

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

WORKING PAPER SERIES

WPS No. 713/ September 2012

Algorithms for Rotation Symmetric Boolean Functions

by

Subrata Das
Assistant Professor, Department of Information Technology,

Academy of Technology, West Bengal

Satrajit Ghosh
Assistant Professor, Department of Computer Science,

APC College, West Bengal

Parthasarathi Dasgupta
Professor, IIM Calcutta, Diamond Harbour Road, Joka, Kolkata 700104, India

&

Samar Sensarma
Professor, Department of Computer Science & Engineering University of Calcutta

Algorithms for Rotation Symmetric Boolean

Functions

Subrata Das1, Satrajit Ghosh2, Parthasarathi Dasgupta3, and
Samar Sensarma4

1 Department of Information Technology
Academy of Technology
dsubrata.mt@gmail.com

2 Department of Computer Science
APC College

gsatrajit@gmail.com
3 Management Information Systems Group
Indian Institute of Management Calcutta

partha@iimcal.ac.in
4 Department of Computer Science & Engineering

University of Calcutta
sssarma2010@gmail.com

Abstract. Rotation Symmetric Boolean functions (RSBF) are of im-
mense importance as building blocks of cryptosystems. This class of
Boolean functions are invariant under circular translation of indices. It
is known that, for n-variable RSBF functions, the associated set of in-
put bit strings can be divided into a number of subsets (called partitions

or orbits), where every element of a subset can be obtained by simply
rotating the string of bits of some other element of the same subset. In
this paper we propose algorithms for the generation of these partitions
of RSBF s and implement for up to 26 variables.

Keywords: Algorithms,cryptography, Symmetric boolean functions,Rotation
symmetric boolean functions

1 Introduction

A Boolean function fn(xn−1, xn−2, ..., x0) of n variables is a mapping from Fn
2

to F2,where Fn
2 is a n-dimensional vector space over the two-element field F2.

A Boolean function is symmetric if and only if it is invariant under any permu-
tation of its variables [1]. Rotation Symmetric Boolean Functions(RSBFs) are
a special class of Boolean function for which the function value will be same
for any rotation of its variables [12]. For secret key cryptosystems, balanced-
ness,nonlinearity,correlation immunity,algebraic degree [11] are the different cri-
teria for choosing a Boolean Function for cryptographic applications. RSBFs
have good combination of these properties [6],[4]. It is clear to see that there are
22

n

boolean functions on n variables, and thus, searching for all these functions

2 Subrata Das, Satrajit Ghosh, Parthasarathi Dasgupta, and Samar Sensarma

exhaustively is exponential.Thus, in order to look for RSBFs, it is imperative to
have an idea about the number of orbits(i.e. partitions) in rotation symmetric
functions.

In this paper, we propose three simple algorithms for generating RSBF s of
a given number of variables and implement upto 26 variables.

Rest of the paper is organized as follows.Section 2 reviews some related re-
cent works. Section 3 introduces some terminologies to be used in subsequent
discussions and Section 4 proposes three algorithms A,B and C for generating
RSBF s of n variables. Section 5 briefly discusses the implementation of the al-
gorithms A,B and C. Finally, Section 6 concludes the chapter and briefly states
the future scopes of work.

2 Literature Review

An extensive study of symmetric Boolean functions, especially of their crypto-
graphic properties has been done in [8]. In [2] Pieprzyk and Qu have studied a
special type of symmetric Boolean functions, called rotation symmetric Boolean
function.In that paper the authors have suggested that RSBF can be applied
as round functions of a hashing algorithm such as MD5. Rotation symmetric
Boolean functions (RSBF) are of great research interest for theoreticians as well
as for practitioners in the field of cryptography [3]. Any symmetric boolean func-
tion (w.r.t. any permutation) is also rotation symmetric, but the converse is not
always true [2]. In [4] the authors discuss some new results on rotation symmet-
ric correlation immune(CI) and bent functions and important data structures for
efficient search strategy of these functions. They also proved the non existence
of the homogeneous rotation symmetric bent functions of degree ≥ 3 on a single
cycle. In [5] the authors have proposed an efficient implementation of search
strategy for rotation symmetric boolean function. In [6] theoretical construction
of rotation symmetric boolean functions on odd number of variables with max-
imum possible algebraic immunity are discussed.The investigation of balanced
RSBFs and 1st order correlation immune RSBFs and enumeration formula for
n-variable balanced RSBFs where n is a power of prime reported in [7].

3 Preliminaries

A of n variables Boolean function f(xn−1, xn−2, ..., x0) is said to be Rotation
Symmetric if f(xn−1, xn−2,. . .,x0)=f(xn−2, xn−2,. . .,x0,xn−1)=....=f(x0, x1,. . .,xn−1).
Thus, a Rotation Symmetric Boolean function remains invariant under cyclic per-
mutation of its variables. The cyclic permutation may be in either left-to-right
or in right-to-left order of the variables.
Now, for a function f(xn−1, xn−2,. . .,x0) of n variables, the number of possi-
ble strings of elements is 2n. From the above definition of RSBF, the value of
f(xn−1, xn−2,. . .,x0) will be the same for a set of input strings of elements,where
any input string is obtained by cyclic permutation of some other input string. A
set of strings of elements 0 and 1 of n variables which are rotation symmetric is

Algorithms for Rotation Symmetric Boolean Functions 3

said to form an orbit. Figure 1 illustrates the set of 14 orbits for a function of 6
variables.

{(000000)} orbit 0
{(000001) (000010) (000100) (001000) (010000) (100000)} orbit 1
{(000011) (000110) (001100) (011000) (110000) (100001)} orbit 2
{(000101) (001010) (010100) (101000) (010001) (100010)} orbit 3
{(000111) (001110) (011100) (111000) (110001) (100011)} orbit 4
{(001001) (010010) (100100)} orbit 5
{(001011) (010110) (101100) (011001) (110010) (100101)} orbit 6
{(001101) (011010) (110100) (101001) (010011) (100110)} orbit 7
{(001111) (011110) (111100) (111001) (110011) (100111)} orbit 8
{(010101) (101010)} orbit 9
{(010111) (101110) (011101) (111010) (110101) (101011)} orbit 10
{(011011) (110110) (101101)} orbit 11
{(011111) (111110) (111101) (111011) (110111) (101111)} orbit 12
{(111111)} orbit 13

Fig. 1. Orbits of RSBF for n = 6

Each orbit is also known as a partition. Number of partitions gn satisfies the
inequality

gn ≥ 2 +
2n − 2

n
(1)

where the equality holds when n is prime[3]. We now introduce a few definitions
for the subsequent discussions.

Definition 1. Hamming distance d(s1, s2) between two binary strings s1 and s2
is the number of positions where the bit values of s1 and s2 differ.

Definition 2. If a boolean function f(xn−1, xn−2,. . .,x0) exhibits rotation sym-
metry, then the period over which it exhibits this property is defined to be the
cycle length for the function.

Consider a rotation symmetric boolean function whose associated binary strings
are {(1011), (0111), (1110), (1101)} obtained through all possible cyclic permu-
tation of the bits containing 3 ones and 1 zero.The RSBF f(x3, x2, x1, x0) must
have the same value for all the permutations. Cycle length of this function is
then 4.

Definition 3. For a n-variable RSBF containing gn orbits,the orbits which have
maximum cycle length i.e. cycle length n are known as long cycles. If the cycle
length is some factor of n then it is known as a short cycle.

For instance, in Figure 1, the RSBFs corresponding to orbits 1, 2, 3, 4, 6, 7, 8,
10 and 12 are all long cycles, whereas those corresponding to orbits 0, 5, 9, 11,
and 13 are all short cycles. The following observation is then clear:

4 Subrata Das, Satrajit Ghosh, Parthasarathi Dasgupta, and Samar Sensarma

Observation 1 For a RSBF of n variables, n > 1, the two trivial orbits con-
taining all zeros and all ones respectively are always short cycles.

Lemma 1 If n is prime, then
(

n
r

)

can be expressed as the product of the number
n and an integer.

Proof. Let us assume the result is wrong.So if n is prime, then
(

n
r

)

can be ex-

pressed as the product of the number n and a fraction.
(

n
r

)

= n!
(n−r)!×r!=n× (n−1)!

(n−r)!×r! .

It is quite trivial that
(

n
r

)

yields an integer. So to get the value of
(

n
r

)

as integer

either the denominator of (n−1)!
(n−r)!×r! is n or the value of (n−1)!

(n−r)!×r! is an inte-

ger.Since n is a prime number so it can not be expressed as product of two
or more numbers other than 1 and the number n itself.So the denominator of

(n−1)!
(n−r)!×r! i.e. (n− r)! × r! will never be n.Hence it is a contradiction. So (n−1)!

(n−r)!×r!

is not a fraction. �

Lemma 2 For a RSBF of n variables, if n is prime, then there does not exist
any orbit of cycle length less than n except for the two trivial orbits containing
all zeros and all ones.

Proof. Let r denotes the number of 1s in the binary string of n bits. Then, total
number of binary strings that can be formed with n bits having r ones is

(

n

r

)

.

Since n is prime,
(

n

r

)

can be expressed as the product of the number n and an
integer (by Lemma 1). Moreover, the cycle length of the RSBF cannot be greater
than n. Thus, every cycle that can be generated for the RSBF are of full cycle
length except for the two trivial orbits containing all zeroes and all ones. �

Lemma 1 and Lemma 2 clearly indicates that for a composite value of n,
the different strings generated for the RSBF will have some short cycles. A
closer look at the Boolean strings corresponding to RSBF yields the following
observation:

Observation 2 If the cycle length of an orbit for a n-variable RSBF is less than
n, then there always exists a substring within the corresponding binary strings
which is also repeated within every string of the orbit.

The length of this repeating substring is defined to be the internal period
of the orbit. In Figure 1, for example, for orbit 5, cycle length is 3, and the
substring {001} is repeated three times in every element of the orbit, and the
internal period is also 3. A formal definition of internal period is given below:

Definition 4. For a n-variable binary string corresponding to a RSBF,where n

is not prime if d be a divisor of n, then a substring of d bits of the n- variable
string is said to exhibit periodicity d if (an−1, . . ., an−d) = (an−d−1, . . ., an−2d)
= . . . = (ad−1, . . ., a0). d is defined to be the internal period of these substrings.

For example in Figure 1 orbit 5 is {(001001)(010010)(100100)},where substring
(001) has periodicity 3. The following observation follows from the Definition 4.

Algorithms for Rotation Symmetric Boolean Functions 5

Observation 3 Product of the internal period and the number of substrings
within a string yields the number of variables of the string.

For instance, in Figure 1, for Orbit 9, number of substrings is 3,internal period
is 2 and the number of variables is 6.

3.1 Algebraic Normal forms and RSBF

The classical approach to the analysis, synthesis or testing of a switching circuit
is based on the description by the Boolean algebra operators. A description
of a switching circuit based on Modulo-2 arithmetic (the simplest case of the
Galois field algebra [10]) is inherently redundancy-free, and is implemented as
the multi-level tree of XOR (addition operator over GF (2)) gates.

Definition 5. An n-variable Boolean function f(xn−1, . . ., x1, x0) can be ex-
pressed as a multivariate polynomial over GF (2). More precisely, f(xn−1, . . .,
x1, x0) can be written as : f(xn−1, . . ., x1, x0) = a0

⊕

Σn
i=1 ai xi

⊕

Σ1≤i<j≤n

aij xi xj . . .
⊕

a1,2,...,n, where the coefficients a0, ai, aij , . . ., a1,2,...,n ∈ {0, 1}
and xi ∈ {0, 1}. This representation of f(xn−1, . . ., x1, x0) is known as its Al-
gebraic normal form (ANF) or its Positive Polarity Reed-Muller form (PPRM).

The number of variables in the highest order product term with non-zero
coefficient of an ANF is its algebraic degree. A Boolean function is defined to
be homogeneous if all terms of its ANF are of the same degree.

Definition 6. A homogeneous function of degree one is called a linear function.

Definition 7. A Boolean function of degree at most one is called an affine func-
tion.

Definition 8. The non-linearity NLf of a Boolean function f(xn−1, xn−2, .., x0)
is the minimum number of truth table entries that must be changed in order to
convert f(xn−1, xn−2, .., x0) to an affine function.

Non-linearity of a Boolean function f(xn−1, xn−2, .., x0) may be measured
as the minimum Hamming distance between truth tables of f(xn−1, xn−2, .., x0)
and its corresponding (same degree) affine function [9].

For a Boolean function f(xn−1, xn−2, .., x0) of n variables, there are 2n dif-
ferent input values corresponding to the function. From the definition of RSBF,
the function has the same value corresponding to each of the subsets generated
from the rotational symmetry. Each of these subsets is called a partition. In the
following Section, we propose three algorithms for the generation of partitions for
rotational symmetry for a given number n variables. For each partition (orbit),
we select the first element of the partition as its representative element.

6 Subrata Das, Satrajit Ghosh, Parthasarathi Dasgupta, and Samar Sensarma

4 Proposed Algorithms

The proposed algorithm starts with a string of n zeros, which forms the first
orbit. Subsequent representative strings are formed by the odd numbers whose
binary representation has r initial zeros starting with most significant bit, fol-
lowed by (r + 1)th bit as 1 and least significant bit as 1. Left rotation of these
starting (representative) strings by up to r bits yields an even number. Further
left rotation may yield again an odd number.

Lemma 3 If a n bit odd number (d) consists of 1st r bits as zeros ,starting with

most significant bit,the (r + 1)
th

bit as one, and the least significant bit as one,
then d× 2r+1 > 2n, where n > r ≥ 1.

Proof. Frommathematical inequality, we have 2n−r−1 < (2n−r−1). Now, (2n−r−
1) is the maximum odd number (dmax) of (n−r) bits. Prefixing r zeros to the left
of binary form of dmax also yields dmax. Thus, 2

n−r−1 < dmax, i.e., dmax×2r+1 >

2n. Moreover, the minimum odd number of (n−r) bits is (2n−r−1+1). Let dmin

denotes this number. It can be easily shown that dmin × 2r+1 > 2n. Thus, all
odd numbers between dmin and dmax satisfy the same inequality constraint. �

Consider an odd number whose binary representation has r initial zeros starting
with most significant bit, followed by (r + 1)th bit as 1 and least significant bit
as 1. Left rotation of these starting (representative) strings by up to r bits yields
an even number. Thus, from Lemma 3, we find that for the representative string
s of an orbit, beyond left rotation of a number by r bits starting with s, the
number obtained is not necessarily an odd number. Value of this bit string is
obtained from Lemma 3. An AV L tree is used to store the Decimal values of
all odd numbers from this position up to n − 1 rotations for avoiding possible
repetition in future orbit generations.

A formal description of the proposed Algorithm A is given in Figure 2.
The following result clearly follows from the description of the proposed

Algorithm A.

Lemma 4 Worst-case time complexity of Algorithm A is 2n.

Lemma 5 The proposed Algorithm A requires a maximum space of 2n−1 − gn.

Proof. For an n-variable string, the corresponding decimal numbers range be-
tween 0 and 2n − 1. Of these, the number of odd decimal values is 2n

2 . We
store only odd numbers in the AV L tree. Thus, the total storage requirement
is 2n−1 − gn. Total number of orbits for an n-variable RSBF is gn ≥ 2 + 2n−2

n
.

Since nodes are gradually deleted from the AV L tree, we have space requirement
≤ 2n−1 − gn. �

The sequence of outputs generated by the proposed Algorithm A is illus-
trated with an example below.

Consider n = 5. Thus, the maximum value of the corresponding decimal
number is 31. Orbit 1: All zeros.

Algorithms for Rotation Symmetric Boolean Functions 7

Algorithm A

Data structures: Cntr:# of orbits, Result[]: starting string of orbit, T : AVL tree
Input: Number of bits
Output: Starting string of every orbit and total number of orbits

1. Initialize Cntr = 0;
2. Take the string of all zeros as Orbit 0;

store its decimal form in Result[];
3. Cntr = Cntr + 1;
4. Take the string of first n− 1 zero bits and last bit One as Orbit 1;

store its decimal form in Result[];
5. while last < 2n do
6. Take the binary string s corresponding to next odd number
7. if s 6∈ T then
8. store decimal form d of s in Result[];
9. Cntr = Cntr + 1;
10. while s does not reappear do
11. bit-wise rotate the binary representation of s

to generate a set of strings S = {sk|k = 1, n− 1}

12. if d× 2k > 2n then store decimal form of sk in T
if sk is odd, where k = r + 1 (by Lemma 3)

13. endwhile
14. endwhile
15. end

Fig. 2. Algorithm A for generating orbits for n-variable RSBF

Orbit 2: Starting string must have 4 zeros, and a one, which is decimal 1
{i.e.041}. Now, check for some k for which 1 × 2k > 31, k = 1, . . . 4. No such
value of k exists.

Orbit 3: Starting bit string of this orbit must be the next odd number. Since
any rotation of 1 in the starting string of Orbit 2 yields an even number, the
starting string of this orbit must have three consecutive zeros, followed by two
ones (decimal 3). The condition 3 × 2k > 31, k = 1, . . . , 4 is satisfied for k = 4.
Rotate the starting string four times to obtain 10001, having decimal value 17.
Since decimal value of this string is odd, it is saved in the AV L tree (Figure
3(a)).

Orbit 4: Starting bit string of this orbit must be the next odd number (after
starting string of previous orbit), having decimal value 5, i.e., two zeros followed
by 101. For k = 3, 5× 2k > 31. Rotate 00011 three and four times respectively
to yield 01001 (=9) and 10010 (=18). Since the number 9 is odd, it is saved in
the AV L tree (Figure 3(b)).

Orbit 5: Starting bit string of this orbit must be the next odd number 7 (after
5), i.e., two zeros followed by 111. For k = 3, 7 × 2k > 31. Rotate 00111 three
and four times respectively to yield 11001 (=25) and 10011 (=19). Since both
these numbers are odd, they are saved in the AV L tree (see (Figure 3 (c)).

Orbit 6: Starting bit string of this orbit must be the next odd number after
7 which is not already in the AV L tree. Since the next odd number 9 is already
in the AV L tree, the starting string of this Orbit would be 01011 (=11). The

8 Subrata Das, Satrajit Ghosh, Parthasarathi Dasgupta, and Samar Sensarma

17

17

9

19

25

29

27

13

21

17

9

25

19

17

25

19

17

21

25

19

17

21

25

19

17

29
21

25

19

17

17
 27

29

25

19

21
 17
 27

29

25

19

21

23

9
 25

19

Delete 9

21,13

Delete 13
 29,27,23

(29)

(27)

(23)

(a)

(b)

(
c
)

(d)

(
e
)

(
f
)

(
g
)

(
g
)
 (i)

Fig. 3. An example execution of Algorithm A

Algorithms for Rotation Symmetric Boolean Functions 9

number 9 is deleted from the AV L tree (Figure 3(d)) For k = 2, 11× 2k > 31.
Rotate 01101 (=13) two to four times to yield respectively 01101 (=13), 11010
(=26), and 10101 (=21). The odd values 13 and 21 are stored in the AV L tree
(Figure 3(e)).

Orbit 7: Starting bit string of this orbit must be the next odd number after 11
which is not already in the AV L tree. Since the next odd number 13 is already
in the AV L tree, the starting string of this Orbit would be 01111 (=15). The
number 13 is deleted from the AV L tree (Figure 3(f)) For k = 2, 15× 2k > 31.
Rotate 01111 (=15) two to four times to yield respectively 11101 (=29), 11011
(=27), and 10111 (=23). The odd values 29, 27 and 23 are stored in the AV L

tree (Figure 3(g)(h)(i)).

Orbit 8: Starting bit string of this orbit must be the next odd number after 15
which is not already in the AV L tree. Since the next few odd numbers 17, 19, 21,
23, 25, 27, and 29 are already in the AV L tree, these numbers are successively
deleted from the AV L tree (see Figure 3g). Thus, the string for this Orbit 8 is
31. The algorithm terminates successfully at this point.

Figure 3 illustrates some of the steps using the AV L tree during execution of
Algorithm A with an example. Let the symbols RR and LR respectively denote
right and left rotations of a bit string by one bit position. For a string of bits s,
we define its rotation cousin to be the bit string obtained on application of LR
or RR on s. The following result is used to design an improved algorithm.

Lemma 6 Right rotation of each of the bit strings corresponding to two consec-
utive odd integers by one bit yields two consecutive integers.

Proof. Let two successive n-bit binary odd numbers be represented as
{an−1, an−2, . . . , a1, a0}2 and {bn−1, bn−2, . . . , b1, b0}2 and
{an−1, an−2, . . . , a1, a0} + 2 = {bn−1, bn−2, . . . , b1, b0}.
Now RR {bn−1, bn−2, . . . , b1, b0} by 1 bit yields {b0, bn−1, bn−2, . . . , b1}.
=b02

n−1 + (bn−12
n−2 + bn−22

n−3 + ...+ b12
0)

=b02
n−1+ (bn−12

n−1+bn−22
n−2...+b12

1)
2

=b02
n−1+ (bn−12

n−1+bn−22
n−2...+b12

1)+b0−b0
2

=b02
n−1+ (bn−12

n−1+bn−22
n−2...+b12

1+b0)−b0
2

=b02
n−1+ (an−12

n−1+an−22
n−2...+a12

1+a0)+2−b0
2

=a02
n−1+ (an−12

n−1+an−22
n−2...+a12

1+a0)+2−b0
2 [a0 = b0, since both are odd numbers]

=a02
n−1+ (an−12

n−2+an−22
n−3...+a12

0)×2+2+a0−b0
2

=a02
n−1+(an−12

n−2 + an−22
n−3...+ a12

0) + 1
={a0an−1, an−2, . . . , a1}2 + 1 . �

Let {an−1, an−2, . . . , a1, a0} represent a n-bit string, where ai represents a bit,
i = 0, . . . , n − 1. Then Lemma 6 may be expressed as {{an−1, an−2, . . . , a1, a0}
RR 1} = {{an−1, an−2, . . . , a1, a0} + 2 } RR 1.

10 Subrata Das, Satrajit Ghosh, Parthasarathi Dasgupta, and Samar Sensarma

4.1 An improved Algorithm

The proposed Algorithm A is improved with a minor modification. We note the
following observation:

Consider the bit string (for an odd number) having 1 at the right-most
position{0n−11}. Let this bit string be right-rotated right by 1-bit (i.e., n-bits
left-rotate) to form a new bit string P , say P = {110n−1}. The starting bit-string
of each orbit is an odd number, generated by simply adding 2 to the starting
string of the previous orbit. In the previous algorithm, we had to check all these
starting strings in an AV L tree to avoid repetitive occurrences of numbers.

Lemma 7 If the starting string of an orbit is P + 1, then the numbers between
P + 1 and the number generated by one-bit right-rotation of (P - 1) may be
ignored for generating subsequent orbits.

Proof. From Algorithm A it is clear that the starting string of the orbits must be
odd number.From the previous lemma 6 it is clear that the last rotation cousins
are the consecutive numbers if starting strings of the orbits are consecutive
odd numbers.When some number misses in the orbit then its corresponding
last rotation cousin do no appear.So as soon as the starting string of the orbit
becomes P+1 which comes already as the last cousin of some orbit we do not
cosier from this to the last cousin of P - 1. �

The above lemma shows that the n-bit left-rotation (= 1-bit right rotation)
of successive odd numbers results in successive numbers. Thus, whenever the odd
number becomes (P + 1), all the successive numbers up to the number which is
RR of (P - 1) already appears.

A formal description of the proposed Algorithm B is given in Figure 4.
Following result is clear from the description Algorithm B.

Lemma 8 Worst-case time complexity of Algorithm B is 2n.

Lemma 9 The proposed Algorithm B requires a maximum space of 2n−1−gn−a,
where a = RR(2n−1 + 1)− (2n−1 + 1).

Proof. Follows from Lemma 6. �

4.2 A further improved Algorithm

In both the algorithms proposed above, an AV L tree is used to reduce certain
iterations. The following observation helps in getting rid of this auxiliary data
structure and its associated operations.

Observation 4 If the rotation cousin of an odd starting number of an orbit is
also odd, and is greater than the value of the next starting string of the next
orbit, then this starting string may be discarded.

A formal description of Algorithm C is given in Figure 5.
Following result is clear from the description Algorithm C.

Algorithms for Rotation Symmetric Boolean Functions 11

Algorithm B

Data structures: Cntr:# of orbits, Result[]: starting string of orbit, T : AV L tree
Input: Number of bits
Output: Starting string of every orbit and total number of orbits

1. Initialize Cntr = 0;
2.Store the decimal value of 1 0n−1 to some variable P
3. Do not store the value from P to RR of P - 1 in T
4. Take the string of all zeros as Orbit 0;
5. store its decimal form in Result[];
6. Cntr = Cntr + 1;
7. Take the string of first n− 1 zero bits and last bit One as Orbit 1;
8. store its decimal form in Result[];
9. while last < 2n do
10. Take the binary string s corresponding to next odd number
11. if s 6∈ T then
12. store decimal form d of s in Result[];
13. Cntr = Cntr + 1;
14. while s does not reappear do
15. bit-wise rotate the binary representation of s

to generate a set of strings S = {sk|k = 1, n− 1}
16. if d× 2k > 2n then store decimal form of sk in T if it is odd,

where k = r + 1 (by Lemma 3)
17. if d ≥ P then d=RR of P - 1
18. endwhile
19. endwhile
20. end

Fig. 4. Improved algorithm B for generating orbits for n-variable RSBF

Lemma 10 Worst-case time complexity of Algorithm C is 2n.

The space requirement for Algorithm C is much less than those of the pre-
vious algorithms, as it does not use the AV L tree.

The proposed Algorithm C is illustrated with an example below.

Consider n = 7. Thus, the maximum value of the corresponding decimal
number is 31. Orbit 1: All zeros.

Orbit 2: Starting string will be {061} as none of the rotational cousins of
{061} is of smaller value.

Orbit 3: Starting bit string of this orbit must be the next odd number, i.e.,
the bit-string {0512}, as none of the rotational cousins of {061} is smaller than
{0512}.

Orbit 4: Starting bit string of this orbit must be the next odd number (= 5),
i.e., {04101} as none of the rotational cousins of {0512} is smaller than {04101}.

Continuing in this manner, we find that up to Orbit 9 the consecutive odd
numbers form the starting strings of the respective orbits. Thus, the starting
string of Orbit 9 is {0314}. The next odd number is 17, i.e., {021031}. We observe
that 3rd left-rotate cousin of {021031} is {031021} (=9), which is less than 17.
Thus, we discard the number 17, and do not consider it as the starting number of
any orbit. For the next consecutive odd numbers between 19 nd 23, none of them

12 Subrata Das, Satrajit Ghosh, Parthasarathi Dasgupta, and Samar Sensarma

Algorithm C

Data structures: Cntr:# of orbits, Result[]: starting string of orbit
Input: Number of bits
Output: Starting string of every orbit and total number of orbits

1. Initialize Cntr = 0;
2. Take the string of all zeros as Orbit 0;

store its decimal form in Result[];
3. Cntr = Cntr + 1;
4. Consider the bit-string s corresponding to the next odd number;

store its decimal form in Result[];
5. while bit-string corresponding to s 6= {1n} do
6. if a number p has any of its rotational cousins pc < p then goto Step 8
7. take bit-string corresponding to s as the starting string of the next orbit
8. consider the bit string corresponding to the next odd number 9. endwhile
10. end

Fig. 5. Improved algorithm (without AV L tree) for generating orbits for n-variable
RSBF

have any smaller left-rotate cousin, and hence, they form the starting numbers
for the next three successive orbits. The algorithm continues in this manner, and
terminates successfully at Orbit 20.

5 Implementation of the Proposed Algorithms

The proposed algorithms have the same worst-case time complexities, and ex-
hibit drastic improvement in space requirements from Algorithm A through Al-
gorithm C. Algorithms A and B use the AV L tree, while the other two do not
require this data structure. Algorithm A was implemented in C language on a
32-bit PC running on Intel CPU under Windows environment having 2.27 GHz
clock speed. It could generate RSBF s up to 26 bits in reasonable time.

6 Conclusion

In this work, we investigated rotation symmetric Boolean functions. Our major
contributions include designing of certain efficient algorithms for generation of
RSBF s. Future possibilities of work include (i) possible reducing of the time
complexities, (ii) generating RSBF s with more than 30 variables, and (iii) gen-
erating cryptographically better RSBF s. The proposed algorithms are of great
importance as they can help to construct new cryptographically very strong
boolean functions.

References

1. Zvi Kohavi, Switching and Finite Automata Theory, 2nd Edition, Tata-McGraw Hill,
2008.

Algorithms for Rotation Symmetric Boolean Functions 13

2. J. Pieprzyk and C. X. Qu, Fast hashing and Rotatio-symmetric functions, Journal
of Universal Computer Science, pp. 20-31, vol. 5, no. 1, 1999.

3. P. Stanica and S. Maitra, Rotation Symmetric Boolean functions - Count and Cryp-

tographic properties, Discrete Applied Mathematics, vol. 156, no. 10, May, 2008.
4. P. Stanica and S. Maitra and J A Clark, Results on Rotation symmetric Bent and

Correlation immune Boolean functions in B. Roy and W. Meier (Eds.), FSE 2004,
LNCS 3017, pp. 161-177, 2004, International Assoc. for Cryptologic Research.

5. M.Hell, A. Maximov,and S. Maitra, On efficient implementation of search strat-

gey for RSBF, 9th International workshop on Algebraic and Combinatorila coding
theory, ACCT 2004, June 19-25, 2004, Bulgaria.

6. P.Sarkar and S. Maitra, Construction of rotation symmetric boolean function

with important cryptographic properties,Advances in cryptology,EUROCRYPT-
2000,Lecture notes in Computer Science,Vol-1807,Berlin 2000,PP 485-506.

7. ShaoJing Fu, Chao Li and LongJiang Qu, On the number of rotation symmetric

Boolean functions, Science China Information Sciences March 2010, vol. 53, no 3,
pp. 537?545.

8. A Canteaut and M Videau, Symmetric Boolean functions, IEEE Transactions on
Information Theory, vol. 51, no. 8, pp. 2791-2811, Aug 2005.

9. J Butler and T Sasao, Logic functions for cryptography - A tutorial, Proceedings of
Reed-Muller Workshop, Okinawa, Japan, 2010, pp. 127-136.

10. N. Deo, Graph Theory with Applications to Engineering and Computer Science,
PHI Learning Pvt. Ltd., 2004.

11. A menezes, p Van Oorschot,S Vanstone, Handbook of applied cryptogra-

phy,1997,CRC Press,Inc.
12. X Zhang, Hua Guo,Yifa Li,Proof of a Cojecture about Rotation Symmetric Func-

tions.

