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Application of Graph Search and Genetic Algorithms for the Single Machine Scheduling 

Problem with Sequence-Dependent Setup Times and Quadratic Penalty Function of 

Completion Times  

 

Abstract 

 
In this paper, we consider the single machine scheduling problem with quadratic penalties and 

sequence-dependent (QPSD) setup times. QPSD is known to be NP-Hard. Only a few exact 

approaches, and to the best of our knowledge, no approximate approaches, have been reported in 

the literature so far. This paper discusses exact and approximate approaches for solving the 

problem, and presents empirical findings. We make use of a graph search algorithm, Memory-

Based Depth-First Branch-and-Bound (MDFBB), and present an algorithm, QPSD_MDFBB that 

can optimally solve QPSD, and advances the state of the art for finding exact solutions. For 

finding approximate solutions to large problem instances, we make use of the idea of greedy 

stochastic search, and present a greedy stochastic algorithm, QPSD_GSA that provides 

moderately good solutions very rapidly even for large problems. The major contribution of the 

current paper is to apply QPSD_GSA to generate a subset of the starting solutions for a new 

genetic algorithm, QPSD_GEN, which is shown to provide near-optimal solutions very quickly. 

Owing to its polynomial running time, QPSD_GEN can be used for much larger instances than 

QPSD_MDFBB can handle. Experimental results have been provided to demonstrate the 

performances of these algorithms.  

 

Keywords: Single machine scheduling; Sequence-dependent setup; Quadratic penalty; Graph 

search; Genetic algorithm  
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Application of Graph Search and Genetic Algorithms for the Single Machine Scheduling 

Problem with Sequence-Dependent Setup Times and Quadratic Penalty Function of 

Completion Times  

 

1. Introduction 

Single machine scheduling problems have been widely studied (Pinedo, 1995). One version of 

the problem that has been extensively dealt with in the literature is the consideration of 

sequence-dependent setup times (Choi and Choi, 2002; Gupta and Smith, 2006; Luo et al., 2006; 

Liao and Juan, 2007; Luo and Chu, 2007; Biskup and Herrmann, 2008; Koulamas and Kyparisis, 

2008; Lin and Ying, 2008; Valente and Alves, 2008; Wang, 2008; Ang et al., 2009; Anghinolfi 

and Paolucci, 2009; Kim and Lee, 2009; Tasgetiren et al., 2009; Wang and Tang, 2010; Zhao 

and Tang, 2010; Nekoiemehr and Moslehi, 2011). Another version of the problem that has drawn 

limited attention is the consideration of quadratic penalty functions of job completion times 

(Townsend, 1978; Bagga and Kalra, 1980; Gupta and Sen, 1984; Bagchi et al., 1987a, 1987b; 

Szwarc et al., 1988; Sen et al., 1990; Croce et al., 1995; Mondal and Sen, 2000a).  In this paper, 

we consider the single machine scheduling problem with quadratic penalties and sequence-

dependent (QPSD) setup times. In QPSD, there are N jobs, iJ , i = 1..N, all of them available at 

time 0. These jobs are to be processed on a machine one after the other. Associated with iJ  are 

the processing times, ia , penalty coefficients, ip , and setup times, jis ,  (being the setup time for 

jJ  when it is immediately preceded by iJ ). The objective is to minimize the total penalty across 

all jobs, i.e. to minimize the weighted sum of the squares of the completion times. When the 

setup times are sequence-independent, they can simply be added to the processing times for the 

corresponding jobs and thus possess no additional complexity over problems without setup 

times. However, when the setup times are sequence-dependent, the quadratic penalty problem 

becomes extremely difficult to solve. It is interesting to note that minimizing the weighted sum 

of the completion times (i.e. the linear penalty case) can be transformed and treated as if the 

setup times are sequence-independent (Sen and Bagchi, 1996).  However, no such transformation 

is possible for the non-linear penalty case with sequence-dependent setup times. In this paper, we 

attempt to advance the state of the art for solving the QPSD problem. 
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Single machine scheduling problems with N jobs have N! possible distinct sequences, and except 

for special cases, it is known that these problems are NP-Hard (Rinooy Kan, 1976), i.e. finding 

an optimal solution requires an implicit enumeration of all possible sequences. QPSD has some 

similarities to the asymmetric travelling salesman problem (ATSP) (Choi et al., 2003). However, 

unlike ATSP, rotations of permutations are not equivalent in QPSD, and the processing sequence 

affects the job completion times. It is, therefore, a more complex problem, and finding an 

optimal solution requires exploring a larger search space. GREC (Sen and Bagchi, 1996) is a 

general graph search algorithm that has been used to solve QPSD optimally. Although GREC 

has been shown to be faster than Depth-First Branch-and-Bound (DFBB) for this problem, it 

runs out of memory even for moderate-sized problems. To our knowledge, approximate 

approaches to solve large instances of QPSD have not been reported in the literature so far. In 

this paper, we present exact and approximate approaches for QPSD. In particular: 

 We discuss the characteristics of QPSD. The presence of sequence-dependent setup times 

makes conventional graph-search algorithms like A* (Hart et al., 1968) and dynamic 

programming approaches (French, 1982) inapplicable.  

 

 We describe QPSD_MDFBB, an application to QPSD of a Memory-Based Depth-First 

Branch-and-Bound (MDFBB) approach proposed by Mondal and Sen (2001).  

QPSD_MDFBB optimally solves QPSD instances up to 30 jobs.  

 

 In order to propose approximate approaches for solving large instances, we first present a 

greedy approach for QPSD and describe the concept of greedy stochastic search 

(Viswanathan and Sen, 2010). We present an effective greedy stochastic algorithm, 

QPSD_GSA that can generate moderately good solutions rapidly even for large instances. 

The general idea of GSA is applicable to a wide range of combinatorial optimization 

problems like the travelling salesman, knapsack, combinatorial auction and other problems 

for which greedy solutions can be conceived.  

 

 The major contribution of this paper is to combine the findings of QPSD_GSA with a new 

genetic algorithm formulation called QPSD_GEN for the problem. QPSD_GEN does not 
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guarantee optimal solutions, but has been seen to generate near-optimal solutions in general. 

Our findings indicate that QPSD_GEN can be used to generate solutions within 2.2% of the 

optimal solutions for 100-job problem instances. We have used QPSD_GSA to generate a 

subset of the initial population for the QPSD_GEN, and found this to have a great impact on 

the quality of the solutions obtained. This way of integrating GSA into genetic algorithms is 

also more generally applicable. 

 

The paper is organized as follows. Section 2 discusses the problem with special emphasis on the 

complexities introduced by sequence-dependent setup times. The algorithm QPSD_MDFBB and 

experimental results for it are presented in Section 3. Section 4 presents QPSD_GSA and 

experimental results for it. The implementation of the genetic algorithm, QPSD_GEN and the 

associated experimental results are given in Section 5. Section 6 concludes the paper and 

suggests areas for further work.   

2. Effect of sequence-dependent setup times on QPSD 

The QPSD problem may be formulated in IP (Integer Programming). However, such a formulation may 

not be efficient to solve in practice.  Sen and Bagchi (1996) have shown that the search space for 

job sequencing problems can be modelled as a tree, or as a graph, and algorithms using the graph 

search space run faster. For the QPSD problem under the tree formulation, two nodes with the 

same set of jobs but in different orders and having the same last job will generally not have the 

same cost because the setup times for the jobs could differ. Nevertheless, the sub-trees below them 

are identical in terms of the structure. Algorithms using the tree search space cannot take advantage 

of this fact and might wastefully traverse these identical sub-trees more than once. The graph 

search space has far fewer nodes and offers the potential for faster search. The node count 

reduction results from the fact that unlike in the tree search space, there could be multiple paths 

from the root node to any given node, and this helps avoid replicating the identical sub-trees. 

However, sequence-dependent setup times complicate traditional graph search because the 

identical sub-trees may not have the same costs.  

The main feature of graph search algorithms like the graph version of A* (Hart et al, 1968) is that 

when these reach the same node through different paths, they retain the path having the lowest 
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cost, discarding any other paths from the root to the node. This approach works fine when the 

incremental cost from a given node to a goal node is independent of the path by which the node 

was reached. This is the same as the principle of optimality on which the dynamic programming 

formulations are based (French, 1982). However, this does not hold for sequence-dependent 

setup times. For example, consider the following 4-job problem given in Table 1 (Viswanathan and 

Sen, 2010). 

______________________________________________________________________________ 

Insert Table 1 about here 

______________________________________________________________________________ 

In this example, it is assumed that the setup time for a job is zero if it is the first in the sequence. 

Consider the ordered sequence of jobs (1, 2, 3) and (2, 1, 3). Under the graph formulation, a node 

is represented by the set of completed jobs without regard to the ordering, except for the last job 

in the sequence. Because the set of jobs and the last job in the two ordered sequences in question 

are the same, the two are represented by a single node  3},2,1{ , where the first two jobs form a  

set (unordered) and the last job is shown separately.   The cost when the node is reached through 

the sequence 1, 2, 3 is 182 and through the sequence 2, 1, 3 is 188.  If a traditional graph search 

algorithm reaches the node through the two different paths considered, it would simply discard 

the higher cost path 2, 1, 3. However, if we look below this node, we see that the sequence 1, 2, 

3, 4 has a cost of 1206, which is higher than the cost of the sequence 2, 1, 3, 4 which is 1088. A 

traditional graph search algorithm thus runs the risk of missing the optimal solution. 

Mondal and Sen (2001) have proposed the MDFBB search algorithm which is a memory 

constrained graph search algorithm. MDFBB is unaffected by situations when the costs of paths 

from a node to a goal node depend on the path through which the node was reached, as occurs in 

the presence of sequence-dependent setup times. It has been proven to provide optimal solutions 

and can therefore be applied to QPSD to take advantage of the graph formulation and yet 

guarantee optimal solutions. The next section describes the QPSD_MDFBB algorithm. The 

algorithm works on the graph formulation. 
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3. QPSD_MDFBB algorithm and empirical results  

Algorithm QPSD_MDFBB is shown in Figure 1. It uses the recursive function QPSD_REC. 

Unlike DFBB which stores only nodes on the current path and does not exploit the available 

additional memory on today’s computers, QPSD_MDFBB uses a fixed predetermined amount of 

memory to store nodes. As in DFBB, QPSD_MDFBB starts with an upper bound on the cost of 

the optimal solution and examines all the paths from the start to the goal node in a depth-first 

manner. Whenever a solution is found whose cost is lower than the best one found so far, the 

upper bound is revised to the cost of this new solution. Whenever a path is found whose cost can 

be guaranteed to equal or exceed the upper bound, it is pruned. When an already generated node 

is encountered along a different path, QPSD_MDFBB can use the stored cost of the node to 

decide whether it should be searched again. 

______________________________________________________________________________ 

Insert Fig. 1 about here 

______________________________________________________________________________ 

 

When memory becomes full, QPSD_MDFBB attempts to replace the less promising nodes, i.e. 

the nodes which have been visited relatively less recently, with the newly generated promising 

ones. QPSD _MDFBB maintains as much of the graph structure as memory will permit by 

storing generated nodes.  

A node has an associated cost denoted by its b-value. The b-value b(n) of a node n is the cost of 

the currently known least cost path from n to a goal node. When n is generated for the first time, 

b(n) is set to the heuristic estimate h(n) of the corresponding sub problem (calculated using 

Townsend’s heuristic (Townsend, 1978), but with the effective processing times as shown in 

Figure 1). When the successors of node n are generated or visited, the b(n) is updated by a 

bottom-up cost revision procedure based on the b-values of the successors.  

The value of b(n) is reset to the minimum of c(n, ni ) + b(ni), where the minimum is taken over 

all the immediate successors of n, and c(n, ni) is the cost of the arc between nodes n and ni. As a 

result, as more and more nodes below a node n are searched, b(n) increases from h(n) to attain 
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the optimal cost below the node, while always remaining a valid lower bound. The use of b(n) 

helps in avoiding repetitive search below n and also increases the pruning power of the 

algorithm. Since algorithm QPSD_MDFBB is an adaptation of MDFBB, its optimality follows 

from the optimality of MDFBB.    

The difficult part in the algorithm is the computation of the b-value of a node and storing it, 

knowing that it is path-dependent. The b-value at a node is stored using path-dependent and path-

independent components, and when a node is reached again along a different path, its path 

dependent component and hence its b-value is recomputed.  What this enables us to do even 

though arc costs are path dependent, is to reuse the b-value components when a node is revisited by 

simply modifying these values appropriately. Thus the effort expended in earlier explorations 

under the node is not wasted and need not be repeated. 

The b-value at a node n can be expressed in the form (Sen and Bagchi, 1996): 

    TTnb 2)(  
 
where α, ß and γ are parameters that depend on node n but not on T (the completion time of the last 

job in n). For any job Jk in the set of Q jobs remaining to be processed at node n, the finish time tk 

can be expressed as T + (tk - T); the coefficients of T2 can be grouped together yielding the 

parameter α, the coefficients of T yield the parameter ß, and the remaining terms combine to give 

γ. The value of α remains constant during the search, ß and γ change as more and more jobs in Q 

get sequenced; α, ß and T must be stored at each node and reset from bottom and also when 

reached along a different path. This method can be extended to penalty functions that are higher 

powers of the job finish times.  

 

Table 2 shows the experimental results for QPSD_MDFBB under a 512K node limit. The results 

were obtained on an Intel Pentium 1.79 GHz PC running Windows XP. It can be seen that 

QPSD_MDBB can readily solve 30-job problems. Previous experiments (Sen and Bagchi, 1996; 

Mondal and Sen, 2000b) have reported solutions for only up to 22-job problems. Thus 

QPSD_MDFBB is able to solve larger instances in reasonable time and with a relatively low 

memory limit. Using a higher node limit, QPSD_MDFBB will be able to solve much larger 

instances obviously at the cost of a considerable increase in running time.  
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______________________________________________________________________________ 

Insert Table 2 about here 

______________________________________________________________________________ 

 

Can we solve larger instance of QPSD quickly? We suggest approximate approaches in the next 

two sections. 

4. Greedy Stochastic Approach for QPSD 

Greedy algorithms are known for many combinatorial optimization problems (Kruskal, 1956; 

Martello and Toth, 1990). As the name suggests, these algorithms aim to incrementally develop 

good solutions by taking what appears to be the best local action without making any effort to 

consider the global impact of these actions. For example, the nearest neighbour heuristic for the 

TSP (Johnson and McGeoch, 1997) creates a tour by starting at an arbitrary city and visiting the 

nearest unvisited city, and so on till the tour is completed. For the knapsack problem, the greedy 

approach is to order the items in non-increasing order of their value per unit weight, and to 

progressively fill the knapsack with as many units of the remaining highest valued item as will fit. 

Although it is well known that these approaches cannot guarantee optimal solutions, in practice 

they tend to give moderately good solutions.  

Townsend (1978) presented sufficient conditions for optimality for sequencing problems with 

quadratic penalties and no setup times (QP). A modified version of this can be used to develop a 

greedy solution for QPSD. We first describe Townsend’s sufficient conditions for QP. 

As already mentioned, let ia  be the processing time for iJ  and ip be its penalty coefficient. 

Suppose there is a sequence S in which the jobs are ordered as 

jiifjkikNikJJJ Nkkk  )()(},..1{)(,,.., )()2()1(  

Townsend showed that the sequence is optimal if it satisfies both of the following conditions: 
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Of course, the problem data might be such that both of these cannot be simultaneously satisfied, 

and therefore an implicit enumeration might be needed to obtain an optimal solution for QP. 

Scheduling the jobs solely by their ratios as in (1) above can be seen as a greedy approach. 

Viswanathan and Sen (2010) have shown that this approach is extremely effective for randomly 

generated QP instances. In their paper, a greedy approach for QPSD based on Townsend’s 

sufficient conditions has been proposed. The greedy algorithm is shown in Figure 2. The 

algorithm proceeds by selecting the jobs to be scheduled one by one. At each stage the 

unscheduled job with the highest Townsend ratio is selected, where the ratio is calculated using 

the effective processing time based on the preceding job. This might not result in the jobs being 

ordered in decreasing order of the ratio, but at each stage we are taking the best local action. 

______________________________________________________________________________ 

Insert Fig. 2 about here 

______________________________________________________________________________ 

The experimental results for QPSD_GREEDY on randomly generated problems are reproduced 

in Table 3.  

______________________________________________________________________________ 

Insert Table 3 about here 

______________________________________________________________________________ 

It is not as effective as the direct application to QP, because QPSD is much more complex. 

However, since the approach is based on only one of the two conditions, and since the condition 

is sufficient, but not necessary, it seems likely that perturbing the approach and generating 

multiple solutions and taking the best one could lead to improvements in the solution quality. 

One way of perturbing the greedy approach is as follows. Rather than deterministically following 

Townsend’s ordering, Viswanathan and Sen (2010) have suggested a probabilistic approach. In 
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this approach, while selecting the next job to be scheduled, the jobs are ordered as above by their 

Townsend ratio values, but instead of deterministically selecting the job with the highest ratio, 

the next job is selected based on a probabilistic model. This approach may be called the greedy 

stochastic approach (GSA), and its application to QPSD as the algorithm QPSD_GSA, which is 

presented in Figure 3. 

______________________________________________________________________________ 

Insert Fig. 3 about here 

______________________________________________________________________________ 

The performance of QPSD_GSA depends crucially on the specific discrete probability 

distribution used. The main issue is that of how far to deviate from a straight allocation based 

strictly on the Townsend ratio. We experimented with uniform, geometric and binomial 

distributions to reflect a complete random selection, selection based on an exponentially 

declining model and a bell shaped model, respectively.  At any stage when there are, say m 

unscheduled jobs, the random choice process requires the selection of a number between 1 and 

m, both inclusive. Under the uniform distribution, we picked any of the unscheduled jobs with 

equal probability. (For this, reordering the jobs by their Townsend ratios is not necessary).  

The geometric distribution, (shown in Figure 4, and suitably translated to the right by 1 to avoid 

choosing zero) appears intuitively to be ideal for this problem since it has a high probability of 

selecting the job with the highest ratio, with decreasing, but non-zero probabilities for lower 

ratios. Since the geometric distribution provides a finite probability of picking integers greater 

than m, whereas we want only values between 1 and m, we adjusted the probabilities by 

redistributing the cumulative probability for values greater than m proportionately to the values 

in the range 1 to m. The use of the binomial distribution (which has a bell shape) is 

straightforward, except that it too needs to be shifted to the right by 1 to avoid picking 0. 

The experimental results of using each of these are reproduced from Viswanathan and Sen 

(2010) and shown in Table 4. For each problem instance, we generated 256 random greedy 

stochastic solutions and took the best one. We chose the parameters for the geometric and 
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binomial distributions by trial and error and retained the values that yielded the best results. For 

the geometric and binomial distributions studied, the parameter values of 0.85 and 0.025, 

respectively, gave the best results with binomial being the better of the two. Interestingly, the 

graph for the binomial distribution with this parameter looks very much like the geometric 

distribution. The left half of the bell disappears. This graph is shown in Figure 5. 

______________________________________________________________________________ 

Insert Table 4 about here 

______________________________________________________________________________ 

______________________________________________________________________________ 

Insert Fig. 4 and 5 about here 

______________________________________________________________________________ 

The binomial distribution consistently outperformed the geometric distribution. The geometric 

distribution with parameter values close to 1 tends to give too much weight to the higher ranked 

jobs and too little to the rest, whereas, the binomial distribution with a low parameter value is 

somewhat less lopsided and appears to provide better stochastic perturbation.  

From the results given in Table 4, it is clear that the stochastic version of the greedy algorithm 

provides much better solutions than the deterministic version for QPSD. Nevertheless, the 

solutions are not sufficiently close to optimal for standalone use. In the next section we show 

how this approach can be effectively integrated into a proposed genetic algorithm 

implementation.  

5. Genetic Algorithm – QPSD_GEN 

Genetic Algorithms (GA) make use of methods developed by Holland (1975) and popularized by 

Goldberg (1989) to find good solutions to complex combinatorial optimization problems. The 

approach is motivated by the biological process of natural selection. Genetic algorithms as well 
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as other evolutionary approaches like simulated annealing and tabu search (Reeves, 1993) have 

been applied to scheduling and sequencing problems earlier (Mattfeld, 1996) with success. There 

is continuing work in applying GA for scheduling. Lee and Choi (1995) reported a GA 

application to the problem with due dates and earliness-tardiness penalties. Chang et al. (2006) 

reported a novel case-injected GA for single machine sequencing with release times. Tiwari and 

Vidyarthi (2000) described a GA for machine loading in flexible manufacturing systems. 

Norman and Bean (1999) proposed a random keys-based GA application for complex scheduling 

problems. Sadegheih (2006) described an application of GA to sequence job operations in 

machine shops with precedence constraints. Dowsland and Thompson (2006) reported an 

application of ant colony optimization to the examination scheduling problem. A few other 

relevant references on the application of GA to machine scheduling problems with sequence-

dependent setups are Vallada and Ruiz (2011), Vela et al. (2010), Tavakkoli-Moghaddam et al. 

(2009), Ruiz and Maroto (2006), and Cheung and Zhao (2001). Interestingly, QPSD has not yet 

been addressed using such techniques. Since the problem is very complex, the size of problems 

that can be solved optimally is drastically limited. In an effort to make progress on large problem 

instances, we applied GA to QPSD and have obtained very encouraging results. Although the 

optimality of the solutions cannot be guaranteed, our findings indicate that near-optimal 

solutions can be obtained very quickly for even large problem instances.  Our earlier discussion 

has revealed that optimal search algorithms for the problem either run out of memory (GREC) or 

take too long to run to completion (DFBB and QPSD_MDFBB with values of N > 30).  

The salient aspects of our GA implementation are: 

 Use of the greedy stochastic algorithm to generate a portion of the initial population 

 Use of a modified version of the single point crossover for mating 

 Use of an auxiliary operation based on neighbour exchanges after every fixed number of 

generations to improve the fitness of the solution pool 

5.1 Chromosome representation 

A permutation of 1 to N, N being the number of jobs, is a natural chromosomal representation 

for QPSD since the set of all permutations is the same as the set of all feasible schedules. Other 

schemes have been adopted for scheduling and related problems. For instance, in solving the 
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asymmetric travelling salesman problem, Choi et al. (2003) deliberately expanded the search 

space to consider infeasible solutions as well. They therefore used an adjacency representation 

that accommodated sub-tours. Lee and Choi (1995) used the permutation notation, augmented 

with minus signs to represent blocking information for the single machine sequencing problem 

with early-tardy penalty weights. We decided to restrict the search to just the feasible region and 

hence adopted a simple permutation representation for the chromosomes. The fitness value of a 

permutation is simply the cost of the associated schedule. 

5.2 Initial population 

It is common practice in genetic algorithms to start with a randomly generated initial population. 

We introduced a novelty in our experiments; our initial population is comprised of three distinct 

classes of schedules. The first (and largest) class consists of randomly generated schedules. The 

second class is made up of solutions generated using the greedy stochastic approach QPSD_GSA 

described in the previous section using the binomial distribution and the third class is generated 

using QPSD_GSA with the geometric distribution. This provided a good deal of diversity in the 

population. 

5.3 Mating and fitness scaling 

To minimize the effects of good fitness values dominating the solution pool early on in the 

process and reducing diversity, we chose to use a rank-weighted mating strategy (Goldberg, 

1989). Under this, the chromosomes are first ranked in increasing order of their fitness values. 

The probability of chromosome with rank i being selected for mating is 
)1(

)1(2




NN

iN
. This 

provides chromosomes with poor fitness values a higher probability of being selected as parents 

than would have been possible if fitness value alone were used to determine parent selection. 

5.4 Crossover 

Several mating schemes have been considered for permutation representations. Prominent among 

these are partially matched crossover (PMX), cycle crossover (CX) and tie-break crossover 

(TBX). In addition, we also considered a new single point crossover operation adapted from 

PMX. Under this, a random crossover point is chosen and the portion to the left of this point is 
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first exchanged between the mating chromosomes. This process generally results in infeasible 

schedules (with duplicate and missing values) and an additional repair step is needed. The repair 

process is exactly analogous to the repair process in PMX. An example is shown in Figure 6 to 

illustrate the process with N = 6 (the crossover point is shown with a solid triangle in each 

chromosome).  In the example, the first child gets the values 1, 3 and 5, and loses the values 3, 4 

and 2. As a result of this, it has duplicate values for 1 and 5, and is missing the values 2 and 4. 

We leave the portion to the left of the crossover point intact and substitute 1 with 4 and 5 with 2 

to the right of the crossover point. Child 2 is also repaired analogously. We found that the single 

point crossover and PMX were the best performers, with the former being marginally better. 

______________________________________________________________________________ 

Insert Fig. 6 about here 

______________________________________________________________________________ 

5.5 Elitism 

At the end of each generation, the population doubles because each mating of two chromosomes 

produces two new offspring. Retaining only the best values from the resultant set tends to reduce 

the diversity and causes the algorithm to converge quickly to a local optimum. In order to retain 

diversity, it is common to use a process of elitism. Under this, the extended population 

comprising the population at the start of a generation along with the newly generated offspring is 

ranked and then divided into buckets, for example 40%, 40% and 20% based on the ranks. From 

each bucket, a specified proportion of the final population for the next generation (say 60%, 30% 

and 10%) is picked. This allows a certain percentage of chromosomes with poor fitness values to 

be included in the population so that there is a better chance of breaking out of local minima. 

5.6 Mutation 

We tested out several mutation options. Unlike in a binary string representation for 

chromosomes, where a bit is simply flipped if chosen for mutation, in a permutation 

representation there is the additional problem of maintaining feasibility. We tried several 

different mutation operators. In the 2-opt operator (Lin and Kernighan, 1971), when an element 
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is chosen for mutation, it is swapped with another randomly chosen element. In the neighbour 

swap mutation, when an element is chosen for mutation, it is swapped with its neighbour to the 

right (with wrap-around). In the three-point-swap operation, when an element is chosen for 

mutation, two others are also randomly chosen and the three are cyclically swapped. Finally, in 

the random-two-swap operation, the choice for mutation is done at the chromosome level rather 

than at the individual element. Here if a chromosome is chosen for mutation, two of its elements 

are randomly selected and swapped. 

5.7 Auxiliary operations 

Akin to the repair process adopted in Choi et al. (2003) for the ATSP, once every fixed number 

of generations, we carried out an enhancement operation where we took each chromosome in the 

population and applied all possible neighbour exchanges that increased the fitness. 

5.8 Experimental results 

We tested QPSD_GEN on randomly generated problems. We generated problems having 

between 10 and 30 jobs, and for each value we generated 100 problems with processing times 

varying uniformly between 1 and 100 and setup times and penalty coefficients as integers 

ranging uniformly between 1 and 10. We used a population size of 256. The initial population 

comprised 50% random solutions, 25% generated using QPSD_GSA with binomial distribution 

with p = 0.025 and 25% generated with a geometric distribution with p = 0.85. We ran the 

algorithm for 100 generations for all problems. We found that the single point crossover operator 

and neighbour mutation performed best. We used a fixed mutation probability of 0.03. For 

elitism, we retained the top 5% of the best solutions from the extended population after mating. 

We divided the rest of the solutions into three buckets of 40%, 30% and 25% and from these 

buckets we randomly picked 62.5%, 50% and 20%, respectively, at random to survive into the 

next generation. We used the auxiliary operation described above once every 4 generations, as 

well as at the end of the final generation. The results are shown in Table 5. As expected, the 

deviation from optimal for QPSD_GEN grows with the number of jobs, but this growth is not 

alarming. It is interesting to note that these results have been obtained using very conservative 

GA parameters (100 generations, population size 256). For larger instances these can be 

increased – it is very common for GA’s to be run for over 200 generations and also to use larger 
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population sizes. Therefore, good solutions can be expected for even much larger instances. 

Figure 7 compares the percentage deviation from optimal for QPSD_GEN with those for the 

deterministic and stochastic greedy approaches. This underscores the robustness of QPSD_GEN 

since its solutions do not deteriorate as rapidly as those of the greedy solutions with increasing 

problem size.  

____________________________________________________________________________ 

Insert Table 5 about here 

____________________________________________________________________________ 

______________________________________________________________________________ 

Insert Fig. 7 about here 

______________________________________________________________________________ 

To get an idea of how QPSD_GEN will perform beyond our experimental range, we ran a 

regression of the problem size with the percentage deviation. The 2R value was 0.921 and the 

regression model was significant at 99%. Extrapolating based on the regression results, we can 

expect a 2.19% deviation from optimal for 100 job problems, provided the regression model is 

valid in that range.  To solve larger instances by QPSD_GEN and to avoid numeric overflow, we 

used 64-bit 1.6 GHz Intel Itanium processor running Linux and the algorithm took around 47, 61 

and 77 seconds for solving 80, 90 and 100 job instances respectively.  

6. Conclusions and scope for further research 

We have presented exact and approximate approaches to the QPSD problem with a view to 

advancing the state of the art. We have outlined the complexities that sequence-dependent setup 

times cause for traditional graph search algorithms. We presented QPSD_MDFBB, an exact 

memory-constrained algorithm that advances the state of the art by optimally solving larger 

problem instances than is possible with exact approaches reported earlier.  We also presented a 

new greedy solution for QPSD and suggested the idea of greedy stochastic algorithms (GSA) 

with an application to QPSD called QPSD_GSA which can find moderately good solutions very 

quickly and can hence be applied for extremely large instances. We integrated QPSD_GSA into 
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a new genetic algorithm implementation QPSD_GEN which was shown to provide near-optimal 

solutions very quickly. The deviation from optimal for QPSD_GEN appears to be linear and 

hence it is useful for getting very good approximate solutions for large problem instances. 

It is clear that although QPSD_MDFBB does advance the state of the art, the size of problems 

that can be solved optimally is still quite small. The reason seems mainly to be the lack of tight 

heuristic estimating functions. This is one important area for further research. There is also scope 

for further work in the area of GSA as applied to QPSD and also more generally to other 

combinatorial optimization problems. Theoretical analyses as well as empirical studies of its 

applications to various problems should be interesting. It will also be interesting to compare the 

performance of QPSD_GEN with that of other evolutionary approaches to the problem including 

tabu search, simulated annealing and ant colony optimization. 
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Tables 

Table 1: 4-job QPSD problem 

Job 
 Setup Times Proc.

Times
Penalty 
Coeff.  1  2  3  4 

 1  -  1  1  3 1 2 

 2  1  -  3  2 4 1 

 3  5  4  -  10 3 1 

 4  3  6  9  - 10 1 

 

 

Table 2: QPSD_MDFBB with 512k node limit 
 

 Node limit = 512k nodes

Job 
size 

QPSD_MDFBB
Optimal 

Cost
Node
Gen

Time 
(secs)

20 17953992 163459 0.70
22 21587074 461720 2.32
24 31098438 1088649 6.3
26 36795831 3357289 23.15
28 48335631 13514071 110.72
30 58034706 39696969 398.57
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Table 3: Performance of greedy algorithm, QPSD_GREEDY 

No. of jobs (N) % Deviation from optimal: 100*(value-opt)/opt 
10 7.70 
11 9.06 
12 10.02 
13 11.04 
14 11.13 
15 11.02 
16 11.05 
17 12.22 
18 12.50 
19 13.64 
20 13.91 
21 14.66 
22 14.45 
23 14.51 
24 14.41 
25 14.63 
26 15.64 
27 15.22 
28 15.55 
30 15.71 

Table 4: Performance of greedy and stochastic greedy algorithms under binomial and 
geometric distributions (averages over 100 problem instances for each value of N) 

No. of jobs (N) 
% Deviation from optimal: 100*(value-opt)/opt 

Greedy 
SGA – Binomial 

(p = 0.025) 
SGA – Geometric 

(p = 0.85) 
10 7.70 1.67 2.07 
11 9.06 2.53 3.10 
12 10.02 2.81 3.48 
13 11.04 3.04 4.05 
14 11.13 3.70 4.65 
15 11.02 3.66 4.73 
16 11.05 4.01 5.14 
17 12.22 4.70 6.18 
18 12.50 4.93 6.20 
19 13.64 5.90 7.57 
20 13.91 6.10 7.61 
21 14.66 6.95 8.12 
22 14.45 7.11 8.34 
23 14.51 7.51 8.59 
24 14.41 7.43 8.93 
25 14.63 7.70 9.05 
26 15.64 8.31 9.92 
27 15.22 8.13 9.70 
28 15.54 8.53 9.75 
30 15.71 9.22 10.56 
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Table 5 - Performance of QPSD_GEN 
 

No of jobs 
CPU Time (secs) 

% Deviation from optimal: 
100*(value-opt)/opt 

QPSD_MDFBB 
(512K node limit) QPSD_GEN QPSD_GEN GREEDY 

10 0.001 0.157 0.009 7.704 
11 0.003 0.181 0.027 9.063 
12 0.005 0.207 0.012 10.020 
13 0.010 0.236 0.022 11.043 
14 0.017 0.266 0.103 11.131 
15 0.031 0.298 0.078 11.017 
16 0.061 0.337 0.071 11.051 
17 0.125 0.374 0.132 12.223 
18 0.205 0.412 0.153 12.497 
19 0.382 0.457 0.136 13.645 
20 0.700 0.500 0.180 13.906 
21 1.303 0.548 0.229 14.664 
22 2.328 0.598 0.224 14.447 
23 3.791 0.654 0.301 14.508 
24 6.332 0.705 0.260 14.413 
25 16.240 0.764 0.361 14.626 
26 22.934 0.817 0.496 15.643 
27 44.129 1.480 0.398 15.223 
28 110.645 1.533 0.427 15.549 
30 382.3298 2.148 0.483 15.715 
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Figures 

 

Algorithm QPSD_MDFBB { 
Compute the effective processing times }..1{},..0{,, NjNiase jjiji  . 

Sort the 
ji

j

e

p

,

values in non-ascending order }..1{},..0{ NjNi   (for heuristic 

computation and successor ordering).  
Generate the start node s, represented as ))(),(( sLsJ  where  J(s) is the set of jobs 
completed and L(s) represents the last job; J(s) is empty and L(s) is null 

0)( sT  /* completion time of jobs in s */ 
)()( shsb   /* h(s) is the heuristic estimate of node s */ 
bound  

 Call ),(_ boundsRECQPSD  
} 
 
Function QPSD_REC(n, bound) { 
 if n represents a complete schedule then return 0 
 newbound  
 for each of the successors ni of n do 
  Generate successor ni by scheduling an unscheduled job k 
  knJnJ i  )()( and knL i )(  

  knLi enTnT ),()()(   

  2)(),( iki nTpnnc   

  if in is not already stored set )()( ii nhnb   

  if boundnbnnc ii  )(),( then 

   )),(,(_)( iii nncboundnRECQPSDnb   

 Store node ni if memory is available or if a less recently used node can be 
replaced by ni  

}),(),(min{ newboundnbnncnewbound ii   

),min( newboundboundbound   
 return newbound 
} 
 
 

Fig. 1: Algorithm QPSD_MDFBB 
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Algorithm QPSD_GREEDY { 

Let js ,0  represent the setup time for jJ when it is the first job to be scheduled. 

For job jJ , calculate its effective processing time when it follows job iJ as 

NjNisae jijji  1;0,,  

Order the jobs such that 
)(,0

)(

)2(,0

)2(

)1(,0

)1( ....
Nk

Nk

k

k

k

k

e

p

e

p

e

p
  

Schedule job )1(kJ  as the first job 

)1(kr   

For Ni ..2  do the following { 

 Order the 1 iN  unscheduled jobs such that 
)1(',

)1('

)2(',

)2('

)1(',

)1(' ....



iNkr

iNk

kr

k

kr

k

e

p

e

p

e

p
 

 Schedule job )1('kJ  as the ith job 

   )1('kr   
} 

Fig. 2: Algorithm QPSD_GREEDY 

Algorithm QPSD_GSA 

Let js ,0  represent the setup time for jJ when it is the first job to be scheduled. 

 

For job jJ , calculate its effective processing time when it follows job iJ as 

NjNisae jijji  1;0,,  

Order the jobs such that 
)(,0
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)2(,0

)2(

)1(,0

)1( ....
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p
  

Pick job )(xkJ  randomly based on a predefined probability distribution. 

Schedule job )(xkJ  as the first job 

)1(kr   

For Ni ..2  do the following { 

 Order the 1 iN  unscheduled jobs such that 
)1(',

)1('

)2(',

)2('

)1(',

)1(' ....



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iNk
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 Pick job )(xkJ  randomly based on a predefined probability distribution. 

 Schedule job )(' xkJ  as the ith job 

  )(' xkr   
} 

Fig. 3: Algorithm QPSD_GSA 
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Fig. 4: Geometric distribution with p = 0.85 (translated to the right by 1 to avoid 0) 

 

 

Fig. 5: Binomial distribution with p = 0.025 (translated to right by 1 to avoid 0) 
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Initial configuration: 

Chromosome 1 3, 4, 2, ▲ 1, 6, 5 
Chromosome 2 1, 3, 5, ▲ 4, 2, 6 

Immediately after exchange: 

Intermediate child 1 1, 3, 5, ▲ 1, 6, 5 
Internediate child 2 3, 4, 2, ▲ 4, 2, 6 

Final configuration (after repair): 

Child 1 1, 3, 5, ▲ 4, 6, 2 
Child 2 3, 4, 2, ▲ 1, 5, 6 

Fig. 6: Example of crossover 
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Fig. 7: Percentage deviation from optimal for QPSD_GEN and the greedy approaches 
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