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Arithmetic Algorithms for Ternary Number
System

Subrata Das, Parthasarathi Dasgupta and Samar Sensarma

Abstract—The use of multi-valued logic in VLSI circuits information content can be increased by using ternary logic
can reduce the chip area significantly. Moreover, there are instead of using conventional binary logic. It is expected
several additional advantages of using multi-valued logidn that the use of ternary logic in VLSI implementations

VLS| over the conventional Binary logic, such as energy - .
efficiency, cost-effectiveness and so on. It has been showrFhould be energy efficient and cost effective[14]. Morepver

that Base3 number system is nearly optimal for computation. arithmetic operations can be performed at higher speed
This paper is composed of two parts. In the first part of compared to binary logic.

this paper we have studied some existing logical operation Rest of the paper is organized as follows. Section Il reviews
on terary number system. We have also discussed somegome of the related recent works. Section Il introduces

of the existing arithmetic operations using ternary number f the basic t inologies to b di b i
system. Some new algorithms for arithmetic operations have SOME€ OF the DasIC tlerminciogies 10 be used in subsequen

also been proposed, and shown to be quite efficient in terms discussion. Section IV discusses the applications of tgrna
of time complexity. In the second part of this paper we logic in computer science specially in the field BiLS1,

have discussed a special class of Boolean function, known asComputer Architecture andCodding theory. Section V
Rotation Symmetric Boolean Function in base-3. Algorithms  giscy sses different arithmetic algorithms for ternary bem
for Rotation symmetric Boolean Function in base-3 is also : . . .
proposed in this paper. system._ Secyon VI dlgc_u_sses har_dware |mple_mentat|on
of multiplication and division algorithms . Section VII
analyzes the performances of multiplication and division
algorithms. Section VIII discusses a special Bdolean
Functionknown asRotation Symmetric Boolean Function
|. INTRODUCTION and different algorithms for generating the same. Finally,
Numbers are counted in tens by human beings simpBgction IX concludes the chapter and briefly states the
because we use our ten fingers for counting. Digital compiyture scopes of work.
tations are based on binary logic because of digital devices
having two states: ON and OFF. There are countably infinite
number of ways to represent numbers. The number of digits
used to represent numbers and the size of the base are two
parameters to select a number system. For a unary number
system only one symbol is required to represent a numbeA detailed review on third base number systems and
but the number of digits required is high. On the othdghe justification of the use of third base are reported in
hand if the value of base is high, then less number b. Several advantages of using ternary logic(multi-ealu
digits is required to represent a number, and the numbegic) over the traditional binary logic appear in [18]. A
of different symbols required is large. In order to have agurvey on the development of the algebras and techniques
optimal number system the product of bégeand width for the realization of three valued function are reported in
(w) (i.e. number of symbols used to represent a numbéd9]. The design and implementation of a low power ternary
should be minimized [1] wher&” is a constant. It is found full adder is described in [7]. In [8], the authors represent
that for optimal result the base should be chosen.as a novel method for defining, analyzing and implementing
3 is the integer nearest te base3 i.e. ternary number the basic combinational circuit with minimum number
system is a good choice for representing a number.Tern@fyternary multiplexers along with a survey on ternary

logic has some advantages over traditional binary logie. TRwitching algebra. A complete architecture, design and
implementation of 2-bit ALU slice are discussed in [9]. A
Subrata Das is with the Department of Information Technplog neaw type of transmission functions theory appear in [10]_
Academy of Technology,Aedconagar, Hooghly,India. . . - .
E-mail: dsubrata.mt@gmail.com Ternary mirror symmetrical humber system is discussed
Parthasarathi Dasgupta is with the Dept. of MIS group,imdisstitute  in [11]. This paper also discusses technical realization of

of Management Calcutta,India. ternary symmetrical structure using binary logical eletaen
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Samar Sensarma is with the Dept. of Computer Science andéargig along with discussions on ternary Analog to Digital and
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E-mail:sssarma2010@gmail.com. of flip-flap-flop In [13] a mixed binary-ternary number
This paper is an extended version of the paper [22] system and its application in elliptic curve cryptosystem

are discussed.



B-T—-N|D-N B-T-N|D-N ;

— S 0TI 3 C. Ternary Logic Gates
00001 1 01111 14 Logic AND,OR,NOT ,XOR,NAND,NOR operation
00011 2 8% %(13 12 between two ternary variables and their truth table are
00010 3 i i
00T : 017001 = shown in Table Il and Table V respectively. In gen
00111 5 01100 18
00110 6 01101 19 )
00111 7 01111 20 A AND B =min(A,B) = ANB
00101 8 01110 21 A OR B=maz(A,B)= AVB
00100 9 01111 22
00101 10 0101 1 23 NOT (A)=A=2—A
00111 11 01010 24
00110 12 01011 25 A XOR B=(A+ B) mod 3= (A B)

TABLE | A NAND B =not(min(A,B)) = AAB

BALANCED TERNARY NUMBERS AND CORRESPONDIN®ECIMAL
NUMBER A NOR B = not(maxz(A,B)) =AV B
TABLE Il
TERNARY GATES

Ill. PRELIMINARIES

In this section we discuss about some basic concepts@@l there are three ternary inverter known as negative

ternary number system, ternary logic and ternary gates. ternary invertefN'7'I),standard ternary invertg¥7T'I), pos-
itive ternary invertefPT1)[14] these are defined in Ta-

ble 11l. Similarly ternary NOR and NAN D circuits can
A. Ternary Number

InverterType Output
Three different symbolg),1,2 are used to represent g;{ Yo=2 if x;‘) 2”d2Y0:0 otherwise
. 1 = Tr = — X
ternary number system.In ternary system the term trit |s———; Yo =0 i 2=2 and Yy =2 olherwise

used to represent ternary digit One of the major issue 15
how we can represent a negative number in ternary number TABLE IIl
system. One easy solution is to use sigfisdcomplement TERNARY INVERTERS
representation to represent negative ternary numbers.

3's complement of any ternary number can be obtained as ) ) ) )
3" _ N whereN is the ternary number andis the number be defined in three different ways as shown in Table IV

of trits. If the value of sign digit of a ternary numberds and the corresponding truth table is shown in Table VI
or 1 then the number can be taken as a positive number,

. L ; . T Outpul

and if sign digit is2 then the the number is negative. NT]y\%R Yo = NTI(max(Xf f;@‘) —NTI(AV D)

For exampleAd = 02101, B = 11210 are two positive STNOR Y1 = STI(maz(A, B)) = AV B

numbers and” = 21020 is a negative number since it's PTNOR Y = PTI(max(A, B)) = PTI(AV B)

sign trit is 2 NTNNAND | Yo = NTI(maz(A, B)) = NTI(A A B)
' STNAND Y1 = STI(maxz(A, B)) = AN B

PTNAND | Ys = PT1(maz(A, B)) = PTI(AA B)
B. Balanced Ternary Number System TABLE IV

. . ) TERNARY NORAND NAND
Now instead of usind), 1 and 2, an alternative repre-

sentation of the symbols may be ad, 0 and1 [2]. For
simplicity, the symbol used for -1 is. Hereafter, we shall
use the notations -1 andto refer to the same value. The
ternary number system with this set of symbols is known as
a balanced ternary system [2]. Table | represents first few
balanced ternary numbef8 — T'— N) and corresponding
decimal number® — N). Some of the interesting proper-
ties of a balanced ternary number system include [2]:

~
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1) The negative number is obtained by interchanging
and1.

2) The sign of a number is given by its most significant
nonzerotrit.

3) The operation of rounding off to the nearest integer
is identical to truncation.
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TABLE V
TRUTH TABLE FOR TERNARY GATES



a | b | YNOF | YNOR | yNOR | yNAND | yNAND | yNAND
0]0 2 2 2 2 2 2
011 0 1 2 2 2 2
0 ]2 0 0 0 2 2 2
110 0 1 2 2 2 2
111 0 1 2 0 1 2
112 1 2 1 0 1 0
210 0 0 0 2 2 2
2 11 0 0 0 0 1 2
212 0 0 0 0 0 0
TABLE VI

TRUTH TABLE FORTERNARY NORAND NAN D GATES

D. Ternary Full Adder ternary logic [14]. With the improvement of fabrication
The following Table VII is the truth table of full adder. Process the devices are scaled down but the scaling rate of
The expression foSUM is A B C. interconnect is not same as that of the devices. As a result

almost60% of path delay is due to interconnects [3]. In a
VLSI chip almost60% to 70% area is covered with active
devices and rest of the area has interconnects. This area
leads to performance degradation [3]. Using ternary logic
the number of interconnections can be reduceg—tg)[ZO]

An energy efficient digital system can be deS|gned using
ternary logic as the complexity of interconnects and chip
area can be reduced using this logic [14][15]. In electri-
cal circuits power dissipation is mainly due to dynamic
switching and current, and sub-threshold leakage current.
About80% of the total power is dissipated due to switching
activity [16]. Average Power dissipation due to switching
activity is given byP,,, = VddC f.whereV,, is the supply
voltage,C is the load capamtance arfds the frequency of
operation. For aperiodic signals the frequency of openatio
can be estimated by the average number of signal transitions
per unit time[16]. Using asynchronous ternary logic signal
system the dynamic power is reduceditg,, :(%)QCf

[17]. In this system, for the communication line at voltage
level % it is in idle state. Thus in order to transmit one
trit of information the voltage level is either high &4 or

low at O[17].
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TABLE VI B. Application of Ternary logic in Computer Architecture

TERNARY FULL ADDER . . . . .
CPU is basically an instruction set processor.An in-

struction set defines the architecture of a processor.lt is a

The expression for carry is interface between program and resources.A program is a
SA(AANBAC)V(ANBAC)V(AANBAC) sequence of instructions that performs a task.The quality
V(AABA)V(AABAC) of a processor is judged by the quality of instruction set

and the quality of an instruction set is judged by the space
IV. APPLICATION OFTERNARY LOGIC IN CoMpuTER It required and obviously the time required to interpret
SCIENCE the instructions.Now suppose we are considerint ait
mputer.
w 340 < 204 < 341 - 64-4l 5 1()96=35.93% space is

()4
reduced in basg computer in compare to bageomputer.

In the section we discuss application of ternary logic 'Rlo
different fields of computer science.

A. Application of ternary system in VLSI

There are several advantages of using ternary logic
VLSI circuits over the conventional Binary logic. For a When we transmit information(ie. a set of
fixed number of lines for transmitting information it issymbols, so, ..., s,) from here to there or from now
obvious that more information can be transmitted usirtg then the the problem of representing the source alphabet

g?h Application of Ternary logic in Codding Theory



symbols s; in terms of another system of symbols theie2 otherwise aftetdshr M ST will be 0. If the LST is 1

the main problem of representation is the following or 2 then theAshr of a numberA yields L%J.If the LST
1) How to represent the source symbols so that thdsr0 then Ashr yields 4.

representation if far apart in some suitable sense. Mls A=2120(i.e. (—12)19) then Ashr vyields 2212 (i.e.

a result in spite of small changes(noise),the alterdd4)10).If A=2121(i.e.(—11)19) then Ashr yields 2212

symbols can be discovered to be wrong and evéhe. (—4)10)-

possibly corrected. If A=1120(i.e. (42)10) then Ashr yields 0112 (i.e.

How to represent the source symbols in a minimal4)10).If A=1121(i.e.(43)10) then Ashr yields 0112 (i.e.

form for purposes of efficiency. The average codel4)10)-

length, L=>"7_, p;l; is minimized wherel; is the 2) Arithmetic Left shift operation.:With this system

length of the representation of tlig, symbols;. after arithmetic left shift operatidaishl) the LST become

In some early days one variable length ternary cod&ro- If Rn_1Rn, o are00, 01 or 22 then afterAshl MST

was popularly used for communication known as Morgé 10t otherwise a ongrit flip — flap — flop is needed to

code.Three different symbols of this code are dash(-)dot$tore the initialA/ ST Arithmetic left shift operation yields

and space( ). The length of the high frequency alphabet sugh 3:

as”E” is small and that of low frequency alphabet suci A=121 (i.e. (16)10) then Ashl yields 1210 ((48)10).If

as”.J” is long. As a result the average length of the cod8=2121 (i.e. (—11)10) thenAshl yields221210 ((—33)10).
is reduced_[G] If A=2221 (le (72)1()) then Ashl erIdS 2210 ((76)10).

2)

V. ARITHMETIC OPERATION ONTERNARY NUMBER C. Addition and subtraction of balanced ternary numbers

In this section we discuss arithmetic operations of ternary .
1) Addition of two balanced ternary humberghe fol-

number systems such as shift operation, addition, subtrac-- _ "
tion, multiplication and division. lowing Table VIII illustrates some examples of additions

for the ternary number system. Each column corresponds
) ] ) to a pair of trits to be added and a catriy. Thus, the total
A. Shift Operation using balanced ternary number systef,mper of possible columns would 88 = 27.

1) Arithmetic right shift operation.in a given number

A havingn trits, let R,,_; and R, respectively denote the[ 1 1 1 1 1 TTITIT1TO 0
most significant §/ST) and least significant trits[(ST). tjtry1,01010 71t 71 1] 11

: : . 10| 1|1 |0 1T |1 |0 ]|1T]1]o0
Since in case obalanced ternary systetine most signifi- = — il

‘ . ) > 1ol Jor 1] o1 |00 0100|0111 |01

cant non-zera@rit represents the sign, after arithmetic right
shift the newM ST becomes zero and the originBb7 is EXAMPLESTQEALEEX'T':ON oF trits
lost. If the LST of A is 1 then the arithmetic right shift of
Ayields [£].

For example ifA = 1011 (i.e. 31 in decimal), then
arithmetic right shift we yieldd101 (i.e. 10 in decimal). 1 TI11(38) T11(32) T111(40) 1010(30)
If the LST of A is 1, then the arithmetic right shift oft B 1111(40) | 1101(—37) | 1111(40) | 1111(—40)
yields (%1. Consider4 = 1011, (i.e. 29 in decimal) then [ A+ B | 10010(78) | 0111(—5) | 10001(80) | 0101(—10)
arithmetic right shift we get 0101(i.e. 10 in decimal). Ieth

TABLE IX

LST of A is 0 then the arithmetic right shift yield§. If
A =1010 (i.e. 30 in decimal) then arithmetic right shift we
get 0101(i.e. 10 in decimal).

2) Arithmetic left shift operation.ln arithmetic left-shift
operation of the numbeA an overflowflip-flap-flop [2]
can be used to store th&/ ST, and the newLST is 0.
Arithmetic left shift operation yieldsA x 3. For example
if A =0101 (i.e. 10 in decimal), then arithmetic left-shift
operation yield91010 (i.e. 30 in decimal). If theL ST of A
is 1, then the arithmetic right shift ofl yields [é}. On the
other hand, ifA = 0101 (i.e. -10 in decimal), then arithmetic

EXAMPLES OF ADDITION OF TWO 4 TRITS NUMBERS

Now using this table one can easily add twotrits

numbers. The following Table IX shows few example of
addition of two4 trits numbers.
2) Subtraction of two balanced ternary numberEhe
operation of Subtraction can be viewed simply as negation
of a number followed by addition.Few examples of subtrac-
tion between twot trits numbers are shown in Table X.

left-shift operation yield$1010 (i.e. -30 in decimal).

A 1117(38) 1111(32) 1111(40) 1010(30)

—B | T111(—40) | 1101(37) | TI11(—40) | 1111(40)
B. Shift Operation using conventional ternary number syg-A =5 | 0011(=2) | 10110(69) | 0000(0) | 10111(70)
tem TABLE X

1) Arithmetic right shift operation.:With this system
after arithmetic right shift operatiddshr) LST is lost. If
the M ST is 2 before shift operation then aftetshr it will

EXAMPLES OF SUBTRACTION BETWEEN TWO4 TRITS NUMBERS




D. Addition and subtraction of two conventional ternary
numbers

For addition of conventional ternary numbers we have to
use the truth table for full adder as shown in Table VII.For
substation(A-B) we have to take 3's complement of B and
add it to A.3's complement of a number can be easily
obtained by interchanging 0 and 2 followed by add 1 to
it.
The Figure 1 shows few examples of addition and subtra
tion of two conventional ternary numbers.

BR=Multiplicand
QR =Multiplier
AC=0,Sc=n

Y
AC=AC-BR

A=02101=64 and B=01210=48. Therefore —A=20122 and —B 21020

Now A+B=> 02101 (64) Now A-B=>02101(64) AC:A(,;'R
+ 01210 (48) + 21020(-48) w{
11011 (112) 100121(16) ashr E’hr
B-A=> 01210(+48) -A-B=> 20122(-64)
+20122(-64) 21020(-48)
22102 211212

Sign digit is 2. So the result is negative,

Magnitnde of the is 3°s complement of 2102 is 0121(16).

Thus B-A= -16.
Magnitude of the is 3's complement of 11212 is 11011(112).

Thus —AB= 112, Resultin AC & QR N End >

Fig. 2. Flowcharts for multiplication Algorithm for two ceentional
ternary numbers

Fig. 1. Addition and subtraction of conventional ternarymers

VI. HARDWARE ALGORITHM FOR MULTIPLICATION next trit of the multiplier is multiplied with multiplicand
AND DIVISION OF TWO BASE-3 NUMBERS and the product is shifted by one trit to the left and added
In this Section we describe multiplication and divisiofwith the partial product to generate a new partial product.
of two ternary numbers. In case of hardware multiplication (using registers),east
of shifting themultiplicand x ¢ (wherec is a trit of the
A. Multiplication Algorithm using conventional ternarymultiplier to the left we shift the partial product one trit t
numbers the right [21] [22].
A ternary number with a stream @fcan be expressed as! he multiplication algorithm is based on the following rsile
3m+1 — 3k where k is the starting position @fandm is the
ending position of and counting is start from numberas 1) if QR[0]JQR[-1] = 22 or 00 then partial product is

for example2220 = 3% — 3'.and2221 = 3* — 3! + 1. arithmetically right shifted.

2022 =3%4-33432-302122 =34-334+32x1+4+32-30. 2) QR[0]QR[-1] = 20 or 21 then multiplicand is
If the number contain only) and 1 as symbols then we subtracted from from the partial product followed by
take the usual expression,— ' a;3' wherey; = 0, 1; AShr.

Arithmetic left shift of a number is three times the num- 3) QR[0]JQR[—1] = 00 or 01 then the partial product is
ber.So at the time of multiplication if the multiplier coirtia simply right shifted.

stream of2s we simply Arithmetically left shift the multi- ~ 4) QR[0]QR[-1] = 02 then multiplicand is added with
plicand. the partial product followed by Shr.

For multiplication we store multiplicand in a regist&R, 5) QR[0JQR[—1] = 10 or 11 then multiplicand is added
say, and Multiplier in registef) R, say. Initially, we assume with the partial product followed by simple right shift.
that product is zero. This is known as thartial product ~ 6) QR[0]JQR[—1] = 12 then multiplicand is added twice
where apartial product is obtained by multiplying the to the partial product arithmetic right shift.

multiplicand with one trit of the multiplier. Now, if the tri
of the multiplier is1 then multiplicand is added with the The entire multiplication operation is shown in Figure 2
partial product to generate a new partial product. Now trend the example for multiplication shown in Figure 3.



START
BR=011110, QR=022112,-BR=211120 -

QRIOJQRE1] | Operation AC QR QR[] [SC
— BR=MULTIPLICAND
Initialization 000000 | 022112 O 6 QR=MULTIPLIER
20 AC=AC-BR 211120 AC=0,SC=n,ER=0
211120
AShrand Sc=Sel| 221112 |002211 |2 5
12 AC=AC+BR 011110
AC=AC+BR K1]002222
011110
021102
Ashrand Sc=Sel| 002110 | 200221 |1 4
11 AC=AC+BR 011110
Shift right 020220
Sc=Sc1 002022 | 020022 |1 3 AC=AC+BR
21 AC=AGBR 211120 AShr(ER,AC, QR) <—J
220212
Ashr & Sc=Sel 222021 | 202002 | 2 2 L
22 Ashr 222202 | 120200 2 1 Se=se.1
02 AC=AC+BR 011110
K]011012
Ashr & Sc=Sel 001101 | 212020 |0 0
Sc=0? No
Final product=001101212020 Yes

RESULTin AC & QR

Fig. 3. Example of multiplication of two conventional temaiumbers
STOP

B. Multiplication Algorithm using balanced ternary num-
bers Fig. 4. Flow chart for multiplication of two balanced termarumber

For multiplication we store multiplicand in a register
BR, say, and Multiplier in registelQR, say. Initially,
we assume that product is zero. This is known as the
partial product where apartial product is obtained by
multiplying the multiplicand with one trit of the multiplie division we take a set of trits of dividend and if it has a
In simple multiplication, if the bit of the multiplier is value less than that of the divisor, then we have to take
1 then multiplicand is added with the partial product tanother trit of dividend and insert O(zero) in the quotient.
generate a new partial product. Now the next bit of then the other hand, if the value of a set of trits of dividend is
multiplier is multiplied with multiplicand and the productgreater than or equal to the value of the divisor, then either
is shifted by one trit to the left and added with the partiar 2(using lemma 1) is inserted in the quotient. For this we
product to generate a new partial product. But in case héve to subtract the divisor from the trits of the dividend;
hardware multiplication (using registers), instead oftsig  if the result is negative we ptit in the quotient and add
the multiplicand x ¢ (wherec is a trit of the multiplier, divisor to the result to restore those trits of dividend.sThi
having value 0 or 1 o) to the left we shift the partial is known asrestoration of the dividendIf the result of
product one trit to the right. This operation has been defingdbtraction is positive then quotientdsThe entire division
for trits in [2]. The entire operation is shown in Figure 4. operation is illustrated in the flow chart of Figure 5 .The
Lemma 1. If ¢ and b are two ternary numbers such thatexample_ for divis_ion _using conventional ternary number
a is minimum and is maximum theml < 3 x a. system is shown in Figure 6.

Proof: Leta=10...0=3""" andb=222...2=2x 37" ' 3°.

Now N - X323 . (>n13i1) Lemma 2. _If a _a_nd b are twp balar_1ced ternary numbers
b 3n—1 3n-1 3n—t such thata is minimum and is maximum then < 3 x a.

Now 1 < 23;%&131 <207 <3 b<3xa [ |

. —1 T=an-—1 n—2 o4
C. Division Algorithm using conventional ternary number Proof. Let “‘11“'1‘§Z 31.'21':0 3 and

system b=111..1=37",' 3". Now T e

In order to divide a number by another, we store thdow 37~ 737 < 37~1-37" 231 - ¢ < 3. - b < 3 xa.
dividend in register) and divisor in registef\/. During [ ]



START

A=0,Q=Dividend,
M=Divisor,Size= n

oy

==

Set Q[0]=0

+veor0 _

A=A+M

Set Q[0]=2

Size=Size-1

No

Quotientin Q
Remainder in R

End

Fig. 5. Flowcharts for Division Algorithm for two non negai numbers

using conventional ternary number system

tem

Here we divide (1012113by (201) i.e. 292 by 192 in decimal. -M=222022

Operation A Q Sc
Initialization 000000 101211 6
Left Shift AQ 000001 |01211]]

A=A-M 222022

Alis -Ve Set Q[0]=0 222100 |011211[0]

A=A+M 1 000201

Size=Size-1 [4]000001 5
Left Shift AQ 000010 | 1211[0]]]

A=A-M 1222022

Ais -Ve Set Q[0]=0 222102 |1211[0][0]

A=A+M 000201

Size=Size-1 [X] 000010 4
Left Shift AQ 000101 | 211[0][0][]

A=A-M 222022

Ais -Ve Set Q[0]=0 222200 | 211[0][0][0]

A=AM 000201

Size=Size-1 [1]000101 3
Left Shift AQ 001012 [ 11[0][0][0I[]

A=A-M 222022

Als +Ve p4]000111

A=A-M 222022 | 11[0][0][0][1]

Ais —ve Set Q[0]=1 222210

A=A+M 000201 2
Size=Size-1 [1]000111

Left Shift AQ 001111 | 1[0][o][0][1][]
A=A-M 222022

Ais +Ve 4]000210

A=A-M 222022

Ais +ve Set Q[0]=2 [4]000002 | 1[0][0][0][1][2]
Size=Size-1 1
Left Shift AQ 000021 | [0][O][0][1][2]0
A=A-M 222022

A'is -Ve Set Q[0]=0 222120

A=A+M 000201 | [0][0][0][1][2][0] |O
Size=Size-1 [4]00002 1

Remainder A=00021 and Quotient Q=000120.

Fig. 6.

Example for Division Algorithm for two non negativaimbers

using conventional ternary number system

then 1 is inserted in the quotient other wise divisor is
subtracted from the last result to restore back the previous

result. When all the trits are encountered then if the vafue o
registerA is negative then divisor is added with and the
result store in registef) is decremented by.The division
operation is illustrated in the flow chart of Figure 8 and

the corresponding example is shown in Figure 9 . Now

using these two algorithms division operation can be easily

o ) ) performed for both negative and nonnegative dividend.
D. Division Algorithm using balanced ternary number sys-

VIlI. PERFORMANCEANALYSIS

The division of two nonnegative ternary numbers i§- Multiplication Algorithm
discussed in[21] and the flow chart for that algorithm is In case of multiplication algorithm using conventional
shown in Figure 7.Here we describe the algorithm whéarnary number system the complexity of the algorithm will
the dividend is negative.In this case instead of subtrgctife as follows
the divisor from the set of trits of dividend is added with 1) If the multiplier is 222...2 then number of addi-

the set of trits of dividend.If the result is positive is

inserted in the quotient and divisor is subtracted from the
result to get back the previous value. This is known as
restoration of dividend. If the result of addition between 2)

divisor and set of trits of dividend is negative the eitfier

(i.e. —1 in decimal) or 11 (i.e.is —2 in decimal)

(using lemma 2)is inserted in the quotient.For this if the 3)

result of addition is negative then firstis inserted in the

guotient then again the divisor is added with the partial

result and if the result of this addition is negative @r

tion/subtraction operation is only one and number
of shit operation isn.So Complexity in this case is
O(n).

If the multiplier is 000...0 then number of addi-
tion/subtraction operation is zero and number of shit
operation isn.So Complexity in this case i©(n).

For any other multiplier the number of addi-
tion/subtraction operation i©(n) and number of
shit operation igD(n).So Complexity in this case is
O(n?).



Quotientin Q
Remainder in A

End

Fig. 7. Flowcharts for Division Algorithm for two non negai numbers

A=0, Q=Dividend,
M =Divisor,Size= n

Quotientin Q
Remainder in A End

Fig. 8. Flowcharts for Division Algorithm when quotient iegative

Herewe divide 1101 1 by 00111 i.e. -58 by 13. M=00111

Operation A Q Sc
Initialization 00000 -110-1-1 5
Left Shift A} 0000-1 10-1-11]

A=A+M nolll

Ais+Ve Set Q[0]=0 LT 10-1-1[0]

A=AM 00-1-1-1

Size=Size1 000 0-1 4
Left Shift AQ 00011 0-1-1j0][]

A=A+M 00111

Ais+Ve Set Q[0]=0 00111 0-1-1j0][0]

A=A-M 00-1-1-1 3
Size=Size-1 000-11

Left Shift AQ 00-110 -1-1[0][0][]
A=A+M 00111

Aids+Ve Set Q[0]F0 00 1-11 -1-1[0][0][0]
A=AM 00-1-1-1 2
Size=Size-1 00-11 0

Left Shaft AQ 0-110-1 -1[oj[01010
A=A+M 00111

Ails-Ve Set Q[0]=-1 00-110 -1[o][o][0][-1]
A=A+M 00111

Adstve 00111

A=ADM 00-1-1-1

Size=Size-1 00-110 1
Left Shift AQ 0-110-1 | [0][010][-11[1
A=A+M 00111

Aids-Ve Set Q[0]=-1 00-110 [O1[01[0]1-1]1-11
A=A+M 00 111

Adstve 00111 a
A=ADM 00-11-1

Size=Size-1 00-110
A lsnegative 00-110 000 -1-1
A=A+M 00111 000 0-1

0=0-1 00111 00-111

Remamder= A=(1-11)=(The Quotient Q=(00-111);=(-5)1,

Fig. 9. Example for Division Algorithm when quotient is néiga

However, for multiplication using balanced ternary number
system the complexity i€)(n?). Moreover, using conven-
tional number system maximum range wftrit numbers

is 3 — 1 but in case of balanced ternary number system
maximum is3"~! — 1.The advantage of using balanced
ternary number system subtraction operation can be easily
performed.

B. Division Algorithm

The complexity of the division algorithm for both con-
ventional and balanced ternary number systend{g?).
However, in case of balanced ternary number system some
extra trits in QR (flip-flap-flop) may be required when
2(11) is inserted into quotient.

VIIl. ROTATION SYMMETRIC BOOLEAN FUNCTION IN
BASE-3

Rotation symmetric Boolean function®R§BF') have
huge application in cryptosystem. A Boolean function is
symmetric if it is invariant under any permutation of its
variables [4]. A Boolean functiory(.) of n variables is
rotation symmetric if and only iff (zp—1, Tn—2,...,%0) =
f(xn_g, Tp—3y..- ,l‘o,xn_l) = f(l‘o, Tp—1ye-- ,331). Now
rotation symmetric Boolean functions are a class of
Boolean functions which have good combination of non-
linearity, co-relation immunity, balancedness and algibr
degree [12]. A Boolean function is applicable to cryp-
tography if it has the above mentioned properties. Now
since base three is optimal, it is quite expected that the
Boolean function in GF(3) [2] is better. In this paper,



we propose an algorithm to generate the partitions afimber of rotations of any number is less than the number
rotation symmetric Boolean functions wherepartition of trits in that number, then the number must have appeared
is a set of a trit string and the rotations of this stringyefore in some element of some patrtition.

such that the output of each of these strings as input
provides the same output.Generation of these functio&s
are known to be combinatorially explosive. It is known
that, for n-variableRSBF functions, the associated set of [N this paper we propose two algorithms for generating
input bit strings can be divided into a number of subsetge partition of RSBF in GF(3).Algorithm genpartB
(called partitions), where every element of a subset caAnd genpartC as described below is an improved version
be obtained by simply rotating the string of bits of som&f algorithm genpartA and the formal description of the
other element of the same set.Formula for generating torithm is shown in Figure 12.

partitions for Rotation Symmetric Boolean Function i emma 3. If 4 is a ternary number then right rotation of

any baseg,., = ;- 3, ¢(t)p[5]. Figure 10 shows the ; anq, 4+ 3 yield successive numbers.
partitions generated fat = 4.

An improved Algorithm

L . Proof: Let, a=(an_1an_2...a1ao)3
Definition 1. If a Boolean functionf (z,—1, Zn—2,...,Z0) b=a + 3=(bp_1bp_2...b1bo)3

exhibits rotation symmetry, then the period over which itg p of a by 1 trit=(agan_1an_2...aza;); and
exhibits this property is defined to be the cycle length fop of bby 1 trit=(bobp_1bn_o...bab1)s

the function. =3n—1 b0+3n—2 X bp1 +3n—3 Xbp_o+ ... +31b2 +3Ob1
- 3"bo+(3" 'bn_14+3" *bp_2+...4+3%b2+3"b1)

{(0000)} pal’tltlon 0 :3W'bg+(3n71b-,L71+3n723b”72+...+32b2+31b1er()*bg)

{(0001) (0010) (0100) (100@partition 1 _3"bg+(3"*1bn,1+3n*2b”3,2+...+32b2+31b1+3°b0)—b0

{(0002) (0020) (0200) (200@)partition 2 (3" lay 14370 ot P a3 ey 1B a) 430

{(0011) (0110) (1101) (101} partition 3 === = B ¢ (since

{(0012) (0120) (1200) (200} partition 4 b=a+3 andby = ag) s

{(0021) (0210) (2100) (100Z)partition 5 =3 G043 dn-1=#3 en-zh.. 43 ap+3 a143 aotd-do

{(0022) (0220) (2200) 2002 partition 6 =3""lag + 3" 2a,_1 + 3" 3an_2 + ... + 3tag + 3% + 1

{(0101) (1010} partition 7 =ROR of a by 1 trit [ ]

{Egﬁg gﬁg; 8?83 ggi@)ﬁzg:ggg g Lemma 4. Two trits ROR of {(0"222); + (p x 9)10}

{ }partit and {(0"22%)3 4+ ((p + 1) x 9)10} vields successive

{(0112)(1120) (1201) (201} partition 10 numbers.where is is any integer including

{(0121) (1210) (2101) (1012)partition 11 ' '

{(0122) (1220) (2201) (2012)partition 12 Proof: Two trits ROR of {(0"722%)3 4+ ((p + 1) x

{(0202) (2020) partition 13 9)10}-two trits ROR of {(0"7222)3 + (p x 9)10} =two

{(0211)(2110) (1102) (102}partition 14 trits ROR of {(0"7222)3 + (p x 9)10} +two trits ROR

{(0212) (2120) (1202) (202} partition 15 of {9,0}-two trits ROR of {(0"222)5 + (p x 9)10}

{(0221)(2210) (2102) (102partition 16 =two trits ROR of {(9)10}

{(0222) (2220) (2202) (202)partition 17 =two trits ROR of {(100)s}

{(111111} partition 18 ={(001)s}

{(1112)(1121) (1211) (211} partition 19 Hence the proof. |

{(1122)(1221) (2211) (2112partition 20 1) Correctness of the proposed algorithm genpartB:

{(1212) (2121) partition 21 1) From lemma 3 it is obvious that if anda + 3 are

{(1222)(2221) (2212) (212Fpartition 22 two ternary numbers then ROR afanda + 3 yields

{(2222) partition 23 successive numbers.Now trit ROR of 0”111 is
1107~! and 1trit ROR of 027211 is 10272,

Fig. 10. Partitions ofRSBF for n = 4 Again 02" 211=2 x 3772 42 x 3"+ $2x 31+

1x39
=1+ (m —1) x 3 wherem=3""2 — 1.

The proposed algorithm for the generation of partitions
of RSBF's in GF(3) is given below. This algorithm gen-
erates the starting string of each partition and and total
numbers of partitions. We use the symbdls1, 2 to

represents the numbers instead of using(1). Table 2
shows the number of partitions for different valuesof

(number oftrits). A formal description of the proposed 2)

algorithm is given in Figure 11.
1) Correctness of the proposed algorithm genparés
the successive numbers are being considered, thus if the

So as soon as the starting string of a partition become
02"~21! using lemma 3 it is obvious that the algo-
rithm generates all the number betwee)” ! and
110'27~2.S0 the number betweed 0™~ 110!27—2
can’'t be the starting string of any partition and can
be skipped.

1127=1 and2°1"~! are two successive numbers.Now
lemma 3 indicates that we have all the orbits hav-
ing elements from2°1"~! and 2'1'2"~2.So when
the starting string of a orbit becomé$2”~! next
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8 9 10 11 12 13 14 15 16

gn

3|16 | 11|24 | 51 | 130 | 315 | 834 | 2195 | 5934 | 16107 | 44368 | 122643 | 341802 | 956635 | 2690844

TABLE XI
NO. OF ORBITS FOR1®! 16 VARIABLES

Algorithm genpartA

Data structures: Counter = Number of partitions, Answer[]=Starting strinigpartition
Input:  Number of trits ) ]
Output: Starting string of every orbit and total number of orbits

Step 1: Initialization: Counter=0;

Step 2: Answer[0] = 0™;

Step 3: Counter=counter +1,

Step 4: Consider the trit-string corresponding to the next number store its decimal form isvfer[].
Step 5: While trit-string corresponding to= 12"} do

Step 6: While a numbep is less than of any elemept of that particular orbit then goto step 8.
Step 7: Take the trit-string correspondingsas the starting string of the next orbit

Step 8: Take the trit-string corresponding to next number

Step 9: End while

Step 10:End While

Step 11: End

Fig. 11. Generation of partitions of Rotation symmetric Bam function in GF(3)

Algorithm genpartB()

Data structures: Counter = Number of partitions, Answer[]=Starting strinigpartition
Input:  Number of trits ) )
Output: Starting string of every orbit and total number of orbits

Step 1: Initialization: Counter=0;

Step 2: Answer[0] = 0™;(*a™ means a string of trits*)

Step 3: Counter=counter +1,

Step 4: Consider the trit-string corresponding to the next number store its decimal form isvfer[].

Step 5: While trit-string corresponding to= {1'2"7'} do

Step 6: While a numbep is less than of any elemenpt of that particular orbit then goto step 9.
Step 7: If the next number becom&&)™ ! then next trit string must be greater thahn'2"~2
Step 8: Take the trit-string correspondings@s the starting string of the next orbit

Step 9: Take the trit-string corresponding to next number

Step 10: Counter=counter+1

Step 11: End while

Step 12: End While

Step 13:Counter=Counter+1
Step 14:Answer2™

Step 15: End

Fig. 12. Generation of partitions of Rotation symmetric Bam function in GF(3)

starting string must be greater thah1'2"—2.Now from correctness of algorithm genpartA and genpartB.
211127=2 and2 trit ROR of 0" 222 are two succes-
sive numbers.Now Decimal of1'2"~!);=decimal
of (0"7222)3+(m — 1) x 9,where m is an inte- . . .
ger.Now two trits ROR ofl127—* ig 2211972, The complexity of the above algorithm {)(3™). Since

using lemma 4 it is easy to understand that all tHee formula for number of partitions is exponential, the
numbers betweed20"—3 and 221'2"~2 appears in time complexity of the above algorithm is inherently
some partitions.Using similar types of observation gxponential. But actual number of comparisons are
can be easily shown that if the starting string of anglﬁerent in different algorithms. _

partition become 127~ then all the numbers beforeFor the algorithm genpartA total number of comparison

2n=11 appears in some partition.So the next starting 3" — 1 - For the algorithm genpartB total number of
string must be2™. comparison i3 — 1-A-B.

A={3n-

(Bl +2x3" 2 42x 3" 84 +2x3+2x3%)}

C. Performance analysis of the algorithms

B. Another Improved Version of the Algorithm genpartB B={(3" 1 +2x3"3 +2x3" 4 4 . +2x 3" +2x30)-

A still improved version of algorithm is shown in Figure3"~1}. For the third algorithm total number of comparison

13.

is much less than that of the previous two algorithms.Here

1) Correctness of the algorithm genpartC(The cor- total number of comparison just few more than the number
rectness of the algorithm genpartC can be easily understaiicpartition of RSBF'.
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Algorithm genpartC()

Data structures: Counter = Number of partitions, Answer[|=Starting strinigpartition
Input:  Number of trits . )
Output: Starting string of every orbit and total number of orbits

. Initialization: Counter=0,number22~'1' and number2e”~'2?;

. Answer[0] = 0"; (*a™ means a string of. trits*)

. Counter=counter +1;

. while trit-string corresponding te = {1'2"'} do

. numberl=numberl+3 and number2=number2+3 . . .

While the starting of any partition(i.e. numberl and nen2b is less than any element of the particular orbit the gt¢p 8
If the next number becomgd'0™~'} then numberl£1'0'2"72 + 1} and number2£1* 01272 + 2}
Take the trit-string_corresponding to numberl=numb&ramrd number2=number2+3

. Answer[counter++]=numberl and Answer[counter++]=ber2

10.Endwhile

11. counter=counter+1

12.Answer[counter]£2" }

13.End

©O~N OUTA WNF

Fig. 13. Generation of partitions of Rotation symmetric Bam function in GF(3)

IX. CONCLUSION [16] K. Roy, S.C. Prasad,ow Power CMOS VLSI Circuit DesighViley
In this paper we discuss few algorithms for arithmeti India, 2011,
pap g ﬁ?] T.Felicijan,S.B.Furber, An Asynchronous Ternary lodystem,

(addition, multiplication, division and arithmetic shifbp- IEEE Transaction on Very Large Scale Intregation Systeviol.11,
erations in the conventional and balanced ternary num- No.6, 2003. _ ,

b tems. Some new algorithms have been or élsé K.C.Smith,The prospects for multivalued logic: A tediogy and
er Sysle .S' ome e_ algo . S have bee _p opose application ViewlEEE transactions on Computeiol C-30, No.9,
and their time-complexity analysis have been discussed. 1981.

also propose_d In _thIS paper. There are ample _SCOpeS[Z%ﬁ Vasﬂndara Patel, K S,K S Gurumurthy, Multi-valued Logiddition

further work in this number system such as using them and Multiplication in Galois FieldJEEE International Conference

in cryptographic systems, exploring their opportunities i g_r:3 Q%%ngces in Computing,Control,and TelecommunicatemiTolo-
. b L i .

efficient power management in VLSI circuits, and so On'[21] Subrata Das, Joy Prakash Sain, Parthasarathi Dasgopté&samar

Sensarma, Algorithms for Ternary Number Systeft! thternational
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