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Arithmetic Algorithms for Ternary Number
System

Subrata Das, Parthasarathi Dasgupta and Samar Sensarma

Abstract—The use of multi-valued logic in VLSI circuits
can reduce the chip area significantly. Moreover, there are
several additional advantages of using multi-valued logicin
VLSI over the conventional Binary logic, such as energy
efficiency, cost-effectiveness and so on. It has been shown
that Base-3 number system is nearly optimal for computation.
This paper is composed of two parts. In the first part of
this paper we have studied some existing logical operation
on ternary number system. We have also discussed some
of the existing arithmetic operations using ternary number
system. Some new algorithms for arithmetic operations have
also been proposed, and shown to be quite efficient in terms
of time complexity. In the second part of this paper we
have discussed a special class of Boolean function, known as
Rotation Symmetric Boolean Function in base-3. Algorithms
for Rotation symmetric Boolean Function in base-3 is also
proposed in this paper.

Index Terms—Ternary number, trit, arithmetic, 3-valued
logic,VLSI.

I. I NTRODUCTION

Numbers are counted in tens by human beings simply
because we use our ten fingers for counting. Digital compu-
tations are based on binary logic because of digital devices
having two states: ON and OFF. There are countably infinite
number of ways to represent numbers. The number of digits
used to represent numbers and the size of the base are two
parameters to select a number system. For a unary number
system only one symbol is required to represent a number
but the number of digits required is high. On the other
hand if the value of base is high, then less number of
digits is required to represent a number, and the number
of different symbols required is large. In order to have an
optimal number system the product of base(b) and width
(w) (i.e. number of symbols used to represent a number)
should be minimized [1] wherebw is a constant. It is found
that for optimal result the base should be chosen ase. As
3 is the integer nearest toe base3 i.e. ternary number
system is a good choice for representing a number.Ternary
logic has some advantages over traditional binary logic. The
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information content can be increased by using ternary logic
instead of using conventional binary logic. It is expected
that the use of ternary logic in VLSI implementations
should be energy efficient and cost effective[14]. Moreover,
arithmetic operations can be performed at higher speed
compared to binary logic.
Rest of the paper is organized as follows. Section II reviews
some of the related recent works. Section III introduces
some of the basic terminologies to be used in subsequent
discussion. Section IV discusses the applications of ternary
logic in computer science specially in the field ofV LSI,
Computer Architecture andCodding theory. Section V
discusses different arithmetic algorithms for ternary number
system. Section VI discusses hardware implementation
of multiplication and division algorithms . Section VII
analyzes the performances of multiplication and division
algorithms. Section VIII discusses a special ofBoolean
Functionknown asRotation Symmetric Boolean Function
and different algorithms for generating the same. Finally,
Section IX concludes the chapter and briefly states the
future scopes of work.

II. L ITERATURE REVIEW

A detailed review on third base number systems and
the justification of the use of third base are reported in
[1]. Several advantages of using ternary logic(multi-valued
logic) over the traditional binary logic appear in [18]. A
survey on the development of the algebras and techniques
for the realization of three valued function are reported in
[19]. The design and implementation of a low power ternary
full adder is described in [7]. In [8], the authors represent
a novel method for defining, analyzing and implementing
the basic combinational circuit with minimum number
of ternary multiplexers along with a survey on ternary
switching algebra. A complete architecture, design and
implementation of 2-bit ALU slice are discussed in [9]. A
new type of transmission functions theory appear in [10].
Ternary mirror symmetrical number system is discussed
in [11]. This paper also discusses technical realization of
ternary symmetrical structure using binary logical elements
along with discussions on ternary Analog to Digital and
Digital to Analog converter, and introduces the concepts
of flip-flap-flop. In [13] a mixed binary-ternary number
system and its application in elliptic curve cryptosystem
are discussed.
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B − T −N D −N

00000 0
00001 1

00011 2
00010 3
00011 4
00111 5

00110 6
00111 7

00101 8
00100 9
00101 10
00111 11
00110 12

B − T −N D −N

00111 13
011 1 1 14

011 10 15
011 11 16

011001 17
01100 18

01101 19
01111 20

01110 21
01111 22

0101 1 23
01010 24

01011 25

TABLE I
BALANCED TERNARY NUMBERS AND CORRESPONDINGDECIMAL

NUMBER

III. PRELIMINARIES

In this section we discuss about some basic concepts of
ternary number system, ternary logic and ternary gates.

A. Ternary Number

Three different symbols0,1,2 are used to represent
ternary number system.In ternary system the term trit is
used to represent ternary digit One of the major issue is
how we can represent a negative number in ternary number
system. One easy solution is to use signed3′s complement
representation to represent negative ternary numbers.
3′s complement of any ternary number can be obtained as
3n−N whereN is the ternary number andn is the number
of trits. If the value of sign digit of a ternary number is0
or 1 then the number can be taken as a positive number
and if sign digit is2 then the the number is negative.
For exampleA = 02101, B = 11210 are two positive
numbers andC = 21020 is a negative number since it’s
sign trit is 2.

B. Balanced Ternary Number System

Now instead of using0, 1 and 2, an alternative repre-
sentation of the symbols may be as−1, 0 and 1 [2]. For
simplicity, the symbol used for -1 is1. Hereafter, we shall
use the notations -1 and1 to refer to the same value. The
ternary number system with this set of symbols is known as
a balanced ternary system [2]. Table I represents first few
balanced ternary numbers(B − T −N) and corresponding
decimal numbers(D−N). Some of the interesting proper-
ties of a balanced ternary number system include [2]:

1) The negative number is obtained by interchanging 1
and1.

2) The sign of a number is given by its most significant
nonzerotrit .

3) The operation of rounding off to the nearest integer
is identical to truncation.

C. Ternary Logic Gates

Logic AND,OR,NOT ,XOR,NAND,NOR operation
between two ternary variables and their truth table are
shown in Table II and Table V respectively. In gen-

A AND B = min(A,B) = A ∧B

A OR B = max(A,B) = A ∨ B

NOT (A) = A = 2−A

A XOR B = (A+ B) mod 3 = (A
⊕

B)

A NAND B = not(min(A,B)) = A ∧ B

A NOR B = not(max(A,B)) = A ∨B

TABLE II
TERNARY GATES

eral there are three ternary inverter known as negative
ternary inverter(NTI),standard ternary inverter(STI), pos-
itive ternary inverter(PTI)[14] these are defined in Ta-
ble III. Similarly ternaryNOR andNAND circuits can

InverterType Output

NTI Y0 = 2 if x = 0 and Y0 = 0 otherwise

STI Y1 = x = 2− x

PTI Y2 = 0 if x = 2 and Y0 = 2 otherwise

TABLE III
TERNARY INVERTERS

be defined in three different ways as shown in Table IV
and the corresponding truth table is shown in Table VI

Type Output

NTNOR Y0 = NTI(max(A,B)) = NTI(A ∨B)

STNOR Y1 = STI(max(A,B)) = A ∨ B

PTNOR Y2 = PTI(max(A,B)) = PTI(A ∨ B)
NTNNAND Y0 = NTI(max(A,B)) = NTI(A ∧B)

STNAND Y1 = STI(max(A,B)) = A ∧ B

PTNAND Y2 = PTI(max(A,B)) = PTI(A ∧ B)

TABLE IV
TERNARY NOR AND NAND

a b YA∧B YA∨B (A) YA
⊕

B Y
A∧B

Y
A∨B

0 0 0 0 2 0 2 2
0 1 0 1 2 1 2 1
0 2 0 2 2 2 2 0
1 0 0 1 1 1 2 2
1 1 1 1 1 2 1 1
1 2 1 2 1 0 1 0
2 0 0 2 0 2 2 0
2 1 1 2 0 0 1 0
2 2 2 2 0 1 0 0

TABLE V
TRUTH TABLE FOR TERNARY GATES



3

a b Y NOR
0

Y NOR
1

Y NOR
2

Y NAND
0

Y NAND
1

Y NAND
2

0 0 2 2 2 2 2 2
0 1 0 1 2 2 2 2
0 2 0 0 0 2 2 2
1 0 0 1 2 2 2 2
1 1 0 1 2 0 1 2
1 2 1 2 1 0 1 0
2 0 0 0 0 2 2 2
2 1 0 0 0 0 1 2
2 2 0 0 0 0 0 0

TABLE VI
TRUTH TABLE FOR TERNARY NOR AND NAND GATES

D. Ternary Full Adder

The following Table VII is the truth table of full adder.
The expression forSUM is A

⊕
B
⊕

C.

a b cin cout sum

0 0 0 0 0
0 0 1 0 1
0 0 2 0 2
0 1 0 0 1
0 1 1 0 2
0 1 2 1 0
0 2 0 0 2
0 2 1 1 0
0 2 2 1 1
1 0 0 0 1
1 0 1 0 2
1 0 2 1 0
1 1 0 0 2
1 1 1 1 0
1 1 2 1 1
1 2 0 1 0
1 2 1 1 1
1 2 2 1 2
2 0 0 0 2
2 0 1 1 0
2 0 2 1 1
2 1 0 1 0
2 1 1 1 1
2 1 2 1 2
2 2 0 1 1
2 2 1 1 2
2 2 2 2 0

TABLE VII
TERNARY FULL ADDER

The expression for carry is
s ∧ ((A ∧B ∧ C) ∨ (A ∧B ∧ C) ∨ (A ∧B ∧ C)
∨(A ∧B∧)) ∨ (A ∧B ∧ C)

IV. A PPLICATION OFTERNARY LOGIC IN COMPUTER

SCIENCE

In the section we discuss application of ternary logic in
different fields of computer science.

A. Application of ternary system in VLSI

There are several advantages of using ternary logic in
VLSI circuits over the conventional Binary logic. For a
fixed number of lines for transmitting information it is
obvious that more information can be transmitted using

ternary logic [14]. With the improvement of fabrication
process the devices are scaled down but the scaling rate of
interconnect is not same as that of the devices. As a result
almost60% of path delay is due to interconnects [3]. In a
VLSI chip almost60% to 70% area is covered with active
devices and rest of the area has interconnects. This area
leads to performance degradation [3]. Using ternary logic
the number of interconnections can be reduced to1

log3

2

[20].
An energy efficient digital system can be designed using
ternary logic as the complexity of interconnects and chip
area can be reduced using this logic [14][15]. In electri-
cal circuits power dissipation is mainly due to dynamic
switching and current, and sub-threshold leakage current.
About80% of the total power is dissipated due to switching
activity [16]. Average Power dissipation due to switching
activity is given byPavg =1

2V
2
ddCf ,whereVdd is the supply

voltage,C is the load capacitance andf is the frequency of
operation. For aperiodic signals the frequency of operation
can be estimated by the average number of signal transitions
per unit time[16]. Using asynchronous ternary logic signal
system the dynamic power is reduced toPdyn =(Vdd

2 )2Cf

[17]. In this system, for the communication line at voltage
level Vdd

2 , it is in idle state. Thus in order to transmit one
trit of information the voltage level is either high atVdd or
low at 0[17].

B. Application of Ternary logic in Computer Architecture

CPU is basically an instruction set processor.An in-
struction set defines the architecture of a processor.It is a
interface between program and resources.A program is a
sequence of instructions that performs a task.The quality
of a processor is judged by the quality of instruction set
and the quality of an instruction set is judged by the space
it required and obviously the time required to interpret
the instructions.Now suppose we are considering a64 bit
computer.
Now 340 < 264 < 341. ∴ 64−41

64 × 100%=35.93% space is
reduced in base3 computer in compare to base2 computer.

C. Application of Ternary logic in Codding Theory

When we transmit information(i.e. a set of
symbolss1, s2, ..., sq) from here to there or from now
to then the the problem of representing the source alphabet
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symbolssi in terms of another system of symbols then
the main problem of representation is the following

1) How to represent the source symbols so that their
representation if far apart in some suitable sense. As
a result in spite of small changes(noise),the altered
symbols can be discovered to be wrong and even
possibly corrected.

2) How to represent the source symbols in a minimal
form for purposes of efficiency. The average code
length, L=

∑q
i=1 pili is minimized whereli is the

length of the representation of theith symbolsi.

In some early days one variable length ternary code
was popularly used for communication known as Morse
code.Three different symbols of this code are dash(-),dot(.)
and space( ).The length of the high frequency alphabet such
as ”E” is small and that of low frequency alphabet such
as”J” is long. As a result the average length of the code
is reduced.[6]

V. A RITHMETIC OPERATION ONTERNARY NUMBER

In this section we discuss arithmetic operations of ternary
number systems such as shift operation, addition, subtrac-
tion, multiplication and division.

A. Shift Operation using balanced ternary number system

1) Arithmetic right shift operation.:In a given number
A havingn trits, let Rn−1 andR0 respectively denote the
most significant (MST ) and least significant trits (LST ).
Since in case ofbalanced ternary systemthe most signifi-
cant non-zerotrit represents the sign, after arithmetic right
shift the newMST becomes zero and the originalLST is
lost. If theLST of A is 1 then the arithmetic right shift of
A yields ⌊A

3 ⌋.
For example ifA = 1011 (i.e. 31 in decimal), then

arithmetic right shift we yield0101 (i.e. 10 in decimal).
If the LST of A is 1, then the arithmetic right shift ofA
yields ⌈A

3 ⌉. ConsiderA = 1011, (i.e. 29 in decimal) then
arithmetic right shift we get 0101(i.e. 10 in decimal). If the
LST of A is 0 then the arithmetic right shift yieldsA3 . If
A = 1010 (i.e. 30 in decimal) then arithmetic right shift we
get 0101(i.e. 10 in decimal).

2) Arithmetic left shift operation.:In arithmetic left-shift
operation of the numberA an overflowflip-flap-flop [2]
can be used to store theMST , and the newLST is 0.
Arithmetic left shift operation yieldsA × 3. For example
if A = 0101 (i.e. 10 in decimal), then arithmetic left-shift
operation yields01010 (i.e.30 in decimal). If theLST of A
is 1, then the arithmetic right shift ofA yields⌈A

3 ⌉. On the
other hand, ifA = 0101 (i.e. -10 in decimal), then arithmetic
left-shift operation yields01010 (i.e. -30 in decimal).

B. Shift Operation using conventional ternary number sys-
tem

1) Arithmetic right shift operation.:With this system
after arithmetic right shift operation(Ashr) LST is lost. If
theMST is 2 before shift operation then afterAshr it will

be2 otherwise afterAshr MST will be 0. If theLST is 1
or 2 then theAshr of a numberA yields ⌊A

3 ⌋.If the LST

is 0 thenAshr yields A
3 .

If A=2120(i.e. (−12)10) then Ashr yields 2212 (i.e.
(−4)10).If A=2121(i.e.(−11)10) then Ashr yields 2212
(i.e. (−4)10).
If A=1120(i.e. (42)10) then Ashr yields 0112 (i.e.
(14)10).If A=1121(i.e.(43)10) thenAshr yields 0112 (i.e.
(14)10).

2) Arithmetic Left shift operation.:With this system
after arithmetic left shift operation(Ashl) theLST become
zero. IfRn−1Rn−2 are00, 01 or 22 then afterAshl MST

is lost otherwise a onetrit f lip−flap−flop is needed to
store the initialMST .Arithmetic left shift operation yields
A× 3.
If A=121 (i.e. (16)10) then Ashl yields 1210 ((48)10).If
A=2121 (i.e. (−11)10) thenAshl yields221210 ((−33)10).
If A=2221 (i.e. (−2)10) thenAshl yields 2210 ((−6)10).

C. Addition and subtraction of balanced ternary numbers

1) Addition of two balanced ternary numbers:The fol-
lowing Table VIII illustrates some examples of additions
for the ternary number system. Each column corresponds
to a pair of trits to be added and a carrytrit . Thus, the total
number of possible columns would be33 = 27.

1 1 1 1 1 1 1 1 1 0 0

1 1 1 0 0 0 1 1 1 1 1
1 0 1 1 0 1 1 0 1 1 0

10 11 01 11 01 00 01 00 01 11 0 1

TABLE VIII
EXAMPLES OF ADDITION OF trits

A 1111(38) 1111(32) 1111(40) 1010(30)

B 1111(40) 1101(−37) 1111(40) 1111(−40)
A+B 10010(78) 0111(−5) 10001(80) 0101(−10)

TABLE IX
EXAMPLES OF ADDITION OF TWO 4 TRITS NUMBERS

Now using this table one can easily add twon trits
numbers. The following Table IX shows few example of
addition of two4 trits numbers.

2) Subtraction of two balanced ternary numbers:The
operation of Subtraction can be viewed simply as negation
of a number followed by addition.Few examples of subtrac-
tion between two4 trits numbers are shown in Table X.

A 1111(38) 1111(32) 1111(40) 1010(30)

−B 1111(−40) 1101(37) 1111(−40) 1111(40)
A−B 0011(−2) 10110(69) 0000(0) 10111(70)

TABLE X
EXAMPLES OF SUBTRACTION BETWEEN TWO4 TRITS NUMBERS
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D. Addition and subtraction of two conventional ternary
numbers

For addition of conventional ternary numbers we have to
use the truth table for full adder as shown in Table VII.For
substation(A-B) we have to take 3’s complement of B and
add it to A.3’s complement of a number can be easily
obtained by interchanging 0 and 2 followed by add 1 to
it.
The Figure 1 shows few examples of addition and subtrac-
tion of two conventional ternary numbers.

Fig. 1. Addition and subtraction of conventional ternary numbers

VI. H ARDWARE ALGORITHM FOR MULTIPLICATION

AND DIVISION OF TWO BASE-3 NUMBERS

In this Section we describe multiplication and division
of two ternary numbers.

A. Multiplication Algorithm using conventional ternary
numbers

A ternary number with a stream of2 can be expressed as
3m+1 − 3k where k is the starting position of2 andm is the
ending position of2 and counting is start from number0.As
for example2220 = 34 − 31.and2221 = 34 − 31 + 1.
2022 = 34−33+32−30.2122 = 34−33+32×1+32−30.
If the number contain only0 and 1 as symbols then we
take the usual expression

∑n−1
i=0 ai3

i whereai = 0, 1;
Arithmetic left shift of a number is three times the num-
ber.So at the time of multiplication if the multiplier contains
stream of2s we simply Arithmetically left shift the multi-
plicand.
For multiplication we store multiplicand in a registerBR,
say, and Multiplier in registerQR, say. Initially, we assume
that product is zero. This is known as thepartial product,
where apartial product is obtained by multiplying the
multiplicand with one trit of the multiplier. Now, if the trit
of the multiplier is1 then multiplicand is added with the
partial product to generate a new partial product. Now the

Start


BR=Multiplicand

QR
=Multiplier


AC=0,
Sc
=
n


QR
[0]

=?
 QR
[-1]


=?


2


AShr


AC=AC+BR


AC=AC-BR


1 or 0
2
QR
[-1]

=?


1


AC=AC+BR


2


AShr


AC=AC+BR


0 or 1


Shift Right


QR
[-1]=

?


0


AC=AC+BR


2


AShr
Shift Right


0 or 1


Sc
=
Sc
-1


Sc
=0?


Result in AC &
 QR
 End


N0


Yes


Fig. 2. Flowcharts for multiplication Algorithm for two conventional
ternary numbers

next trit of the multiplier is multiplied with multiplicand
and the product is shifted by one trit to the left and added
with the partial product to generate a new partial product.
In case of hardware multiplication (using registers), instead
of shifting themultiplicand× c (wherec is a trit of the
multiplier to the left we shift the partial product one trit to
the right [21] [22].
The multiplication algorithm is based on the following rules

1) if QR[0]QR[−1] = 22 or 00 then partial product is
arithmetically right shifted.

2) QR[0]QR[−1] = 20 or 21 then multiplicand is
subtracted from from the partial product followed by
AShr.

3) QR[0]QR[−1] = 00 or 01 then the partial product is
simply right shifted.

4) QR[0]QR[−1] = 02 then multiplicand is added with
the partial product followed byAShr.

5) QR[0]QR[−1] = 10 or 11 then multiplicand is added
with the partial product followed by simple right shift.

6) QR[0]QR[−1] = 12 then multiplicand is added twice
to the partial product arithmetic right shift.

The entire multiplication operation is shown in Figure 2
and the example for multiplication shown in Figure 3.
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Fig. 3. Example of multiplication of two conventional ternary numbers

B. Multiplication Algorithm using balanced ternary num-
bers

For multiplication we store multiplicand in a register
BR, say, and Multiplier in registerQR, say. Initially,
we assume that product is zero. This is known as the
partial product, where apartial product is obtained by
multiplying the multiplicand with one trit of the multiplier.
In simple multiplication, if the bit of the multiplier is
1 then multiplicand is added with the partial product to
generate a new partial product. Now the next bit of the
multiplier is multiplied with multiplicand and the product
is shifted by one trit to the left and added with the partial
product to generate a new partial product. But in case of
hardware multiplication (using registers), instead of shifting
the multiplicand× c (wherec is a trit of the multiplier,
having value 0 or 1 or1) to the left we shift the partial
product one trit to the right. This operation has been defined
for trits in [2].The entire operation is shown in Figure 4.

Lemma 1. If a and b are two ternary numbers such that
a is minimum andb is maximum thenb < 3× a.

Proof: Let a=10...0=3n−1 andb=222...2=2×
∑n−1

i=0 3i.

Now a
b
=2×

∑
n−1

i=0
3i

3n−1 =2 + 2×
∑

n−2

i=0
3i

3n−1 =2 + (
∑

n−1

i=1
3i−1)

3n−1 .

Now 1 <
∑

n−1

i=1
3i

3n−1 < 2. ∴ a
b
< 3. ∴ b < 3× a.

C. Division Algorithm using conventional ternary number
system

In order to divide a number by another, we store the
dividend in registerQ and divisor in registerM . During

START


BR=MULTIPLICAND

QR
=MULTIPLIER

AC=0,SC=
n
,ER=0


QR
[0]=?


QR
[0]=?


Sc
=0?


AC=AC+BR


AC=AC-BR


AShr
(ER,AC,
QR
)


Sc
=
Sc
-1


RESULT in AC &
 QR


STOP


1 or 0


0
 1


-1


Yes


No


Fig. 4. Flow chart for multiplication of two balanced ternary number

division we take a set of trits of dividend and if it has a
value less than that of the divisor, then we have to take
another trit of dividend and insert 0(zero) in the quotient.
On the other hand, if the value of a set of trits of dividend is
greater than or equal to the value of the divisor, then either1
or 2(using lemma 1) is inserted in the quotient. For this we
have to subtract the divisor from the trits of the dividend;
if the result is negative we put1 in the quotient and add
divisor to the result to restore those trits of dividend. This
is known asrestoration of the dividend. If the result of
subtraction is positive then quotient is2.The entire division
operation is illustrated in the flow chart of Figure 5 .The
example for division using conventional ternary number
system is shown in Figure 6.

Lemma 2. If a and b are two balanced ternary numbers
such thata is minimum andb is maximum thenb < 3× a.

Proof: Let a=11...1=3n−1-
∑n−2

i=0 3i and

b=111...1=
∑n−1

i=0 3i. Now a
b
=

∑
n−1

i=0
3i

3n−1−
∑

n−2

i=0
3i

.

Now
∑n−2

i=0 3i < 3n−1-
∑n−2

i=0 3i. ∴ a
b
< 3. ∴ b < 3 × a.
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START


A=0,
Q
=Dividend,

M
=Divisor,Size=
 n


Left Shift (
AQ
)


A?


Set
Q
[0]=0
A=A-
M


A?


A=A-
M


A=A+
M
Set
 Q
[0]=1


A=A+
M


Set
 Q
[0]=2


Size=Size-1


Size

=0?


Quotient in
 Q

Remainder in R


End


-
Ve
+
Ve
 or 0


-
Ve
+
ve
 or 0


yes


No


Fig. 5. Flowcharts for Division Algorithm for two non negative numbers
using conventional ternary number system

D. Division Algorithm using balanced ternary number sys-
tem

The division of two nonnegative ternary numbers is
discussed in[21] and the flow chart for that algorithm is
shown in Figure 7.Here we describe the algorithm when
the dividend is negative.In this case instead of subtracting
the divisor from the set of trits of dividend is added with
the set of trits of dividend.If the result is positive0 is
inserted in the quotient and divisor is subtracted from the
result to get back the previous value. This is known as
restoration of dividend. If the result of addition between
divisor and set of trits of dividend is negative the either1
(i.e. − 1 in decimal) or 11 (i.e.is− 2 in decimal)
(using lemma 2)is inserted in the quotient.For this if the
result of addition is negative then first1 is inserted in the
quotient then again the divisor is added with the partial
result and if the result of this addition is negative or0

Here we divide (101211)
3 
by (201)
3
 
i.e. 292 by 192 in decimal. 
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Fig. 6. Example for Division Algorithm for two non negative numbers
using conventional ternary number system

then 1 is inserted in the quotient other wise divisor is
subtracted from the last result to restore back the previous
result.When all the trits are encountered then if the value of
registerA is negative then divisor is added withA and the
result store in registerQ is decremented by1.The division
operation is illustrated in the flow chart of Figure 8 and
the corresponding example is shown in Figure 9 . Now
using these two algorithms division operation can be easily
performed for both negative and nonnegative dividend.

VII. PERFORMANCEANALYSIS

A. Multiplication Algorithm

In case of multiplication algorithm using conventional
ternary number system the complexity of the algorithm will
be as follows

1) If the multiplier is 222...2 then number of addi-
tion/subtraction operation is only one and number
of shit operation isn.So Complexity in this case is
O(n).

2) If the multiplier is 000...0 then number of addi-
tion/subtraction operation is zero and number of shit
operation isn.So Complexity in this case isO(n).

3) For any other multiplier the number of addi-
tion/subtraction operation isO(n) and number of
shit operation isO(n).So Complexity in this case is
O(n2).
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Fig. 9. Example for Division Algorithm when quotient is negative

However, for multiplication using balanced ternary number
system the complexity isO(n2). Moreover, using conven-
tional number system maximum range ofn-trit numbers
is 3n − 1 but in case of balanced ternary number system
maximum is 3n−1 − 1.The advantage of using balanced
ternary number system subtraction operation can be easily
performed.

B. Division Algorithm

The complexity of the division algorithm for both con-
ventional and balanced ternary number system isO(n2).
However, in case of balanced ternary number system some
extra trits in QR (flip-flap-flop) may be required when
2(11) is inserted into quotient.

VIII. R OTATION SYMMETRIC BOOLEAN FUNCTION IN

BASE-3

Rotation symmetric Boolean functions (RSBF ) have
huge application in cryptosystem. A Boolean function is
symmetric if it is invariant under any permutation of its
variables [4]. A Boolean functionf(.) of n variables is
rotation symmetric if and only iff(xn−1, xn−2, . . . , x0) =
f(xn−2, xn−3, . . . , x0, xn−1) = f(x0, xn−1, . . . , x1). Now
rotation symmetric Boolean functions are a class of
Boolean functions which have good combination of non-
linearity, co-relation immunity, balancedness and algebraic
degree [12]. A Boolean function is applicable to cryp-
tography if it has the above mentioned properties. Now
since base three is optimal, it is quite expected that the
Boolean function in GF(3) [2] is better. In this paper,
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we propose an algorithm to generate the partitions of
rotation symmetric Boolean functions where apartition
is a set of a trit string and the rotations of this string,
such that the output of each of these strings as input
provides the same output.Generation of these functions
are known to be combinatorially explosive. It is known
that, forn-variableRSBF functions, the associated set of
input bit strings can be divided into a number of subsets
(called partitions), where every element of a subset can
be obtained by simply rotating the string of bits of some
other element of the same set.Formula for generating the
partitions for Rotation Symmetric Boolean Function in
any basegn,p = 1

n

∑
t|n φ(t)p

n

t [5]. Figure 10 shows the
partitions generated forn = 4.

Definition 1. If a Boolean functionf(xn−1, xn−2, . . . , x0)
exhibits rotation symmetry, then the period over which its
exhibits this property is defined to be the cycle length for
the function.

{(0000)} partition 0
{(0001) (0010) (0100) (1000)}partition 1
{(0002) (0020) (0200) (2000)}partition 2
{(0011) (0110) (1101) (1011)}partition 3
{(0012) (0120) (1200) (2001)}partition 4
{(0021) (0210) (2100) (1002)}partition 5
{(0022) (0220) (2200) 2002} partition 6
{(0101) (1010)} partition 7
{(0102) (2010) (0201) (1020)}partition 8
{(0111) (1110) (1101) (1011)}partition 9
{(0112) (1120) (1201) (2011)}partition 10
{(0121) (1210) (2101) (1012)}partition 11
{(0122) (1220) (2201) (2012)}partition 12
{(0202) (2020)} partition 13
{(0211) (2110) (1102) (1021)}partition 14
{(0212) (2120) (1202) (2021)}partition 15
{(0221) (2210) (2102) (1022)}partition 16
{(0222) (2220) (2202) (2022)}partition 17
{(111111)} partition 18
{(1112) (1121) (1211) (2111)}partition 19
{(1122) (1221) (2211) (2112)}partition 20
{(1212) (2121)} partition 21
{(1222) (2221) (2212) (2122)}partition 22
{(2222)} partition 23

Fig. 10. Partitions ofRSBF for n = 4

The proposed algorithm for the generation of partitions
of RSBFs in GF(3) is given below. This algorithm gen-
erates the starting string of each partition and and total
numbers of partitions. We use the symbols0, 1, 2 to
represents the numbers instead of using0,1,(1). Table 2
shows the number of partitions for different values ofn

(number of trits). A formal description of the proposed
algorithm is given in Figure 11.

1) Correctness of the proposed algorithm genpartA:As
the successive numbers are being considered, thus if the

number of rotations of any number is less than the number
of trits in that number, then the number must have appeared
before in some element of some partition.

A. An improved Algorithm

In this paper we propose two algorithms for generating
the partition of RSBF in GF (3).Algorithm genpartB
and genpartC as described below is an improved version
of algorithm genpartA and the formal description of the
algorithm is shown in Figure 12.

Lemma 3. If a is a ternary number then right rotation of
a and a+ 3 yield successive numbers.

Proof: Let, a=(an−1an−2...a1a0)3
b=a+ 3=(bn−1bn−2...b1b0)3
ROR of a by 1 trit=(a0an−1an−2...a2a1)3 and
ROR of b by 1 trit=(b0bn−1bn−2...b2b1)3
=3n−1×b0+3n−2×bn−1+3n−3×bn−2+ ...+31b2+30b1
= 3nb0+(3n−1bn−1+3n−2bn−2+...+32b2+31b1)

3

=3nb0+(3n−1bn−1+3n−2bn−2+...+32b2+31b1+b0−b0)
3

=3nb0+(3n−1bn−1+3n−2bn−2+...+32b2+31b1+30b0)−b0
3

= 3na0+((3n−1an−1+3n−2an−2+...+32a2+31a1+30a0)+3)−a0

3 (since
b=a+3 andb0 = a0)
=3na0+3n−1an−1=+3n−2an−2+...+32a2+31a1+30a0+3−a0

3
=3n−1a0 + 3n−2an−1 + 3n−3an−2 + ...+ 31a2 + 30a1 + 1
=ROR of a by 1 trit

Lemma 4. Two trits ROR of {(0n−222)3 + (p × 9)10}
and {(0n−222)3 + ((p + 1) × 9)10} yields successive
numbers.wherep is is any integer including0.

Proof: Two trits ROR of {(0n−222)3 + ((p + 1) ×
9)10}-two trits ROR of {(0n−222)3 + (p × 9)10} =two
trits ROR of {(0n−222)3 + (p× 9)10} +two trits ROR

of {910}-two trits ROR of {(0n−222)3 + (p× 9)10}
=two trits ROR of {(9)10}
=two trits ROR of {(100)3}
={(001)3}
Hence the proof.

1) Correctness of the proposed algorithm genpartB:

1) From lemma 3 it is obvious that ifa anda + 3 are
two ternary numbers then ROR ofa anda+3 yields
successive numbers.Now1 trit ROR of 0n−111 is
110n−1 and1trit ROR of 02n−211 is 102n−2.
Again 02n−211=2× 3n−2+2× 3n−3+ ...+2× 31+
1× 30

=1 + (m− 1)× 3 wherem=3n−2 − 1.
So as soon as the starting string of a partition become
02n−211 using lemma 3 it is obvious that the algo-
rithm generates all the number between110n−1 and
11012n−2.So the number between110n−1 11012n−2

can’t be the starting string of any partition and can
be skipped.

2) 112n−1 and201n−1 are two successive numbers.Now
lemma 3 indicates that we have all the orbits hav-
ing elements from201n−1 and 21112n−2.So when
the starting string of a orbit becomes112n−1 next
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
gn 3 6 11 24 51 130 315 834 2195 5934 16107 44368 122643 341802 956635 2690844

TABLE XI
NO. OF ORBITS FOR1st 16 VARIABLES

Algorithm genpartA

Data structures: Counter = Number of partitions, Answer[]=Starting string of partition
Input: Number of trits
Output: Starting string of every orbit and total number of orbits

Step 1: Initialization: Counter=0;
Step 2:Answer[0] = 0n;
Step 3: Counter=counter +1;
Step 4: Consider the trit-strings corresponding to the next number store its decimal form in Answer[].
Step 5: While trit-string corresponding tos = {2n} do
Step 6: While a numberp is less than of any elementpc of that particular orbit then goto step 8.
Step 7: Take the trit-string corresponding tos as the starting string of the next orbit
Step 8: Take the trit-string corresponding to next number
Step 9: End while
Step 10:End While
Step 11: End

Fig. 11. Generation of partitions of Rotation symmetric Boolean function in GF(3)

Algorithm genpartB()

Data structures: Counter = Number of partitions, Answer[]=Starting string of partition
Input: Number of trits
Output: Starting string of every orbit and total number of orbits

Step 1: Initialization: Counter=0;
Step 2:Answer[0] = 0n;(*an means a string ofn trits*)
Step 3: Counter=counter +1;
Step 4: Consider the trit-strings corresponding to the next number store its decimal form in Answer[].
Step 5: While trit-string corresponding tos = {112n−1} do
Step 6: While a numberp is less than of any elementpc of that particular orbit then goto step 9.
Step 7: If the next number becomes110n−1 then next trit string must be greater than11012n−2

Step 8: Take the trit-string corresponding tos as the starting string of the next orbit
Step 9: Take the trit-string corresponding to next number
Step 10: Counter=counter+1
Step 11: End while
Step 12: End While
Step 13:Counter=Counter+1
Step 14:Answer=2n
Step 15: End

Fig. 12. Generation of partitions of Rotation symmetric Boolean function in GF(3)

starting string must be greater than21112n−2.Now
21112n−2 and2 trit ROR of 0n−222 are two succes-
sive numbers.Now Decimal of(112n−1)3=decimal
of (0n−222)3+(m − 1) × 9,where m is an inte-
ger.Now two trits ROR of112n−4 is 22112n−2. ∴

using lemma 4 it is easy to understand that all the
numbers between220n−3 and 22112n−2 appears in
some partitions.Using similar types of observation it
can be easily shown that if the starting string of any
partition become112n−1 then all the numbers before
2n−11 appears in some partition.So the next starting
string must be2n.

B. Another Improved Version of the Algorithm genpartB

A still improved version of algorithm is shown in Figure
13.

1) Correctness of the algorithm genpartC():The cor-
rectness of the algorithm genpartC can be easily understood

from correctness of algorithm genpartA and genpartB.

C. Performance analysis of the algorithms

The complexity of the above algorithm is©(3n). Since
the formula for number of partitions is exponential, the
time complexity of the above algorithm is inherently
exponential. But actual number of comparisons are
different in different algorithms.
For the algorithm genpartA total number of comparison
is 3n − 1 . For the algorithm genpartB total number of
comparison is3n − 1-A-B.
A={3n-
(3n−1 + 2× 3n−2 + 2× 3n−3 + ...+ 2× 31 + 2× 30)}
B={(3n−1 + 2× 3n−3 + 2× 3n−4 + ...+ 2× 31 + 2× 30)-
3n−1}. For the third algorithm total number of comparison
is much less than that of the previous two algorithms.Here
total number of comparison just few more than the number
of partition ofRSBF .
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Algorithm genpartC()

Data structures: Counter = Number of partitions, Answer[]=Starting string of partition
Input: Number of trits
Output: Starting string of every orbit and total number of orbits

1. Initialization: Counter=0,number1=0n−111 and number2=0n−121;
2. Answer[0] = 0n; (*an means a string ofn trits*)
3. Counter=counter +1;
4. while trit-string corresponding tos = {112n−1} do
5. number1=number1+3 and number2=number2+3
6. While the starting of any partition(i.e. number1 and number2) is less than any element of the particular orbit then goto step 8
7. If the next number becomes{110n−1} then number1={11012n−2 + 1} and number2={11012n−2 + 2}
8. Take the trit-string corresponding to number1=number1+3 and number2=number2+3
9. Answer[counter++]=number1 and Answer[counter++]=number2
10.Endwhile
11. counter=counter+1
12.Answer[counter]={2n}
13.End

Fig. 13. Generation of partitions of Rotation symmetric Boolean function in GF(3)

IX. CONCLUSION

In this paper we discuss few algorithms for arithmetic
(addition, multiplication, division and arithmetic shift) op-
erations in the conventional and balanced ternary num-
ber systems. Some new algorithms have been proposed
and their time-complexity analysis have been discussed.
Algorithms for Rotation Symmetric Boolean Functionis
also proposed in this paper. There are ample scopes of
further work in this number system such as using them
in cryptographic systems, exploring their opportunities in
efficient power management in VLSI circuits, and so on.
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