
 

 
 
 
 

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA 
 
 
 

WORKING PAPER SERIES 
 
 
 

WPS No. 701/ July 2012 
 
 
 
 

Dual-homing of RNCs in UMTS Networks 
 

by 
 
 

Samir K Sadhukhan 
SSA, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata  700 104 India 

 
 

Swarup Mandal 
Wipro Technologies Kolkata, India 

 
 

& 
 
 

Debashis Saha 
Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata  700 104 India 



Dual-homing of RNCs in UMTS Networks 

Samir K. Sadhukhan 
IIM Calcutta, Joka, D. H. Road, Kolkata – 700104, India 

samir@iimcal.ac.in 
 

Swarup Mandal 
Wipro Technologies, Kolkata, India 

Swarup.mandal@wipro.com 
 

Debashis Saha 

MIS & Computer Sc group, IIM Calcutta, Joka, D. H. Road, Kolkata – 700104, India 
ds@iimcal.ac.in 

 
Abstract- In conventional UMTS cellular networks, during deployment usually a set of NodeBs is 
assigned to one Radio Network Controller (RNC), and a set of RNCs to one Serving GPRS Support Node 
(SGSN) for data services, as well as to one Mobile Switching Centre (MSC) for voice services. Operators 
thus far have considered single-homing of RNCs to MSCs/SGSNs (i.e., many-to-one mapping) with an 
objective to reduce the total cost over a fixed period of time. However, a single-homing network does not 
remain cost-effective any more when subscribers later on begin to show specific inter-MSC/SGSN 
mobility patterns (say, diurnality of office goers) over time. This necessitates post-deployment topological 
extension of the network in terms of dual-homing of RNCs, in which some specific RNCs are connected to 
two MSCs/SGSNs via direct links resulting in a more complex many-to-two mapping structure in parts of 
the network. The partial dual-homing attempts to increase link cost minimally and reduce handoff cost 
maximally, thereby significantly reducing the total cost in a post-deployment optimal extension. In this 
paper, we formulate the scenario as ILP problem convert into a state space search problem and then 
solve it using three meta-heuristic techniques, namely Simulated Annealing (SA) , Tabu search (TS) and 
Ant colony optimization (ACO). The comparative results reveal that, ACO based technique is more 
efficient among the other meta-heuristic techniques in solving dual-homing problem.  

Keywords- Network planning; Cellular network; UMTS; Dual-homing; Optimization; Simulated 
Annealing; Tabu Search; Ant Colony 

1   Introduction 
Post-deployment planning plays a key role in optimizing the total cost of operation for modern 
cellular networks (Demestichas etl, 1999; Saraydar etl, 2000, Demrikol  etl, 2001). The dynamic 
nature of subscriber’s profile makes the operation of cellular networks become sub-optimal with the 
passage of time in terms of the operational cost, and, hence, re-planning of networks needs to be done 
from time to time, with the existing deployment as a set of constraints (to protect investments). 

An operator usually face one of the following three possible scenarios in post-deployment tuning 
phase: (i) both new call traffic and handoff traffic increase, (ii) new call traffic in-creases but handoff 
traffic does not, (iii) new call traffic does not increase but handoff traffic does. The first two cases 
usually occur when subscribers’ density increases permanently. This can be addressed in post 
deployment planning phase by splitting cells (where capital expenditure as well as handoff cost will 
increase) or by redefining the connectivity of cells and switches. The third case may arise due to a 
gradual change in mobility pattern of the existing subscriber base over a long period of time (Clayirci 
& Akyildiz, 2002). This problem can be addressed by regrouping cells into new clusters i.e., by 
changing the connectivity of NodeBs to RNCs and RNCs to MSCs/SGSNs (Quintero & Pierre, 2002; 
Pierre  & Houeto 2002; Diallo etl, 2006; Amzallag etl 2007). 

However, this cannot take care of situations where handoff increases with no increase in total 
traffic due to periodic (temporal) changes of subscribers’ locations. If there is a clear pat-tern of this 
temporal mobility of subscribers, a multi-homing consideration (where many NodeBs are connected to 
one RNC, and many RNCs are connected to one MSC/SGSN) will be a useful strategy in post 
deployment tuning stage. Obviously, the multi-homing concept can be implemented at two levels, 
namely, in the first level, multi-homing of  NodeBs, and, in the second level, multi-homing of RNCs. 
In this paper, we have considered dual-homing of RNCs, where some RNCs (to be decided optimally) 
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are connected to two MSCs/SGSNs (as shown in Fig. 1) to reduce handoff cost, unlike single homing 
where one RNC is connected to one MSC/SGSN only. In order to achieve an optimal selection of 
RNCs from the set of potential RNCs to be dual-homed, we have proposed three meta-heuristic 
techniques in this work. 

 

 
Figure 1. Change in handoff type due to dual-homing of RNC in a UMTS network (only relevant part of the UMTS network is shown; 
dotted lines indicate additional connections) 

 

We define three types of handoff, namely simplest, simple and complex. We call a handoff 
simplest when no MSC/SGSN is involved in the handoff process. In case of simplest handoff, one 
RNC handles the whole handoff process. On the contrary, a simple handoff involves one (and only 
one) MSC/SGSN in the handoff process, whereas a complex handoff involves two MSCs/SGSNs. 
Obviously, simplest handoff cost is negligible with respect to complex handoff cost. Dual-homing of 
RNC is attractive for operators because it converts many complex handoffs to simple handoffs. For 
example, the complex handoff between NodeB 3 and NodeB 4 has changed to simple handoff due to 
dual-homing of RNC 2 in Fig. 1. 

Researchers have traditionally formulated the NodeB-RNC (earlier known as cell-switch) 
assignment problem as a combinatorial optimization problem and have solved it using meta-heuristics 
(Demrikol  etl, 2001;Quintero & Pierre, 2002; Pierre  & Houeto 2002; Diallo etl, 2006) or domain-
specific heuristics (Merchant & Sengupta, 1995; Saha etl, 2000; Bhattacharjee etl, 2004; Mandal, 
Saha & Mahanti,  2004, 2005). However, till date they all have considered single homing criteria, and 
have excluded the multi-homing scenario. Recently, we attempted to solve the dual homing of RNCs 
to MSCs in 2.5G networks with a suboptimal greedy algorithm (Sadhukhan etl, 2007) following the 
approach given in (Din &Tseng, 2002) which, however, deals with ATM networks (not cellular) and 
employs the meta-heuristic genetic algorithm (GA). The state space formulation of the problem was 
absent in (Sadhukhan etl, 2007), and, hence, we could not devise any domain specific heuristic there. 
In the current work, we have extended our earlier work to UMTS networks for dual homing of RNCs 
to MSCs/SGSNs and solved it using three separate techniques. We have used simulated annealing 
(SA) (Demrikol etl, 2001), tabu search (TS) (Pierre & Houeto, 2002) and ant colony optimization 
(ACO) (Colorni,Dorigo & Maniezzo, 1992) meta-heuristic techniques to solve the dual-homing 
problem and then compared their solution quality.  It is found that ACO based technique is better than 
SA and TS based techniques.  

The paper is organized in five sections. Following Section 1 that introduces the dual homing 
assignment problem, Section 2 presents an integer linear programming (ILP) formulation of the 
problem. Section 3, Section 4 and Section 5 discuss the SA, TS and ACO based solution 



methodologies. Section 6 contains the experimental results with discussion, and Section 7 concludes 
the paper. 

2   Mathematical Formulation 

Let us consider that, in the UMTS network of a mobile telecom service provider (MTSP), there are 
NodeBs,  RNCs,  MSCs and  SGSNs, whose locations are known. Let  denote the 

set of NodeBs,   denote the set of RNCs,  denote the set of MSCs and 
 denote the set of SGSNs. From the existing single homing network, the initial 

assignments of NodeBs to RNCs to MSCs and SGSNs are known a priori. Throughout this 
formulation, we use a small letter to denote a member of the set represented by the corresponding 
capital letter; for example, , . Moreover, we assume NodeB  and NodeB  are different 
( ). Similarly we assume , ,  

Let us now consider the following notations: 

, if RNC  is assigned to MSC  (new link) in dual homed network, 0, otherwise 

, if RNC  is assigned to SGSN  (new link) in dual homed network, 0, otherwise 

, if NodeB  is assigned to RNC  (old link) in single homed network, 0, otherwise 
 

, if RNC  is assigned to MSC  (old link) in single homed network, 0, otherwise 
 

, if RNC  is assigned to SGSN  (old link) in single homed network, 0, otherwise 
 

 is the amortized cost of the link between RNC  and MSC  

  is the amortized cost of the link between RNC  and SGSN  

  and   are the capacity in circuit switching (number of calls per unit of time) and 
capacity in packet switching (bits per second) of RNC . 

and  are the capacity in circuit switching (number of calls per unit of time) and 
capacity in packet switching (bits per second) of MSC  and SGSN  
respectively. 

 is the amount of voice traffic produced by RNC  and destined to MSC  

 is the amount of data traffic produced by RNC  and destined to SGSN  

 is the cost per unit time for complex handoff between NodeB  and NodeB   
involving two MSCs 

 is the cost per unit time for complex handoff between NodeB  and NodeB   
involving two SGSNs 

 Ratio of cost of a complex voice handoff and cost of a simple voice handoff   
 Ratio of cost of a complex data handoff and cost of a simplest data handoff   

 



 
 

 Figure 2: Dual-homing of RNC which converts complex handoff to simple handoff  

Figure 2 shows the conversion of the complex handoff occurring between NodeB  and NodeB  to 
simple handoff due to the new link between RNC and MSC. Let us define the following composite 
variables:  ,   Then  is equal to 1 if there is an old path from NodeB  
to MSC . Similarly, we define,  , . Then  is equal to 1 if there is a 
path NodeB  to MSC  such that there is an old link between NodeB -RNC and new link between 
RNC- MSC . 

 
Then,   is equal to 1 if NodeB  and NodeB  are under MSC  

using at least one new path. Moreover,    is equal to 1 if NodeB  
and NodeB  are under one MSC using at least one new path. The operator  stands for logical OR. 

 
Let us define the following variables:  ,   Then  is equal to 1 if there is 

a path from NodeB  to SGSN . Similarly, we define,  ,  .Then  is 
equal to 1 if there is a path NodeB  to SGSN  such that there is an old link between NodeB -RNC 
and new link between RNC-SGSN . 

 
Then,   is equal to 1 if NodeB  and NodeB  are under SGSN  using 

at least one new path. Moreover,   is equal to 1 if NodeB  and 
NodeB  are under one SGSN  using at least one new path. 

 
  Therefore the total reduction of complex handoff to simple handoff in the dual home network will 

be 
 

 

                 

 

 
The total cost of the new links in the dual-home network will be  
 

 

 
 
The link constraints are 
 

+  



 
The link constraint signifies that there could be at most one link (either an old link or a new link or 

no link) between RNC  and MSC . 
 
Similarly, +  
 

 

 
The above constraint signifies that RNC  can be connected to at most one MSC using a new link. 
 
Similarly,  
 

 

 
The capacity constraints can be considered in two ways: 
 

i. Worst case capacity constraints (when the capacity of RNCs  are considered)  are 
 

 

 

 
ii. Best case capacity constraints (when the capacity utilization of RNCs are considered) are 

 
 

 

 

 
Therefore, the dual-homing problem can be formulated as 
 
Maximize      (A)  
 
Where 

        (1) 
         (2) 

                 (3) 
               (4) 

             (5) 
         (6) 

         (7) 
         (8) 

 
Subject to 
 

          (1) 
               (2) 



           (3) 
          (4) 

       (5) 
             (6) 
 

So, here problem is to find the joint dual homing assignment matrix,  and   while 
maximizing the reduction of total cost given by the expression, (A) subject to the constraints indicated 
in the equations (1) – (6). 

The objective function, formulated above, is not linear and contains boolean operator ‘OR’ and 
product of binary variables. The boolean operator ‘OR’ can be converted to arithmetic addition as 
follows: 

– , where  and  are binary variable.  

The nonlinear term  (i.e., the product of two binary variables) can be converted to linear form 
using additional variable  (  is binary too) and by adding the following type of constraints in 
the above formulation. 

    
    

     
Similarly, product of more than two binary variables can be converted to linear form using 

additional binary variables and constraints. Thus, the above formulation of the problem can be 
converted to a 0-1 integer linear programming (ILP) problem.  An exhaustive enumeration technique 
for assigning RNCs in dual homing problem requires checking of  combinations to solve. 
When the problem size is large, meta-heuristic techniques may be suitable to solve such problems.  

A state  is defined by a set of connections,  represented in the form of a 
matrix. A connection  is an ordered pair -   which implies that RNC  has been assigned 
(connected) to MSC . The solution state space of the problem is the entire set of sets of connections 
generated by all possible and feasible combinations of  -  pairs. To illustrate the concept, let us 
show a toy UMTS network of three MSCs  and six RNCs  (NodeBs are omitted for the sake of 
simplicity) in Fig. 3. Spare capacities of MSCs are shown in square boxes next to them in Fig. 3.  

 

Figure 3. Initial single-home network and its state representation 

 (Fig. 3) represents the initial state for the network; we assume that a state matrix represents the 
network in terms of a connectivity matrix whose rows indicate RNCs and columns indicate MSCs. 
State representation of a network is explained in more details in Section 6. Let us consider that  is the 
initial single-homed network that needs post-deployment tuning now. We shall use this toy network in 
explaining our proposed algorithms in subsequent sections. For simplicity, we assume only voice 
network and cost of a simple handoff is negligible compare to complex handoff. Table 1 shows the 
capacities of RNCs, and Table 2 shows the complex handoff costs between RNCs for . Table 3 shows 
the amortized cost of the high speed links from RNCs to MSCs. 

 
       TABLE 1. RNC capacity      



 
 
             TABLE 2. Handoff Cost  for S0                                TABLE 3. Link Cost 

 
The sum of handoff cost and link cost of the initial state  is 206. 

3. SIMULATED ANNEALING TECHNIQUE 

Simulated Annealing (SA) is a global optimization algorithm that can be applied to solve various 
combinatorial optimization problems. Annealing is a metallurgical process. It is basically heating 
followed by a slow cooling down process of a molten material in order to increase the crystal size and 
hence decrease their structural defects. Heat causes the atoms to get energized from their initial 
positions (a local minimum), wander randomly in states of higher energy, and then slow cooling gives 
the atoms chance to find configurations with lower internal energy than the initial state. SA-based 
techniques follow this approach for combinatorial optimization. By analogy with metallurgical 
annealing, SA randomly finds a neighbour of a current state, and then replaces the current state with 
this neighbour based on an acceptance probability which depends on the costs of the two states and 
the temperature of the system. When the temperature of the system is high (i.e., in the beginning), the 
probability of an ‘uphill’ move (i.e., acceptance of a worse solution) is more. This prevents the search 
process from being stuck at a local optimum. However, as the temperature of the system decreases 
slowly over time, the probability of accepting a worse solution decreases, and, at considerably low 
temperatures, almost all moves are ‘down-hill’. When temperature becomes ‘zero’, the system freezes 
giving the lowest cost state as output. 

The algorithm we have used here is not a pure SA algorithm. A pure SA algorithm does not keep 
track of the best solutions found in previous iterations. Thus, a pure algorithm, at the end of the 
iterations, always returns the current state (i.e., the state obtained at the last iteration) to be the 
solution. In contrast, our modified SA algorithm returns the best result of all the states visited during 
the iterations. We have found that, in several cases, this can be a significant improvement over the 
solution returned by the pure SA. 

In SA, we start with an initial solution marked as the current state. Then, at each iteration, a child 
node is selected as the neighbour (the leftmost feasible child of the current state). We shall define 
neighbour below. If the acceptance probability of the selected state is greater than some threshold, the 
selected state is accepted for further exploration and is made the current state. If the selected state is 
not accepted, the next child is taken as the neighbour (i.e., the one to the right of the previous child). 
In this way the search continues. Typically, in this formulation, all children of a state are ‘neighbours’ 
of the state. 

Neighbourhood Function: We define neighbourhood function of a state as a function which 
produces feasible children of the state. Neighbourhood generation of one example initial state  (for 
a toy network of 4 RNCs and 3 MSCs) is shown in Fig. 4. All children of a state may not be feasible 
because some child states may correspond to infeasible network operation. We need to ignore them. 
So only the feasible children (without repetitions) of a parent state are its neighbour at the next level.  

In the example shown in Fig. 4, , , ,  and  are children (neighbours) of the current 
initial state . Neighbours of a node are generated by changing one connection of the node at a time, 
thus generating all permutations which differ from the parent state in exactly one RNC. In the shown 
example,  differs from the parent at RNC 1,  differs in RNC 2, differs in RNC 3,  and  
differ from the parent at RNC 4 and so on. Hence, all pairs of nodes that differ from each other in 
exactly one RNC are neighbours of each other also.  



 
   Figure 4. Neighbourhood nodes (states) of an initial node (state) 
 
Reachability of Neighbourhood Function: The neighbourhood function we are using is exhaustive 

i.e., all possible combinations of RNC-to-MSC assignments are generated in this search tree. Hence, 
every node can be reached from every other node and the reachability criterion is satisfied. 

Selection Criteria for new current state: If the cost  of any randomly chosen neighbour  of the 
current state  is less than the cost  of current state , then the neighbour  is selected as the new 
current state for the next iteration. Otherwise, a random number  between  and  is chosen 
from a uniform distribution. If , the neighbor  is selected as the new current 
state (  is the current temperature, and function  is defined below). Otherwise, the present current 
state is propagated to the next iteration as the new current state.  is the acceptance 
probability and is defined by the Boltzmann probability factor as follows: 

, if   
   where   otherwise  
Annealing Schedule: Typically, update of the temperate  is done by using the relation  

(  is known as the cooling rate) after every  iterations, starting with the initial temperature . 

Thus, the various parameters for the SA algorithm are: 

• , the cooling rate i.e., the rate at which the temperature decreases   
• , the initial temperature 
• , the maximum number of iterations at a particular temperature 
• , the maximum number of consecutive acceptance of worse solutions 
• , the maximum number of iterations,   

 
Initial Feasible Solution: First an initial solution has to be generated which becomes the current 

state  for the very first iteration. To generate an initial feasible solution, we take the following 
heuristic approach (algorithm is given below). We maintain internally a table which stores the 
possible handoff reduction that can be achieved by connecting an RNC to an MSC. We connect that 
RNC to the MSC only if (i) the RNC is not already dual-homed, (ii) the reduction achieved is greater 
than the link cost, and (iii) the capacity of MSC is sufficient to accommodate the capacity of the RNC. 
Since we are designing a dual-homing approach, an RNC cannot have more than 2 links i.e., an RNC 
cannot be connected to more than two MSCs. After connecting an RNC to an MSC, the capacity of the 
MSC is reduced by an amount equal to the capacity of the RNC. We simply try to connect RNCs  to 
MSCs one after another in this greedy fashion provided the capacity constraint and link constraint are 
satisfied for each new connection. This ultimately results in a complete solution after which no more 
connections are possible. This is then taken as the initial feasible solution. Then the main algorithm 
sets out to improving this initial solution.  

 

for   to MAX_NO_OF_MSCS 
Algorithm GENERATE_INITIAL_SOLUTION: 

{    for  to MAX_NO_OF_RNCS 
    {     if RNC  is connectable to MSC  (i.e. link cost from RNC  to MSC  < handoff cost reduction  



& spare capacity of MSC  is   capacity of RNC  & number of links of RNC  is )  
             {   connect  to  
                  decrement the spare capacity of MSC  by the capacity of RNC  
                  increment the number of links of RNC  by 1 
         update the tables that store information about the handoff cost and handoff cost reduction 
             } 
     } 
} 
 
The cost of the initial solution is also computed. The initial solution becomes the current solution 

for the first iteration. The iteration steps are performed in the main annealing process.  
Algorithm SA 
Step 1. (initialization) ,  (cooling_rate), ) ,   
Step 2. Find an initial feasible solution .   = cost of . Set  = ,  = . 
Step 3. Set  as the current state. 
Step 4.(termination) IF  > ,  exit with output node  and cost . 
Step 5. Randomly select a neighbour of state . 
Step 6. Call the selected neighbor state   = cost of .  
Step 7. Check if  is the best solution found so far; if yes, store it as  and its cost   as . 
Step 8. Generate a random number  between 0 and 1. Compute the acceptance probability as follows: 

              , if   
           otherwise 
Step 9. IF  ,  select  to be the next state  and  = cost of  . 
Step 10.  
Step 11. IF  mod  then   
Step 12. GOTO Step 4. 

 
Example: For the network of Fig. 3, we take SA parameters as =3000, =50,  =0.5,  =1000. 

Link cost of single home network = 17+17+10 = 44. Total handoff cost of single home network = 
9+14+19+4+24+19+5+6+9+4+5+14+6+24 = 162. Total cost of single home network = Link cost + 
Handoff cost = 44+162 = 206. The state representation of the toy single home network is also given in 
Fig. 3 as . To generate the initial solution, connections are attempted one after another in a directed 
manner i.e., in the order 1-to-1, 2-to-1, 3-to-1, 4-to-1, 5-to-1, 6-to-1, 1-to-2, 2-to-2, 3-to-2 and so on. 
The connections already present in  are ignored. If a connection is found to be feasible (i.e., 
capacity and link constraints are satisfied) then it is included. The initial solution thus generated and 
the RNC-RNC handoff costs for that solution are given in Fig. 5(a) and Fig 5(b). 

   
 Figure 5.  (a) Intial solution    (b) Handoff costs 
 
Total cost of this solution = Single home link cost + Dual home link cost + Handoff cost=44+ 

(36+20+35) + (4+5+6+ 4+5+6) = 165. Hence, cost reduction = Single home cost – dual home cost = 
206 – 165   = 41 (assuming cost of a simple handoff is negligible).  



 
  
   Figure 6. Neighbour generation. Only feasible nodes are shown. 

Now, taking this initial solution as the root node (current node), the tree traversal starts in a 
breadth first manner. Children are accepted probabilistically and new solutions are checked for 
improvements over the previously found best solution.  The leftmost feasible child of the current node 
and the corresponding handoff matrix are shown in Fig. 6. 

Cost of this child (neighbour) = Single home link cost + Dual home link cost + Handoff cost = 
44+(20+35)+(4+5+6+9+14+4+5+6+9+14) = 175. Hence, cost reduction=Single home cost – dual 
home cost = 206 – 175 = 31. Also, acceptance probability = = 0.996672. 
Thus, at initial high temperature, we see the probability of accepting a worse solution is very high, 
and we accept it.  The tree traversal continues in this fashion, and each child is checked for 
acceptance. After every 50 iterations, the temperature of the system is halved (  =0.5). We stop when 
the iteration count reaches the a priori set value of . 

   
 Figure 7. (a) New solution     (b) Handoff costs 

4. TABU SEARCH TECHNIQUE 

 
This process is very similar to SA. The word “tabu” describes a sacred place or object. Things that 

are tabu must be left alone and should not be visited or touched. Tabu Search extends hill climbing by 
this concept– it declares solution candidates which have already been visited as tabu. Hence, they 
must not be visited again, and the optimization process is less likely to get stuck to a local optimum. 
The simplest realization of this approach is to use a list of tabu, which stores all solution states that 
have already been visited. If a newly generated neighbour can be found in this list, it is not accepted 
but rejected right away. Of course, the list cannot grow infinitely but has a finite maximum length . 



The tabu search (TS) algorithm we are using is straightforward. We start with an initial solution as 
current solution (say ) which can be found randomly. In every iteration of TS, we find a new solution 
by making local movements on this current solution. The neighbourhood function is used to find all 
neighbours of the current state  i.e., the neighbourhood set of . The next solution state is the best 
solution among all the possible neighbours of  which are not already in the tabu list. Here, we use the 
same state space formulation and neighbourhood function as those used in SA. 

Typically there are two kinds of tabu lists- (i) a long term memory maintaining the history through 
all the exploration process as a whole, and (ii) a short term memory to keep the most recently visited 
tabu movements. The first approach can actually produce the optimal solution if the state space search 
algorithm is exhaustive and the reachability criterion is satisfied. We use the second approach for 
faster solution. The tabu list has a finite length which is a parameter for the process. Whenever a case 
arises in which we have to add a solution to the tabu list and the list is full, we first remove the oldest 
solution from the list and then add the new one. 

Neighbourhood Function: The neighbourhood generation used here is similar to that used in SA 
(Fig. 6). However, unlike a single neighbour in SA, all neighbours of the current node are generated. 
Then, the best child (neighbour), not already in the tabu list, is selected as the current node and search 
continues in the same manner. The various parameters needed for the TS algorithm are: 

 
• , the length of the tabu list i.e., how many recent solutions are to be remembered 
• , the maximum number of iterations 
 
Initial Feasible Solution: Same approach is used as it is in the case of SA. 

Algorithm TS 

Step 1. (initialization) , ,  (size of tabu_list)  
Step 2. Find an initial feasible solution . from the state space.  = cost of . Set  = ,  =  
Step 3. Set . as the current state. 
Step 4. (termination) IF  > ,  exit with output node  and cost . 
Step 5. Generate the feasible neighbour set  of the state . 
Step 6. Select the best state from   which is not in the tabu_list.  Call this state .   = cost of .  
Step 7. Check if   is the best solution found so far; if yes, store it as  and its cost  as . 
Step 8. Add   to the tabu_list. 
Step 9. Select   to be the next state  and  = cost of . 
 Step 10.  
Step 11. GOTO Step 4. 

 
Example: For the network of Fig. 3, we take parameters =3, =2 (size of tabu list). Initial solution 

is generated similar to the one found in SA and hence is as given in Fig. 5(a). Total cost of this 
solution is 165 and cost reduction is 41. This solution ( ) is put into the tabu list as the first entry 
(Fig. 8(a)).  

Tabu Search Process: As shown in Fig. 6, the initial solution is made as the root node. Of the three 
feasible children in level 1, the costs (from left to right respectively) are 175, 183 and 178. Hence, the 
best child is the leftmost child ( ), and it is not in the tabu list. It is accepted, made the current node 
(to be explored next) and entered into the tabu list. The list now contains  and  (Fig. 8(b)).  

 
      Figure 8(a)     (b)   (c) 

  At level 2 (iteration 2), there are three feasible children. The costs are 193, 155 and 188 
respectively (from left to right). Of these, the best child is accepted i.e., , the middle one (cost=155) 
which is not already in the tabu list and entered into the tabu list. The tabu list now contains  and  
(Fig. 8(c)).   is then made the current node and search continues in this way. 

5   ANT COLONY OPTIMIZATION TECHNIQUE   



This meta-heuristic is based on real-world behaviour of ants (Colorni, Dorigo, & Maniezzo,  1992). 
When ants set out to search for food, they initially wander randomly. However, as the ants move from 
colony to food source and back, they deposit a special type of chemical called ‘pheromone’ on their 
trail which helps inform subsequent ants about the path to the food. Pheromones are volatile and 
evaporate with time. Thus, a short path, which takes less time to traverse, can accumulate more 
pheromone on it than a longer path which takes more time. Ants travel probabilistically on paths 
having more pheromone. By a positive feedback mechanism, the shorter paths thus accumulate more 
pheromone, and more and more ants travel on those paths, ultimately leading to all ants moving on the 
shortest path i.e., leading to convergence. 

ACO Design Approach: We create a specialized graph for mapping the RNC-MSC assignment 
problem for the solution. Each ant starts its tour at a RNC wherefrom it can move to any of the MSCs. 
A RNC to MSC move by the ant results in the assignment of that RNC to that particular MSC. 

 
   Figure. 9: Traversal of an ant 

In Fig. 9, the black lines show the initial single home connections. The tour of the ant (shown by red 
lines) starts from RNC 1, and then successively continues through MSC 1, RNC 3, RNC 4, MSC 3 and 
stops at RNC 2. The solid red lines show those parts of the tour which actually results in a RNC to 
MSC assignment while the dotted red lines depict those parts of the tour which are not actually 
significant for the assignment. Thus in this case the dual homed connections are RNC 1 to MSC 1 and 
RNC 4 to MSC 3. Pheromone is deposited only on paths RNC 1 to MSC 1 and RNC 4 to MSC 3. 
Subsequent ants travel similarly starting from RNCs 2, 3, 4, 1, 2, 3… and so on. 

Transition rule: The probability of a move by the ant from RNC  to MSC  (path - ) is given by 
the function: 

 assuming  

 
where, 
 

 denotes the amount of pheromone on path ( - ) 
 is a parameter to control the influence of  

 is the desirability of path ( - ) 
 is a parameter to control the influence of  
 is the set of all MSCs for which the path ( - ) is feasible 
 
The desirability of path -  is taken as the handoff reduction possible by assigning RNC  to MSC . 

The more the handoff reduction, the more desirable is the path. After an ant  has moved from RNC  
to MSC  or has checked all MSCs for moves from RNC  and has not moved, we next bring the ant to 
another RNC to prepare for the next move. For this we create a list of all those RNCs which are yet to 
be unexplored and then randomly choose a RNC from that list, and then bring the ant back to the 
randomly chosen RNC for the next move.  

Pheromone Update: This process of path assignments and bringing back ant to unexplored RNC 
continues until all RNCs have been traversed. Then we stop the process, analyze this tour to compute 
how much cost reduction we have achieved and then update the pheromone concentration on the paths 
by the following formula: 

 where, 



 is the amount of pheromone on a given path -   
 

 is the rate of pheromone evaporation (the pheromone evaporation coefficient)  
 

 is the amount of pheromone deposited by the ant , typically given by  , if ant  
had traversed the path - , 0, otherwise; where  is the cost reduction achieved by the  ant’s tour 
 
Parameters for Ant Colony Optimization: The various parameters for the ACO algorithm are: 

•  , the pheromone evaporation co-efficient ( ) 
•  & , the controlling weightage parameters for the path probability function. (Typically 

equal weightages are given for  and  equal to 1.0). 
• I, the maximum number of iterations 
•  , the initial pheromone concentration on all paths 

   
.  
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now let us solve the example of Fig. 3. We are taking initial pheromone concentration on all paths 

to be 1.0 and pheromone evaporation co-efficient  = 0.5.  =  =1.0. From Table 3 it is found that 
the link cost of single home network = 17+17+10 = 44 and from Table 2 it is found that the total 
handoff cost of single home network = Sum of all handoffs = 162. Hence, the cost of single home 
network = link cost + handoff cost = 44+162 = 206. The initial single home network and initial 
pheromone concentration are shown in Fig. 10(a) and Fig. 10(b):  

 

Algorithm ACO 
 
Initialize: Set ITERATIONS = 0. 
    Set MAX_IT = max. iteration count.  
    Set Φinitial = initial pheromone concentration.  
    Set ρ = pheromone evaporation co-efficient. 
    Set best_state = single home state S.   
    Set best_cost = Cost of S. 
    Set initial pheromone concentration on all paths = Φinitial. 

Mark all RNCs and MSCs as ‘unexplored’. 
WHILE ITERATIONS ≤ MAX_IT  
    Select an unexplored RNC as current RNC j. 
    WHILE (true) 
        WHILE there exists an unexplored MSC k 
            Calculate Pjk = (φjk.hjk)/∑m( φjm .hjm) 
            Generate a random number R in (0,1). 
            IF R > Pjk 
                Move ant from RNC i to MSC j. 
                Assign RNC j to MSC k. 
                Break.  
            ELSE 
                Mark MSC k as ‘explored’. 
            END IF 
        END WHILE 
        Mark the current RNC j as ‘explored’. 
        IF there exists another unexplored RNC j 
            Bring ant to RNC j. 
            Mark all MSCs as ‘unexplored’. 
        ELSE 
            Break. 
        END IF 
    END WHILE 
    Construct the solution S′ from ant’s tour.  
    Set C′ = cost of S′. 
    IF C′ < best_cost  
        Set best_state = S′. 
        Set best_cost =  C′. 
    END IF 
    Update pheromone concentration on all paths.    
    Set φjk = (1-ρ) φjk + ρ Δφjk           
    ITERATIONS = ITERATIONS + 1 
END WHILE 

    

 



   
         Figure. 10 (a) Initial state   (b) Initial Pheromone Concentration  

 
Iteration 1:  The first RNC i.e., RNC 1 is chosen as the starting position of the ant. From RNC 1, ant 

can move to MSCs 1 and 2 resulting in handoff reductions of 0 and 46 (9+9+14+14), respectively, as 
it is evident from Table 2. The move from RNC 1 to MSC 1 is thus not feasible. The amortized link 
cost between RNC 1 and MSC 2 is 36.00 (from Table 3) which is less than the handoff reduction i.e., 
46 (cost constraint), and capacity of RNC 1 i.e., 480 is less than spare capacity of MSC 2 i.e., 1713 
(capacity constraint). Hence the move from RNC 1 to MSC 2 is feasible. Being the only feasible 
move, the move from RNC 1 to MSC 2 has a probability 1. So ant moves from RNC 1 to MSC 2 i.e., 
RNC 1 is assigned to MSC 2 and becomes dual-homed. Spare capacity of MSC 2 is now reduced to 
1713-480 = 1233. Now mark RNC 1 as explored. The updated handoff costs and MSC spare capacity 
after this assignment are shown in Fig. 11(a) and Fig. 11(b). 

  
 Figure 11(a). Handoff Costs      (b) Spare capacity of MSCs 

 
The current partial solution (Fig. 11(c)) is (Ex signifies that a RNC has been explored): 

 
   Figure 11 (c). Partial Solution 

 
From MSC 2, we now bring the ant back to one of the unexplored RNCs, say RNC 3. From RNC 3, 

ant can move to MSCs 1 and 2 resulting in handoff reductions of 38 (19+19) and 22 (5+5+6+6), 
respectively, as it is evident from Fig. 5(a). Also, the amortized link cost between RNC 3 and MSC 1 
is 20 (from Table 3) which is less than the handoff reduction i.e., 38, and capacity of RNC 3 (i.e., 318) 
is less than spare capacity of MSC 1 (i.e. 1389). So the move from RNC 3 to MSC 1 is feasible. The 
amortized link cost between RNC 3 and MSC 2 is 26.00 (from Table 3) that is greater than the handoff 
reduction i.e., 22. So move from RNC 3 to MSC 2 is not feasible. 

 The move from RNC 3 to MSC 1 has probability 1 being the only feasible move. So ant moves 
from RNC 3 to MSC 1 i.e. RNC 3 is now dual-homed and assigned to MSC 1.  Spare capacity of MSC 
1 is now reduced to 1071 (1389-318=1071). RNC 3 is marked explored. The updated handoff costs 
and MSC spare capacities after this assignment are as follows (Fig 12(a) to Fg. 12(c)) 



 

  
 Figure 12(a). Handoff Costs      (b) Spare capacity of MSCs 
 
The current partial solution is: 
 

 
 Figure 12 (c). Partial Solution 
 
Similarly the ant will move from other unexplored RNCs to MSCs to complete the first iteration. 

Cost of this solution = Link cost + Handoff cost = 136+(4+5+6+4+5+6)=166 
Hence cost reduction=Cost of Single home network – Cost of Dual home network = 206 – 166 = 40 
After first iteration, pheromone concentrations on all paths are updated. Pheromone is deposited on 

paths RNC 1 to MSC 2, RNC 2 to MSC 3 and RNC 3 to MSC 1. Amount of pheromone deposited is 
 = 0.5*40 = 20. Previous pheromone on all paths become ( )*1.0=0.5. 

 
Here the best solution (Fig. 13(a)) and pheromone concentration (Fig. 13(b)) found after the first 

iteration are shown below: 

   
  Figure 13 (a). Partial Solution     (b) Pheromone concentration 
 
Subsequent iterations: In iterations 2, 3, 4, 5, 6 and so on the starting RNC of ant is taken 2, 3, 4, 5, 

6, 1, 2, 3… and in this way the iterations continue. Costs of all solutions are calculated and checked if 
they are better than the previously found best solution. However, we see that the solution produced in 
iteration 2 (Fig. 14) is the best solution. Pheromone concentrations on the good paths like RNC 2 to 
MSC 3 and RNC 5 to MSC 3 increase over time as more and more ants follow these paths.   



 
        Figure 14.  Solution in iteration 2 
 

 

7.  RESULTS AND DISCUSSIONS 

 
We divide a rectangular area into multiple hexagonal NodeBs created using a non orthogonal Cartesian 

system inclined at . Each NodeB has exactly six neighbouring NodeBs except the boundary NodeBs that have 
less than six neighbouring NodeBs. A specified set of RNCs and MSCs are placed randomly in some NodeBs such 
that an MSC is co-located with an RNC. Subsequently, NodeBs are assigned to RNCs, and RNCs are assigned to 
MSCs using nearest neighbour distance. 

After the creation of the above synthetic UMTS single home network architecture, voice handoff costs for 
neighbouring NodeBs are generated from direction based mobility of the users (Sadhukhan etl, 2010). Amortized 
cost for a link from NodeB to RNC and RNC to MSC is taken proportional to the physical distance. Complex 
voice handoff costs between RNCs are calculated based on handoff cost between NodeBs. Spare capacities of 
MSCs and capacities of RNCs of the network are generated using capacities of NodeBs which are generated from 
a uniform distribution. 

Algorithms SA, TS, ACO are run for 100 instances, and average solution cost is recorded against the triplet 
(MSCs, RNCs and NodeBs). Fig. 15 compares the algorithms with respect to average solution costs. The initial 
cost is taken as the cost of the single home network. For each dual-homed architecture solution, the reduction in 
handoff cost for the network is calculated, considering the cost of amortized link, subject to the capacity 
constraints of the MSCs and the RNCs. For TS, we have taken the tabu list size is equal to 10 and maximum 
number of iteration is equal to 1000. Average solution costs obtained by ACO are better than SA and TS with 
increase in problem size.  

 
   Figure 15. Dual-home solution costs 

 

8. CONCLUSION  

 
We have formulated the selective dual homing scenario of RNCs for post-deployment tuning of an existing 

single home UMTS networks as an ILP problem. Dual-homing of RNCs reduces the handoff cost but additional 
capacities are required at the MSCs/SGSNs in the network. The problem is difficult to solve in polynomial time as 



it falls into NP-Complete category (Garey & Johnson 1979). We have then mapped the dual-homing problem 
into a state space and solved the problem using SA,TS and ACO (meta-heuristic) algorithms. It is found that 
ACO technique is capable of finding good quality solutions which are better than those obtained by SA or TS. 
The technique will be helpful to the operators because the proposed solution can be implemented with minor 
changes in the protocol stack of the existing standards. 
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Appendix:  
 
A. Non-orthogonal Cartesian System:   

 
 
The axes are inclined at . The distance between two cells  and   is  
 

 
 

 
 
B. Calculation of amortized cost of cable: 
 
Let the NPV of the cable is  per unit length and its life is  time unit. The total number of handoff during 
the life of the cable is , where  is the mean handoff rate (i.e, expected number of handoff per 
time unit). So the amortized cost per unit of cable per handoff is  . If the total cable required is  unit 

and   be the number of handoffs per time unit then the amortized cost of cable per time unit is  . 
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