radial-basis-function neurons in a specific network structure. Columns 5 
and 10 consist of the mean-square-error generated by a specific network structure. 
 
We find that radial-basis-function networks outperform GARCH(1,1) model 
significantly as a method to forecast one day volatility. The most accurate radial-
basis-function network generated a mean-square-error that is 4.73 times smaller 
than the mean-square-error generated by GARCH(1,1) model when applied on the 
test dataset. In addition, among 10,2916 different radial-basis-function network 
structures we tested, 9,759 network structures, or 94.8% of all network structures, 
performed better than GARCH(1,1). As a result, we find very conclusive evidence 
that radial-basis-function networks provide a very effective tool to make one day 
volatility forecasts. 
 

 
Table 2: Most accurate radial-basis-function networks 

 
Failures Lags Spread Neurons MSE Failures Lags Spread Neurons MSE 

3 5 25 32 0.00195 9 6 32 34 0.00203 
10 5 27 32 0.00196 10 6 26 41 0.00203 
9 5 27 31 0.00198 8 6 31 32 0.00204 
9 6 31 34 0.00200 1 6 114 1 0.00204 
4 6 27 31 0.00203 9 6 26 40 0.00204 

GARCH(1,1) 0.00922 
 

 
Another interesting finding is that the first 76 radial-basis-function networks sorted by 
their mean-square-error use an autoregressive vector with 5 or 6 lagged variables. 
An autoregressive vector with 5 lagged variables, usually, represents a full business 
week. This finding indicates that, in India, volatility has a memory of about one 
business week, and older data do not hold more information regarding future 
volatility. 
 
Out of the 532 radial-basis-function networks that we find less accurate than 
GARCH(1,1) model, 125 are very trivial radial-basis-function networks, which use an 
autoregressive vector with 1 lagged variable. Their inaccuracy does not surprise us, 
as they use very little information to make one day volatility forecasts. 
 

                                                 
6 Please contact the authors for full results. 
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Figure 3: Performance surface of radial-basis-function networks with 5 lagged 
variables7 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Performance surface of radial-basis-function networks with 6 lagged 
variables 

 

                                                 
7 Figures 3 and 4 are better understood when viewed in colors. Blueish colors signify low 1/MSE and 
Reddish colors signify high 1/MSE 
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Since the results indicate that autoregressive neural networks with 5 and 6 lagged 
variables are the most efficient networks to forecast volatility, we further investigate 
the evolution of performance as a function of the spread of the radial-basis-function 
neurons and the number of mean-square-error failures allowed before the algorithm 
stops the training process. Figures 3 and 4 are a performance surface of all radial-
basis-function networks with 5 and 6 lagged variables respectively. On the z-axis we 
measure 1/MSE of the radial-basis-function network structures. Low mean-square-
error entails high 1/MSE, and therefore, relatively more accurate network structures 
are awarded relatively higher points in the figure. The x-axis marks the number of 
mean-square-errors failures in the network structure, and the y-axis marks the width 
of the radial-basis-function neuron of the network structures. 
 
For illustration, in Figure 3, point ‘A’ represents a network structure with 5 lagged 
variables, 5 mean-square-error failures, radial-basis-function neuron spread of 0.93, 
and 1/MSE of 407.6. In Figure 4, point ‘B’ represents a network structure with 6 
lagged variables, 5 mean-square-error failures, radial-basis-function neuron spread 
of 0.56, and 1/MSE of 463.6. 
 
In both cases of 5 and 6 lagged variables, it is clear, from Figures 3 and 4, that too 
few failures weigh on performance as well as too small spreads. In the case of 
spreads, too large spreads also hurt the performance of the networks. The findings 
regarding the spread are expected due to its functionality in the radial-basis-function 
neurons. 
 
Identifying a pattern in the results is important, because a trend indicates that the 
results of our research are not arbitrary, and are likely to repeat when simulated 
using a different and independent dataset altogether. If, on the other hand, the 
results exhibit no pattern, and the distribution of performance on the spread and 
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mean-square-error failures plane is arbitrary, we would fret that the results of our 
research are spurious, and would not repeat when simulated using a different 
dataset. 
 
Figures 5 and 6 provide charts of summation of 1/MSE across radial-basis-function 
neuron spreads of network structures with 5 and 6 lagged variables respectively. 
That is to say, for a given radial-basis-function neuron spread, we sum 1/MSE of all 
network structure with number of mean-square-error failures from 1 to 10. 
 

 
Figure 5: Summation of 1/MSE across spreads of radial-basis-function neurons of 
network structures with 5 lagged variables 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Summation of 1/MSE across spreads of radial-basis-function neurons of 
network structures with 6 lagged variables 
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From Figures 5 and 6, a further analysis of performance across the spread axis 
shows that increasing the spread affects the networks very rapidly, then stabilizes, 
and even develops a moderate negative trend. This finding reinforces the indication 
we see in Figures 3 and 4 that increasing the spread beyond a point has negative 
effects on performance. In addition, the reader can see, in Table 1, that 9 out of the 
best 10 radial-basis-function networks have a spread in the range of 0.25 to 0.32. 
 
Figures 7 and 8 provide charts of summation of 1/MSE across number of mean-
square-error failures allowed of network structures with 5 and 6 lagged variables 
respectively. That is to say, for a given number of mean-square-error failures 
allowed, we sum 1/MSE of all network structure with radial-basis-function neuron 
spreads from 0.01 to 1.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Summation of 1/MSE across mean-square-error failures of radial-basis-
function network structures with 5 lagged variables 
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Figure 8: Summation of 1/MSE across mean-square-error failures of radial-basis-
function network structures with 6 lagged variables 

 

 
 

From Figures 7 and 8, we see that contrary to our finding in the case of radial-basis-
function neuron spreads, the performance of network structures first falls, and then 
starts to improve. Our results show a clear positive trend in performance when we 
allow the number of mean-square-error failures to exceed 5. Given that in 7 out of 
our 10 most efficient radial-basis-function network structures, the number of mean-
square-error failures allowed is in the range of 8 to 10 (see Table 1), we suggest that 
the training of radial-basis-function networks is not to be stopped too early. If the 
number of mean-square-error failures allowed is below 5, the algorithm stops the 
training too early, and performance achieved is below optimal. 
 
6.3. Feed-Forward Back-Propagation Networks 
 
Table 3 presents the 10 most accurate feed-forwards back-propagation network 
structures. Columns 1 and 5 consist of the number of lagged variables in a specific 
network structure. Columns 2 and 6 consist of the number of neurons in the hidden 
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layer in a specific network structure. Columns 3 and 7 consist of the number of 
mean-square-error failures allowed in a specific network structure. Columns 4 and 8 
consist of the mean-square-error generated by a relevant network structure. 
 
From Table 3 we find that similarly to the case of radial-basis-function networks, 
feed-forward back-propagation networks outperform GARCH(1,1) model 
significantly, although their accuracy is lower than the accuracy of radial-basis-
function networks. In addition, all 450 feed-forward back-propagation networks that 
we test are more accurate than GARCH(1,1) model. For illustration, the least 
accurate feed-forward back-propagation network generates a mean-square-error of 
0.0048, almost twice as accurate as GARCH(1,1) model that generates a mean-
square-error of 0.0092. 
 

 
Table 3: 10 most accurate feed-forward back-propagation networks 

 
Lag Neurons Failures MSE Lag Neurons Failures MSE 

4 12 7 0.00242 3 11 6 0.00255 
4 4 2 0.00247 3 6 3 0.00255 
4 13 8 0.00248 3 18 9 0.00255 
6 5 3 0.00251 3 20 10 0.00256 
8 2 1 0.00254 3 16 8 0.00256 

GARCH(1,1) 0.00922 
 

 
We also find that, once more, autoregressive neural networks perform best without 
many autoregressive variables, as out of the first 21st networks sorted by mean-
square-error, only one uses more than 6 lagged variables (the 5th most accurate 
feed-forward back-propagation network uses 8 lagged variables). This finding 
confirms our conclusion that, in India, volatility has a memory of about one week of 
trading sessions, and when one construct an autoregressive neural network to 
estimate volatility, one can limit oneself to about a week of lagged information. 
 
Figure 98 is a performance surface of all feed-forward back-propagation network 
structures we examine. On the z-axis we measure 1/MSE of the radial-basis-function 
network structures. The x-axis marks the number lagged variable in a network 
structure, and the y-axis marks the number of neurons in the hidden layer of a 
network structure. For illustration, in Figure 9, point ‘C’ represents a network 
structure with 6 lagged variables, 10 neurons in the hidden layer, and 1/MSE of 
466.6. 
 

 
Figure 9: Performance surface of feed-forward back-propagation networks 

                                                 
8 Figure 9 is better understood when viewed in colors. Blueish colors signify low 1/MSE and Reddish 
colors signify high 1/MSE 
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As evident by Figure 9, most of the capacity to make one day volatility forecasts 
using feed-forward back-propagation networks is gained quickly in terms of 
autoregressive variables and neurons in the hidden layer. Moreover, once the ability 
to forecast is achieved, it stays stable across lags and neurons. Simply put, highly 
complex feed-forward back-propagation networks do not add accuracy to the 
forecasts. Since the additional complexity in terms of computation is not 
compensated with better accuracy, it is not justified. 
 
Figure 10 provides a chart of summation of 1/MSE across number of lagged 
variables in a feed-forward back-propagation network structure. That is to say, for a 
given number of lagged variables, we sum 1/MSE of all feed-forward back-
propagation network structures with neurons in the hidden layer from 1 to 45. 
 
 
 
 
 
 
 
 
 

 
Figure 10: Summation of 1/MSE across lagged variables of feed-forward back-
propagation network structures 
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In Figure 10, we see that the accuracy of feed-forward back-propagation networks 
improves dramatically with the addition of the first 2 lagged variables to the 
autoregressive vector. However, if we include more than 6 lagged variables, the 
performance of the networks begins to deteriorate. Figure 10 reinforces our earlier 
assertion that about a week of trading session contains all the information an 
autoregressive neural network requires to make an accurate one day volatility 
forecast. Moreover, if one insists on including excess lagged variables in the 
autoregressive vector, one’s network performance deteriorates. Excess lagged 
variables do not have a neutral effect on performance, but a negative one. 
 
Figure 11 provides a chart of summation of 1/MSE across number of neurons in the 
hidden layer of a feed-forward back-propagation network structure. That is to say, for 
a given number of neurons in the hidden layer, we sum 1/MSE of all feed-forward 
back-propagation network structures with lagged variables from 1 to 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Summation of 1/MSE across neurons of feed-forward back-propagation 
network structures 
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Figure 11 shows that autoregressive neural networks need not be complex in terms 
of neurons in the hidden layer as well. The addition of redundant neurons not only 
hurts the performance of feed-forward back-propagation networks, but also 
consumes computational resources and time. We see, in Figure 11, that the 
accuracy gained by rendering a network more complex peaks with approximately 10 
neurons. The performance of feed-forward back-propagation networks as a function 
of neurons in the hidden layer shows a negative trend beyond 10 neurons, and 
hence, is unwarranted. 
 
 
6. Conclusions and further research 
 
We find strong evidence that autoregressive neural networks make one day volatility 
forecasts that are significantly more accurate than GARCH(1,1) model does. The 
superiority of autoregressive neural networks to GARCH(1,1) model is so profound 
that an overwhelming majority of the configuration we test, both of radial-basis-
function networks and feed-forward back-propagation networks, are found to be 
more efficient than GARCH(1,1) model is. 
 
Our research also suggests that, in India, the number of lagged variables one is 
advised to use in order to make one day volatility forecast using an autoregressive 
neural network is in the range of 5-6 trading sessions. If the researcher extends the 
autoregressive vector beyond the suggested range, the performance of the 
autoregressive neural network tends to deteriorate. 
 
The dataset used in our research includes very extreme events such as the 
announcement of the general election results in India on May 16th, 2009 - an event 
that triggered a leap of more than 17% in SENSEX Index - that significantly affected 
volatility. In these circumstances traditional models to forecast volatility usually fail. 
Our success to make accurate one day volatility forecasts under these 
circumstances proves the resilience and effectiveness of autoregressive neural 
networks. Many market participants are reluctant to adopt neural networks as a 
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statistical tool. The main reason being the fact that neural networks do not provide 
an easy to interpret causal relationship between independent and dependent 
variables. The absence of an intuitive interpretation also means that market 
participants do not know under which circumstances neural networks may fail, and 
therefore, they are deterred from using them. 
 
In this paper, we limit our investigation to autoregressive neural networks. However, 
one may choose to test the information regarding volatility that other variables, 
besides lagged variables, may hold. If other variables do hold more information that 
is not contained in lagged variables, then we expect the accuracy of neural networks, 
which take these additional variables as inputs, to better the performance we 
achieve. 
 
Another avenue of further research is to test longer term volatility forecasts. When 
we test and evaluate our autoregressive neural networks, we make use of merely 
one day volatility forecasts. However, an intriguing avenue to explore is the efficacy 
of autoregressive neural networks in building a volatility term structure. Our results 
convince us that autoregressive neural networks have a high ability to predict the 
very near future, but how farsighted autoregressive neural networks are, we do not 
investigate in this paper. 
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