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Abstract 
 
Analytic expressions for node centrality and network centralization measures based on degree, 
betweenness, closeness, and eigenvector centrality are derived for network topologies with 
varying levels of decentralization. A solution to known difficulties related to normalization in 
computing graph centralization using eigenvector centrality is proposed. The correlations 
between these centrality measures are analyzed. Findings reveal that these measures are highly 
sensitive to the degree of decentralization in the network. The analytical expressions of these 
measures would be useful to get deeper insights into the sensitivity of these measures to the 
underlying structure and in approximating their values for resembling empirical network. 
 
Keywords: Centrality, centralization, eigenvector, network topology, correlation, decentralized 
network 
 
1. Introduction  

 
Complex systems theory helps in understanding emergent and collective phenomena in 
economic, organizational, and social systems that may warrant preemptive actions to minimize 
possible negative impact due to its emergent behavior in the society. Different types of network 
structures are used to represent the interaction and information flow among the agents in a 
complex adaptive system such as a social network. Network models are being used in studying 
organizational structures and assessing their effectiveness in delivering the desired outcome. The 
organizational structure should follow strategy to align the team members with the strategy and 
often the strategy needs to be charted out considering the existing organizational structure. Inter-
firm strategic relationships can potentially be shaped by industry events and managerial actions 
leading to either structure re-inforcing or structure-loosening impact on the relationship structure 
(Madhavan et al. 1998). Advances in information and communication technology (ICT) had a 
huge impact on the corporate strategy and organizational structure. Different types of managerial 
command and control structures are adopted to utilize knowledge and expertise in the 
organization and hence the communication network structure needs to be designed to suit the 
specific organizational goal. The organizational structures keep evolving to environmental 
pressures, changing corporate strategies, and to make country-specific adjustments in response to 



global economic developments and cultural differences between countries. Recent trend in 
globalization attempts to exploit decentralized human capital and knowledge base by 
collaborative works while retaining the administrative control by a central unit. In response to 
such opportunities, the organizations are tending to follow a more decentralized structure. A 
reliable measure of the level of decentralization in such a network would play a key role in 
assessing the impact of decentralization of work centers, governance, transportation and 
communication infrastructure on economic development, effectiveness of social policy 
implementations, supply chain management, project management, traffic management, and 
knowledge transfer in a social network (Bardhan 2002).  
 
The social structure in different subgroups of large product development teams may be different 
due to regional influence or organizational culture. This often leads to intergroup coordination 
and communication problems that may cause hindrances to product delivery or meeting 
deadlines.  Therefore, organizations have to do a trade-off between the level of centralization and 
cost. (Gupta & Govindarajan 1991) emphasizes that the knowledge flow patterns among 
different subsidiaries within the same MNC located in different locations can differ as reflected 
in the way a mix of formal and informal administrative control mechanisms are used to shape the 
actions of various subsidiaries and for each type of transactions, different subsidiaries may 
occupy central positions. (Inkpen & Tsang 2005) examines the effect of structural, cognitive and 
relational dimensions of social capital on the transfer of knowledge between the network 
members. The study proposes that different types of networks require different kinds of 
facilitating conditions to transfer knowledge among network members. The size of network is 
also important and one-size-fits-all analyses on network may not be suitable in tackling the 
complexity involved in the knowledge transfer processes. Centralization of public facilities may 
be good for better monitoring, control and maintenance but it leads to several problems ranging 
from accumulation of wastes, increased load on transportation infrastructure to healthcare 
systems eventually deteriorating the quality of life. Therefore, it is emphasized that 
decentralization of industrial clusters is required for sustainable development. Similarly, some 
government organizations such as police services often need a mix of autonomy and 
coordination and control. Such structure needs to have some central control and coordinating 
authority at the same time different units should have some level of operational autonomy to 
make them responsive and agile in dealing with social problems such as terrorism. Similarly, 
road network and other infrastructure development having role in national integration needs to 
have a holistic approach at the higher level as well as detailed local interconnections depending 
on the local needs.  
 
Identification of most important actors in a social network is of immense interest in many 
practical situations and requires different types of centrality measures suitable for the purpose. 
Several centrality measures such as degree, closeness, betweenness, and eigenvector centrality 
have been proposed in the literature to quantify the importance of an actor in various processes 
within the network (Freeman 1979; Bonacich 1987; Borgatti & Everett 2006). There are 
individual node level centrality measures as well as at the entire network level known as 
‘network centralization’ to characterize the extent to which a network is centralized around a 
particular node in the network. Betweenness centrality dictates the importance of a node in 
information flow, structural connectivity, and reduction of transportation cost as removal of a 
node with high betweenness centrality may lead to structural breakup of the graph. (Ercsey-



Ravasz & Toroczkai 2010) emphasizes the need for approximation in computation of 
betweenness centrality as the computation of betweenness centrality is very difficult and time 
consuming especially for large networks with millions to billions of nodes. Such large networks 
may be approximated with known number of hubs and leaf nodes connected at those hubs and a 
general formula would help to compute the approximate centrality values of resembling network 
of any size and structure. Obtaining analytic expression for node centrality and the network 
centralization applicable to any arbitrary network is infeasible because it depends on the network 
topology and there are too many topologies to consider. Despite this difficulty, the analytic 
expressions for the network centralization corresponding to some standard network topologies 
should be worth exploring. Little research has been done to compare the behavior of these 
centrality measures in different types of network topology. Also, there is no unified measure of 
the level of decentralization in the network. Results on how the network centralization changes 
as the network gets decentralized into multiple interconnected subgroups are not known.  
 
The network centralization based on degree, betweenness, and closeness has been defined in 
(Freeman 1979), but the network centralization based on eigenvector centrality is not defined in 
the literature. There is no literature on systematic comparison of the four important centrality 
measures on some standard network configurations that may help understand the 
interrelationships between the centrality measures and relative centralization of various network 
configurations. Further, there is no benchmark network centralization value available in the 
literature for different network configurations except for the star configuration to measure and 
visualize the level of decentralization in the governance or organizational structure represented in 
the form of a network. There is a lack of closed form solutions for benchmark network 
configurations except the star configuration to quantify the level of decentralization in the 
network structures. Therefore the centralization values obtained using small sample network may 
not be scalable to large network and computation of centralization values is difficult for large 
networks as well as it becomes difficult to approximate real world network into simpler 
configurations. This may give erroneous research findings about the impact of decentralization in 
a large networked system on its performance and dynamics. This work attempts to fill this void 
in the literature by providing general formulae to compute the network centralization based on all 
the four centrality measures for some standard types of network configurations with comparable 
number of nodes as in the problem under investigation to compare and visualize the level of 
decentralization in the network structure. These formulae are scalable to any number of nodes in 
the network within some constraints put to achieve structural symmetry for ease in computation. 
The comparative analysis of these standard network configurations with any empirical network 
would help in getting insights into the level of decentralization in large empirical networks. 
 
This paper provides theoretical contribution towards analysis of the sensitivity of network 
centrality measures on the level of decentralization in a network. We analytically derive the 
formulae for the network centralization for some of the standard topologies of decentralized 
network and compare their centralization with the most centralized star topology. We suggest 
possible solutions to extend the concept of network centralization based on eigenvector 
centrality. Our research attempts to answer some of the following questions. How does the 
network centralization value based on different types on centrality measures change with the 
level of decentralization in the network and with the size of the network? How sensitive are these 
measures to the introduction of a central node to otherwise decentralized network with 



completely interconnected hubs? At what level of decentralization do the hub nodes become 
more important than the central node for any particular centrality measure? How do the centrality 
values scale with the size of the network? Do these centralization measures correlate with each 
other as the level of decentralization in the network increases?  The variance in node centrality 
corresponding to the four centrality measures for all the types of network has also been 
compared.  
 
Section 2 looks into the related research in this area. Section 3 analyses the network 
centralization measures based on the level of decentralization in the network. The results and 
discussions on the sensitivity of the centralization measures are presented in Section 4. Section 5 
draws concluding remarks. 
 
 
 
2. Related Research 
 
Centrality and network centralization measures have been used extensively in social network 
analysis literature to study the influence of important actors and analyze network structures 
arising in several practical scenarios. The basic idea behind the social network analysis is that the 
observed network structure of actors is the outcome of actions of various actors and social 
institutions in the society. Opinion and behavior within a group are more homogeneous 
compared to that between different groups. People connected across group may have alternating 
ways of behaving and such people attain an advantageous brokerage position in establishing 
links across structural holes between distant groups in the network. People with large number of 
contacts (degree) often play a role of opinion leaders. Opinion leaders help in propagating 
information across the social boundaries between groups in a network (Burt 1999). Such people 
can play the role of broker in bridging different groups across the structural holes and bring 
novel ideas into the groups thus creating a social capital (Burt 2004). Social capital of an 
individual refers to the benefits he can derive through his social network. The focus of social 
capital research is on the features of the network that contribute to the individual, whereas with 
key player research the emphasis is on which individuals are important for the network (Borgatti 
2006). (Friedkin 1993) has examined the relationship between the interpersonal power and 
interpersonal influence in resolving issues related to organizations. His findings suggests that the 
social structure that gives an individual social power have significant positive effect on the 
frequency of issue-related communications among the members of the organization that in turn 
have substantial effect on interpersonal influence. Two competing views on creation of social 
capital in a network has been presented in (Gargiulo & Benassi 2000; Burt 2001). A cohesive 
network provides a safety of cooperation while the structural holes provide flexibility in 
developing new ideas that may lead to innovations in the network. The network measures of 
social capital has been discussed in (Borgatti et al. 1998). It has been shown that the scale free 
network provides the fastest growth and diffusion of newly innovated knowledge (Lin & Li 
2010). 
 
(Renneboog & Zhao 2011) investigated the role of director networks on the top manager's 
compensation and the pay-setting process in the UK.  Literature shows that both formal and 
informal professional and social network affects the monitoring of economic and financial 



activities and corporate decision making. CEOs accumulate larger social capital by setting right 
kind of network amongst top management and directors as different types of network enables 
different kinds of managerial functions and hence drives the motive for forming right kind of 
networks in an organization. Indirect network are built for reasons of information gathering and 
direct networks helps in accumulating more managerial influence. Therefore, a CEO well 
connected with board directors often derives significantly higher compensation. Assessing the 
centrality of senior managers is important for any firm in corporate decision making and pay-
setting process in order to retain their competitive edge in the market. Network modeling of real 
world interconnected systems from diverse area is gaining attention in recent years (Uzzi 1997; 
Doerfel 1998; Newman 2003; Guckenheimer & Ottino 2008; Helbing 2008; Kolaczyk 2009). 
The topological properties of the network and identification of clusters play crucial role in 
understanding the internal structure and dynamics of a network (Newman 2008; Mishra et al. 
2009). Random matrix theory and spectral methods are used to study correlation based networks 
and identification of clusters in a network (Edelman & Rao 2005; Kim & Jeong 2005; Newman 
2006; Heimo et al. 2008). The concept of social network analysis has been used for analyzing 
interdependence structure between stock indices (Roy & Sarkar 2011a) and between the stocks 
(Roy & Sarkar 2011b)  in the global stock market. Trading among actors in stock option market 
show a distinct social structural patterns that affects the direction and magnitude of price 
volatility (Baker 1984 ). Bounded rationality and opportunistic behavior of economic actors 
gives rise to restrictive micro-networks. Such restrictive micro-networks may create 
differentiated macro-networks in large markets leading to information asymmetry due to 
inefficient communication among actors.  
 
The influence of social network on spread and cessation of smoking in a group of socially 
interconnected people have been investigated by (Christakis & Fowler 2008). They find that 
generally the whole group of smokers quit smoking together emphasizing the influence of social 
network on individual behavior to conform with the majority behavior in the group leading to the 
observed collective behavior of the entire group. Data available from online environment and 
information and communication systems has enabled vast amount of research in the broader 
domain of network science and in particular Social network analysis (Rosen et al. 2010). In a 
social network, position of actors defines the role of the actor therefore similarity among 
relations can be used to determine the group of actors into different classes known as 
equivalence classes of actors. There are several equivalence classes such as structural, 
isomorphic, regular etc defined based on the types of ties between the actors. The roles of 
individuals can in inferred from the pattern of ties that emerge due to the types of role played by 
the actor in the social network   (Wasserman & Faust 1994). Applying modality (different classes 
of node types) and equivalence concepts may facilitate understanding the social processes and 
patterns in the complex and voluminous data that is generated through social interactions of 
various agents (Hanneman & Shelton 2011).  
 
(Friedkin 1991) provides theoretical foundations for three complementary centrality measures 
based on elementary process model of social influence that explains why ties are formed or are 
broken in a social network. He classifies the three centrality measures arising due to three 
complementary effects namely total effect, immediate effect, and mediative effect. (Borgatti 
2005) pointed out that the most commonly used centrality measures make implicit assumption 
about the flow processes in the network and hence the measures derived using a different 



assumption applied to a flow with different characteristics may lead to wrong interpretation and 
answers. Therefore the centrality measure used to present a particular phenomenon should match 
with the appropriate kinds of flow processes. The centrality values for large networks may be 
estimated by using a sub-sample of the network.  But such estimate is likely to suffer from errors 
due to incomplete set of data in estimating these values. (Costenbader & Valente 2003) have 
investigated the impact of different levels of sampling of data from the population on the 
stability of centrality measures and shown that some centrality measures are more stable than 
others under different levels of sampling. The research highlights the impact of missing data on 
approximating the values of the centrality for the entire network using a smaller sample. We 
need a large set of data to estimate the centrality values in order to reduce the impact of missing 
data that may pose practical problems in many situations. Moreover, research gaps exist in 
analytical formulations of centrality measures in network topologies of varying degrees of 
decentralization levels.  
  
3. Impact of Network Configuration and Decentralization on Centrality Measures 
 
We have derived analytical expressions for all the four centrality measures for some standard 
network configurations with varying levels of decentralization. Such configurations arise in 
several practical situations (Wasserman & Faust 1994; Rivkin & Siggelkow 2007). In order to 
compare the sensitivity of the centrality measures, we have computed the node level centrality as 
well as the entire network level centralization measures based on all the four centrality measures 
for these network configurations. For those configurations, having complicated analytic 
expressions for centrality and centralization, we have computed their values numerically using 
MATLAB. We have also compared the variance of node centrality for these network 
configurations and the correlation between various centrality measures for some selected 
network configurations. We now present the derivations of the analytical expressions. 
 
 
3.1 Network centralization of some network configurations 
  
(Freeman 1979) has defined the generalized measure of graph centralization based on the 
differences in point centralities in the network and derived the general formula for graph 
centralization based on degree, betweenness and closeness centrality. The node centrality values 
are normalized by dividing them by the highest possible centrality value among all the nodes in 
the network. The general form of network centralization is given by  
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Where is the maximum value of normalized node centrality  among all the nodes 
based on a particular type of centrality measure, say A. The denominator denotes the maximum 
possible value of the numerator among all possible network configurations. This division is 
required to normalize the centralization value with respect to the most centralized graph. It turns 
out that the maximum value of the denominator is achieved for star topology that is intuitively 
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the most centralized configuration in case of degree, closeness and betweenness centrality. We 
observe some counterintuitive behavior of the denominator in case of eigenvector centrality as 
discussed in the following section.  Variance of node centrality in the network is another measure 
of network centralization (Wasserman & Faust 1994). Intuitively, in a strongly centralized 
network the variance of node centrality from the centrality of the most central node should be the 
highest. The closed form expression for this measure is complicated, but the level of 
centralization using this metric can easily be computed numerically using the expressions 
derived in this paper for the normalized node centrality value for different types of equivalent 
nodes in the network. 
 
3.2 Network centralization based on eigenvector centrality of nodes 
 
Eigenvector centrality is useful for analyzing the relative importance of nodes in a network such 
as social status of actors in a social network and detecting changes in the connectivity patterns in 
the neural architecture of human brain (Bonacich & Lloyd 2004; Lohmann et al. 2010). 
(Bonacich & Lloyd 2004) emphasizes that a person’s social status reduces with a positive link 
with a notorious person and increases with a negative link with a notorious person. The network 
centralization based on eigenvector centrality for star configuration can be shown to be equal to 

)1()1(  NN . The theoretical maximum value for the expression in the denominator can be 

shown to be equal to N-2 and it is achieved when the network constitutes of only two connected 
nodes (a dyad) and N-2 independent nodes. The eigenvector centrality of a node in a network is 
given by the respective component of the eigenvector corresponding to the largest eigenvalue 
(Bonacich 1987). If we define the eigenvector centrality of a node in a network to be given by 
the square of respective component, the network centralization based on eigenvector centrality 
for star configuration can be shown to be equal to )2( N . The later approach of defining the 
eigenvector centrality is more suitable for computing network centralization as the most central 
star topology achieves the highest value using this approach. The first approach does not give 
maximum value for star configuration used as a normalization constant in the denominator of 
Equation 1. For example, let’s consider a network topology constructed using np+1 nodes in 
which one central node connected to n hub nodes, and each of the hub nodes is connected to (p-
1) leaf nodes as shown in Figure 1( L). The sum of the deviation of centrality value from the 
maximum value in this case becomes 
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For p =2, and n>5 this expression becomes greater than the sum of deviation for star topology 

with same number of nodes (i.e. N = np+1) which is equal to .npnp   

 
If we define the eigenvector centrality of a node in a network to be given by the square of 
respective component, the sum of the deviations of the node centralities from the maximum 
centrality value based on eigenvector centrality for a network topology in Figure 1( L) becomes 
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Figure 1: Different types of network topology 
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value corresponding to the star configuration. Therefore, there is a need for 
slight modification in the definition of the eigenvector centrality of nodes in order to make the 
computation of network centralization based on eigenvector centrality using the formula given in 
equation 1 by (Freeman 1979) meaningful. 
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We present the computation of the closed form expression based on the centrality measures for 
various types of networks. The schematic diagram for several network topologies are shown in 
Figure 1. Apart from the graphs shown in Figure 1, the decentralized network topology with 10, 
12, 15, 20 and 30 centers have also been analyzed and the results have been compared. 
 
3.3 Star network: We consider a star network with total N nodes where one node is central and 
rest N-1 leaf nodes. The computation of network centralization based on degree, betweenness 
and closeness centrality is illustrated in (Freeman 1979). We have derived the closed form 
expressions for the variance of normalized centrality of nodes of the network and presented them 
along with the formulae for the network centralization in the table below. 
 
Degree centrality: The degree of central node = (N-1) and degree of leaf node = 1 each. 
Normalized degree centrality of nodes = 1 for central and 1/(N-1) for rest others. The difference 
between the maximum normalized centrality and the actual normalized centrality of nodes = 0 
for central and (N-2)/(N-1) for all other. Sum of these differences for all nodes gives the 
centralization value equal to (N-2). 
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Betweenness centrality: The central node falls on 
2

)2)(1(  NN
geodesics (shortest paths) 

connecting any pair of nodes. The number of geodesics passing through leaf nodes is zero. 
 
 
 
 
 



Node Type No. of Geodesics Normalized 
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Closeness centrality: The central node is at distance 1 from all N-1 nodes and the leaf odes are 
at distance 1 from the central and 2 from other N-2 nodes. The closeness of a node is defined as 
(N-1)/sum of distance between the node and all other nodes. 
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Eigenvector centrality: The largest eigenvalue for star network adjacency matrix = 1N . By 
symmetry the eigenvector centrality of all leaf nodes (say x2) should be equal and the centrality 
of the central node (x1) should be greater than x2, the centrality of leaf nodes. The eigenvalue 
equation for a star network with 6 nodes is shown below as an example to illustrate the 
computation of the eigenvector centrality. 
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The normalization condition of the eigenvector puts the following constraints on the values of x1 
and x2. 
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The eigenvalue equation puts the following constraints on the values of x1 and x2. 
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From these three relations the largest eigenvalue (λ) and the two components x1 and x2 can be 
computed as given below. 
   

1 N ,  
2

1
1 x ,  

)1(2

1
2




N
x  
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3.4 Decentralized Network without any central node 
 
In order to obtain a generalized network centralization formula for symmetrically decentralized 
topologies, we consider a network with total N nodes that are equally distributed at n subgraphs 
with each subgraph having star like configuration and the hubs of all these star subgraphs 
connected with one another symmetrically.  
 

Degree centrality: Degree of each hubs in the subgraph = )2(  n
n

N
and the degree of each 

leaf node = 1.  The general closed form expression for variance of degree centrality is 
complicated, therefore we omit them. However, the variance of node centrality for any topology 
can easily be computed numerically using the normalized centrality values given in the Table.   
 
 
 
 



Node Type Degree Normalized  
Centrality 

Max Norm Centrality –  
Actual Norm Centrality 
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Betweenness centrality: The leaf nodes do not lie on any of the geodesics between any other 
two nodes. Therefore, their betweenness is zero. The hub nodes fall on (N-n)/nC2  geodesics 
between the leaf nodes directly attached to it and another ((N-n)/nC1* N/nC1 )(n-1) geodesics 
between the (n-1) other hubs and the leaf nodes attached to them. Therefore the total number of 
geodesics on which a hub falls is given by 
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Node Type No. of Geodesics Normalized 

Centrality 
Max Norm Centrality - 
Norm Centrality 

(Norm Centrality – 
 Mean Centrality)^2 

Hub nodes (n) 
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Closeness centrality: Each of the hub nodes is at distance 1 from all (N-1)/n leaf nodes directly 
attached to them and all other (n-1) hub nodes. The hubs are at distance 2 from other (N-n)(n-
1)/n leaf nodes attached to the other (n-1) hub nodes. The leaf nodes are at a distance 1 from the 
hub it is attached to and at distance 2 from (N-2n)/n leaf nodes attached to the same hub as well 
as at distance 2 from (n-1) other hubs. The distance between a leaf node and the leaf nodes 
attached to other hubs are 3 units. The closeness centrality of a node is defined as (N-1)/sum of 
distance between the node and all other nodes.  The general closed form expression for variance 
of need centrality is complicated but can be computed numerically using the normalized 
centrality values given in the table.   
 



Node Type Closeness Centrality Normalized  
Centrality 

Max Norm Centrality –  
Actual Norm Centrality 
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Eigenvector centrality: The largest eigenvector of the adjacency matrix for a network with total 
N nodes decentralized into n symmetrical hubs will have n equal components with value x1 
corresponding to the n central nodes of the n hubs and (N-n) equal components with value x2 
corresponding to the (N-n) leaf nodes. The normalization condition of the eigenvector puts the 
following constraints on the values of x1 and x2. 
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The eigenvalue equation for network with 6 nodes decentralized into 2 hubs is shown below as 
an example to illustrate the computation of the eigenvector centrality. 
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The eigenvalue equation puts the following constraints on the values of x1 and x2. 
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From these three relations the largest eigenvalue (λ) and the two components x1 and x2 can be 
computed as given below. 
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Node Type Eigenvector  
Centrality 

Normalized  
Centrality 

Max Norm Centrality –  
Actual Norm Centrality 
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If the eigenvector centrality of a node is defined as equal to the square of the component of the 
principal eigenvector rather the value of the component, the value of network centralization can 
be shown to be given by the following equation. Both the equations give the value of network 
centralization for the star network as 1. 
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3.5 Decentralized Network with a central node and n hubs 
 
Generalizing the network centralization for star topology to a decentralized topology with one 
central node connected to n hub nodes where each hub node have a star like configuration with 
p-1 leaf nodes (i.e. excluding the central and the hub nodes)  connected to it. This network will 
have total np+1 nodes. We have considered both the cases viz. the number of hubs n is less than 
or equal to p and the number of hubs n is greater than p. The general closed form expression for 
variance of centrality of nodes is complicated, therefore we omit them. However, the variance of 
centrality for any topology can easily be computed numerically using the normalized centrality 
values given in the table. 
 
Degree Centrality: The central node has a degree n and the hub nodes have a degree p each and 
the leaf node has a degree 1 each.   
 
 
 
 
 
 
 
 
 
 
 



Node Type Degree Normalized  
Centrality (if n ≤ p) 

Max Norm Centrality –  
Actual Norm Centrality 
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For case n>p 
Node Type Degree Normalized  

Centrality (if n>p) 
Max Norm Centrality –  
Actual Norm Centrality 
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Betweenness centrality: The central node and the hub nodes fall on the geodesics between 
various other nodes. The leaf nodes do not lie on any of the geodesics between any other two 
nodes. Therefore, their betweenness is zero. The central node falls on pC1* 

p(n-1)C1 geodesics 
between the p nodes at one hub and the p(n-1) nodes at other hubs. The hub nodes fall on (p-1)C1* 

(p(n-1)C1 +1) geodesics between the (p-1) leaf nodes at one hub and the p(n-1) nodes at other hubs 
and one central node. The following derivation is valid for n>1, for n =1 the network becomes a 
star network and hence the value of network centrality becomes 1. 
 
 
Node Type No. of Geodesics Normalized  

Centrality (n>1) 
Max Norm Centrality –  
Actual Norm Centrality 
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, where n>1, Centralization = 1, for n = 1 (Star Configuration) 



Closeness centrality: The central node is at distance 1 from all n hub nodes at a distance of 2 
units from all the n(p-1) leaf nodes directly attached to the hub nodes. A hub node is at distance 1 
unit from the central node and all (p-1) leaf nodes directly attached to the hub node. The hub is at 
a distance of 2 units from all other (n-1) hub nodes and at a distance of 3 units from (n-1)(p-1) 
leaf nodes attached to these hub nodes. The leaf nodes are at a distance 1 from the hub it is 
attached to and at distance 2 from (p-2) leaf nodes attached to the same hub as well as at distance 
2 from the central node. The distance between a leaf node and other (n-1) hubs and the (n-1)(p-1) 
leaf nodes attached to the other hubs are 3 units and 4 units respectively. The closeness centrality 
of a node is defined as (N-1)/sum of distance between the node and all other nodes where N is 
the total number of nodes in the network.   
 
Total distance from central node = )12()1(2  pnpnn  
Total distance from hub node = 1)2()12()1)(1(3)1(2  pnpnnpnp  
Total distance from leaf node = nnppnnp  )12(2)1)(1(4)1(3)1(21  
 
Node Type Closeness Centrality Normalized Centrality Max Norm Centrality -

Norm Centrality 
Central node  
(1) 

12 p

p
 

1 0 

Hub nodes (n) 

1)2()12(  pnpn

np
 

1)2()12(

)12(




pnpn

pn

1)2()12(

1)2(




pnpn

pn

n(p-1) Leaf  
nodes 

nnp

np

 )12(2
 

nnp

pn




)12(2

)12(
 

nnp

pn




)12(2

)1(2
 

Sum 

nnp

pnnp

pnpn

nnnp


 





)12(2

)1)(1(2

1)2()12(

)2(
 

Network  
Closeness 
Centralization )1(

12

)12(2

)1)(1(2

1)2()12(

)2(



















npnp

np

nnp

pnnp

pnpn

nnnp
, where n>1,  

Centralization = 1, for n = 1 (Star Configuration) 

 
Eigenvector centrality: The eigenvector corresponding to the largest eigenvalue of the 
adjacency matrix for a network with total N = np+1 nodes decentralized into one central node 
connected to n symmetrical hubs with n(p-1) leaf nodes will have one component with value x1 
corresponding to the central node, n equal components with value x2 corresponding to the n hub 
nodes, and n(p-1) equal components with value x3 corresponding to the n(p-1) equivalent leaf 
nodes. The eigenvalue equation for network with total 9 nodes with one central node connected 
to 2 hubs with 3 leaf nodes as each hub (i.e. n = 2 and p =4) is shown below as an example to 
illustrate the computation of the eigenvector centrality. 
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The normalization condition of the eigenvector puts the following constraints on the values of 
x1, x2 and x3. 
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The eigenvalue equation puts the following constraints on the values of x1, x2 and x3. 
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From these four relations the largest eigenvalue (λ) and the three components x1, x2 and x3 can 
be computed as given below. 
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If the eigenvector centrality of a node is defined as the square of the corresponding component of 
the principal eigenvector, then the network centralization can be derived as given below. 
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3.6 Wheel Graph: A wheel graph of size N has one central node directly connected to all the (n-
1) leaf nodes and the leaf nodes are connected to their neighbors forming a cycle of size (N-1).  
 
Degree centrality: The central node has a degree N-1 and all the leaf nodes have a degree 3 
corresponding to connections with two adjacent nodes and one central node. 
  
Node Type Degree Normalized  

Centrality 
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Closeness centrality: The central node is at a distance of one unit from all other nodes. The leaf 
nodes are at a distance of one unit from the central and two adjacent leaf nodes and a distance of 
two units from other remaining nodes. 
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Betweenness centrality: Out of the )1(
2

)2)(1(



N

NN
 possible geodesics passing 

through the central node, (N-1) geodesics connecting pair of leaf nodes (one each on either side) 
adjacent to every leaf node have the same path length equal to two, one passing through the 
central node and other passing through the intervening leaf node. Therefore, the effective number 
of geodesics through the central and node is given by 
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and that through each of the leaf nodes is given by 
2

1
. 

 
Node Type No. of Geodesics Normalized  
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Max Norm Centrality –  
Actual Norm Centrality 
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Eigenvector centrality: By symmetry the central node will have highest eigenvector component 
and all other leaf nodes would have equal eigenvector components. The eigenvalue λ and the two 
components x1 and x2 of eigenvector representing the centrality of the central and leaf nodes of 
the wheel graph can be shown to be given below. 
 
The eigenvalue equation for wheel network with 6 nodes is shown below as an example to 
illustrate the computation of the eigenvector centrality. 
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The normalization condition of the eigenvector puts the following constraints on the values of x1 
and x2. 
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The eigenvalue equation puts the following constraints on the values of x1 and x2. 
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From these three relations the largest eigenvalue (λ) and the two components x1 and x2 can be 
computed as given below. 
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3.7 Triangular Graph: We define a triangular graph as a modification to a line graph with all 
the nodes in the line graph connected to a central node. In order to define a central node for this 
configuration, we need to have N > 4. Such graph structure can be seen in organizations having 



sequential processing department controlled by a centralized office. The communication paths in 
such organizational structure can be represented by such graph.  
 
Degree centrality: The central node has a degree equal to N-1, the two leaf nodes at the two 
ends have degree 2, and all the other nodes have degree 3 each. 
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Closeness centrality: The central node is at a distance of one unit from all other nodes. The two 
leaf nodes at the ends are at a distance of one unit from the central and one adjacent leaf node 
and at a distance of two units from other remaining nodes. The remaining (N-3) leaf nodes are at 
a distance of one unit from the central and two adjacent leaf nodes and at a distance of two units 
from other remaining nodes. 
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Betweenness centrality: Out of the )1(
2

)2)(1(



N

NN
 possible geodesics passing 

through the central node, (N-3) geodesics connecting pair of leaf nodes (one each on either side) 
adjacent to every leaf node (except at the two ends) have the same path length equal to two, one 
passing through the central node and other passing through the intervening leaf node. Therefore, 
the effective number of geodesics through the central and node is given by 
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Eigenvector centrality: Deriving closed form expression for eigenvector centrality of this 
network is complicated because of asymmetry among the leaf nodes. Therefore, it needs to be 
computed numerically. 
 
3.8 Line graph: Line graph is an open chain with all nodes connected to their adjacent nodes. 
The nodes at the two ends have only one neighbor each. Such graph structure can be seen in 
organizations having sequential autonomous processing departments without any centralized 
control. The coordination between various departments is achieved only through the 
communication between either or both of the source or sink of the product. The largest 
eigenvalue for the line graph can be approximated to that of the cyclic graphs for large N as these 
two graphs are similar except for one missing edge. Degree of all nodes except the two nodes at 
the ends are 2 and the degree of the nodes at the ends are 1 each. The closeness of the nodes with 
other nodes can be computed using the general formula for the sum of the shortest distance of ith 

node from any end to all other nodes =  
2

)1(

2

)( 


 iiiNN
. The betweenness of a node can be 

computed using the number of geodesics the ith node from any end falls on. The number of such 
geodesics = . Eigenvector centrality needs to be computed numerically for this 
configuration. Deriving closed form solution for all the graph centralization based on the four 
measures of this network is complicated because of asymmetry among leaf nodes, therefore this 
needs to be computed numerically using its node centrality values. 
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3.8 Cyclic graph: A cyclic graph is a graph with all the nodes connected to only two adjacent 
nodes. Degree of each of the nodes is 2. The closeness of nodes can be computed from the 

general formula for the distance of nth node from all other nodes =  evenisNif
N

4

2

 



And oddisNif
N

4

12 
 

The betweenness centrality can be computed by observing that the umber of geodesics the ith 

node falls on = 
2

3N
. The largest eigenvalue for the cyclic networks can be shown to be equal 

to 2. The components of eigenvector representing the centrality of all the nodes can be shown to 

be given by 
N

x
1

1  . Thus we can observe that all the four graph centrality of cycle graph 

becomes zero as all the nodes in this graph are equivalent having same relative centrality value. 
 
3.10 Complete graph: In a complete graph every node is connected to all other nodes. Degree of 
all nodes is N-1. Closeness of nodes can be computed by observing that the sum of the shortest 
distance (geodesics) of any node from all other nodes = N-1. The betweenness centrality of 
nodes can easily be shown to be zero as the number of geodesics between any pair of nodes on 
which any other node falls on is equal to 0. The largest eigenvalue for complete network and 
cyclic networks can be shown to be equal to (N-1). The components of eigenvector representing 

the centrality of all the nodes can be shown to be given by 
N

x
1

1  . By symmetry all the nodes 

in a complete graph are equivalent having equal centrality value in the network and hence all the 
four network centralization measures are equal to zero.  
 
 
4. Results and Observations 
 
We have computed the centrality values for two networks, one with total N= 60 nodes and the 
other with total 5040 nodes decentralized into various configurations with different numbers of 
hubs. We have compared the results obtained using the formulae derived in this paper and that 
obtained through numerical computation of the centrality for an example network with 60 nodes 
arranged in different symmetric permutations. We compare the behavior of these centrality 
measures on different network configurations with similar size as well as same configuration but 
with different size. 
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Figure 2: Variation of network centralization with the number of hubs (Total nodes N = 60) 

 
Figure 2 shows the network centralization values for a network with N = 60 nodes. The result 
with N= 5040 gives similar pattern. The general formula helps us to compute the network 
centralization value for large network of any size with similar configuration. Figure 3 shows the 
impact of inserting a central node as shown in Figure 1(L) in otherwise decentralized 
configuration given in Figure 1(G). 
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Figure 3: Effect of inserting one central node in otherwise decentralized structure (N=60) 

 
Principal eigenvalue plays a crucial role as a parameter in computing the eigenvector centrality. 
Computing the eigenvalue numerically for large networks is difficult. Approximation of the 
largest (principal) eigenvalue of the adjacency matrix of a large network is important due to its 
crucial role in understanding the dynamical processes in the network (Restrepo et al. 2007). We 
therefore derived analytic expressions for the principal eigenvalue for the two types of 
decentralized network. Closed form expression derived for the principal eigenvalue helps us 
compare the principal eigenvalue of some of possible network configurations with any number 



of nodes. Figure 4 compares the variation of the principal eigenvalue with the level of 
decentralization in the two types of network configurations (G and L in Figure 1) with size N 
equal to 60 and 61 respectively. It clearly shows that the principal eigenvalue is strongly 
dependent on the configuration of the network. We have shown that beyond certain level of 
decentralization, the principal eigenvalue of the network with a central node is less sensitive 
(scales as the square root of the size of the network) to the level of decentralization compared to 
that without a central node (scales as the size of the network). We have seen similar pattern for 
principal eigenvalues of the two types of network configuration with size equal to 5040 and 5041 
respectively. 
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Figure 4: Principal eigenvalue vs number of clusters (N=60) 

 
As discussed earlier, the network centralization based on eigenvector centrality for star 

configuration can be shown to be equal to )1()1(  NN . This approach does not give 

maximum value for the normalization constant (i.e. denominator) used in equation 1. Therefore 
using it as a normalization constant in equation 1 may give erroneous result as shown in Figure 5 
where the graph centralization becomes greater than 1 for cases other than a star configuration. 
We find that the maximum value of the normalization constant for the case of eigenvector 
centrality is achieved when only two nodes of the network are connected and rest others are 
independent. Though this configuration is intuitively not a highly centralized configuration, it 
gives the maximum value equal to )2( N  for the normalization constant to be used as the 
denominator of equation 1. We can now be assured to have the centralization value less or equal 
to 1, but this lacks intuitive justification for the case when the value is 1. The eigenvector 
centrality of a node is defined as the respective component of the principal eigenvector. If we 
define the eigenvector centrality of a node in a network to be given by the square of respective 
component, the relative order of centrality would still be maintained. With this definition, the 
network centralization based on eigenvector centrality for star configuration can be shown to be 
equal to . This approach of defining the eigenvector centrality is more suitable for 
computing network centralization as the most central star topology achieves the highest value 
using this approach. Since the components of the principal eigenvector are positive and less than 
one, there is a monotonous relationship between the components and their squares. Therefore, 

)2( N



defining EVC in this manner won't affect the relative ranking of the nodes in the network. The 
network centralization based on the centrality defined as the square of the components of the 
principal eigenvector gives the maximum network centrality value for star configuration as 
shown in Figure 5.  
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Figure 5: Variation of network centralization (eigenvector) with number of hubs (N=60) 

 
For different types of network configurations with varying level of decentralization, the relative 
level of the four types of network centralization values changes differently as shown in Figure 6. 
This shows that different types of communication and interaction mechanism may have different 
level of effectiveness at various levels of decentralization. We observe that the sensitivity of the 
eigenvector and betweenness centrality measures is low compared to the degree and closeness 
centrality. Among the four centrality measures, closeness centrality has the maximum sensitivity 
to the level of decentralization. Therefore, it may work as a better measure for quantifying the 
level of decentralization in a network. 
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Figure 6: Network Centralization for various network types (N= 60) 

 
Since the variance of node centrality in the network can also be used as a measure of network 
centralization (Wasserman & Faust 1994), we have compared its behavior for all the four types 



of centrality measures as shown in Figure 7. There is a monotonous relationship between the 
variance of node centrality and the network centralization. We notice that the variance of all the 
types of node centralities increases with the level of decentralization. This measure of 
centralization has some counter-intuitive behaviour. For example, though cyclic and complete 
graphs have the least variance (zero) of node centrality, these two graphs have zero network 
centralization. Therefore, this cannot be used as a reliable measure of network centralization of 
any generic network configuration. 
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Figure 7: Variance of node centrality for various network types (N= 60) 

 
There is no unanimity on which type of network centrality measure should be used to measure 
the level of centralization. These centrality measures may be treated as expected centrality value 
of a particular node if the interaction between nodes is governed by a particular kind of flow 
process. In reality several mechanisms may be simultaneously present; therefore the node 
centrality should be computed as the weighted average of these measures. The weights should 
account for the relative intensity of particular type of flow process prevalent in the network. We 
have computed the relative centrality of the central node and hub nodes for the network 
configuration shown in figure 1 (L) with size N = 5041. Figure 8 and 9 show the variation of the 
centrality values for different levels of decentralization. Since the possible number of hub nodes 
(n) is large, it has been presented in logarithmic scale. We notice that when the number of hubs is 
relatively small compared to the number of leaf nodes at each of the hub nodes, the hub nodes 
retain supremacy over the central node on the basis of the degree and eigenvector centralities. 
The central node retains its supremacy over the hub nodes on the betweenness and closeness 
centrality for all levels of decentralization. 
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Figure 8: Normalized centrality of Hub nodes vs Log(n) 
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Figure 9: Normalized centrality of central node vs Log(n) 

 
Correlation between various centrality measures 
 
(Perra & Fortunato 2008) has compared the centrality measures based on the spectral properties 
of graph matrices and shown that for graphs with special properties, the measures are often 
correlated with each other but for real graphs with less regular structure, the centrality measures 
are far less correlated. We investigated how the centrality values are correlated for the two types 
of configurations. The correlation between the five centrality measures discussed in this paper as 
the number of hub nodes increases in the network has been shown in table 1 and table 2. We find 
that the centrality measures are strongly correlated for the configuration without any central node 
while there is a varying level of correlation for the configuration with a central node. The two 
types of eigenvector centralities show strong correlation though not equal to unity. Degree 
centrality has relatively high correlation with both types of eigenvector centralities compared to 



the betweenness and closeness centralities. An interesting finding is that the betweenness 
centrality is negatively correlated with all other centralities for such configuration.  
 

Table 1: Correlation for network with a central node and hubs 
 

  Degree Betweenness Closeness EVC EVC (Comp Sqrd) 
Degree 1     
Betweeness -0.37899 1    
Closeness 0.09161 -0.19487 1   
EVC 0.750984 -0.52004 0.240882 1  

EVC (Comp Sqrd) 0.721989 -0.41398 0.134161 0.96637 1

 
 

Table 2: Correlation for network without a central node and hubs 
 

  Degree Betweenness Closeness EVC EVC (Comp Sqrd) 
Degree 1     
Betweeness 0.999901 1    
Closeness 0.911722 0.90862 1   
EVC 0.996507 0.996831 0.906238 1  

EVC (Comp Sqrd) 0.999882 0.999995 0.908671 0.997067 1

 
5. Concluding Remarks 
 
The sensitivity of various centrality measures on the level of decentralization of a network has 
been discussed. The issue with the derivation of network centralization based on eigenvector 
centrality of nodes of the network has been discussed and a modification in the eigenvector 
centrality measure for the nodes and normalization constant have been suggested in order to 
derive the network centralization in a unified manner compared to the other three measures. We 
have derived the theoretical formulae for the various network centralization measures of some 
standard network topologies with varying level of decentralization. Further, the impact of the 
level of decentralization on the network centralization measures based on all the four centrality 
measures has been discussed. The variance of node centrality corresponding to each of the four 
centrality measures namely degree, betweenness, closeness and eigenvector has also been 
analyzed. This paper contributes to the social network analysis literature by providing a 
theoretical derivation of various network centralization measures for some standard network 
configurations of any size that may serve as benchmarks for comparing the centralization of 
empirical networks. Further, there is no established way in the literature to estimate the number 
of hubs in a real world network based on their centrality values. We observe that the four 
centrality measures have different characteristics response to the level of centralization. There is 
a possibility to fill this void by mapping the observed centrality measures of empirical network 
on these theoretical expected values to estimate the effective number of hubs in the network. A 
comparative analysis of the four centralization measure may point to the level of decentralization 
in the network. The result also shows at a particular level of decentralization which of the known 
flow mechanisms could be more effective in a decentralized network. The proposed approach 



and the findings in this research may be used for approximating centrality values for large 
networks. 
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