

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

WORKING PAPER SERIES

WPS No. 686/ November 2011

Application of Graph Search and Genetic Algorithms for the Single Machine Scheduling
Problem with Sequence-Dependent Setup Times and Quadratic Penalty Function of

Completion Times

by

Viswanathan Kodaganallur
Associate Professor, Seton Hall University, 400 South Orange Avenue, NJ 07079, USA

Anup K. Sen
Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700 104 India

&

Subrata Mitra
Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700 104 India

1

Application of Graph Search and Genetic Algorithms for the Single Machine Scheduling
Problem with Sequence-Dependent Setup Times and Quadratic Penalty Function of

Completion Times

Viswanathan Kodaganallur

Seton Hall University

400 South Orange Avenue

NJ 07079, USA

E-mail: viswa.viswanathan@shu.edu

Anup K Sen

E-mail: sen@iimcal.ac.in

Subrata Mitra1

E-mail: subrata@iimcal.ac.in

Indian Institute of Management Calcutta

D. H. Road, Joka, Kolkata 700104, India

1 Corresponding author

2

Application of Graph Search and Genetic Algorithms for the Single Machine Scheduling

Problem with Sequence-Dependent Setup Times and Quadratic Penalty Function of

Completion Times

Abstract

In this paper, we consider the single machine scheduling problem with quadratic penalties and

sequence-dependent (QPSD) setup times. QPSD is known to be NP-Hard. Only a few exact

approaches, and to the best of our knowledge, no approximate approaches, have been reported in

the literature so far. This paper discusses exact and approximate approaches for solving the

problem, and presents empirical findings. We make use of a graph search algorithm, Memory-

Based Depth-First Branch-and-Bound (MDFBB), and present an algorithm, QPSD_MDFBB that

can optimally solve QPSD, and advances the state of the art for finding exact solutions. For

finding approximate solutions to large problem instances, we make use of the idea of greedy

stochastic search, and present a greedy stochastic algorithm, QPSD_GSA that provides

moderately good solutions very rapidly even for large problems. The major contribution of the

current paper is to apply QPSD_GSA to generate a subset of the starting solutions for a new

genetic algorithm, QPSD_GEN, which is shown to provide near-optimal solutions very quickly.

Owing to its polynomial running time, QPSD_GEN can be used for much larger instances than

QPSD_MDFBB can handle. Experimental results have been provided to demonstrate the

performances of these algorithms.

Keywords: Single machine scheduling; Sequence-dependent setup; Quadratic penalty; Graph

search; Genetic algorithm

3

Application of Graph Search and Genetic Algorithms for the Single Machine Scheduling

Problem with Sequence-Dependent Setup Times and Quadratic Penalty Function of

Completion Times

1. Introduction

Single machine scheduling problems have been widely studied (Pinedo, 1995). One version of

the problem that has been extensively dealt with in the literature is the consideration of

sequence-dependent setup times (Choi and Choi, 2002; Gupta and Smith, 2006; Luo et al., 2006;

Liao and Juan, 2007; Luo and Chu, 2007; Biskup and Herrmann, 2008; Koulamas and Kyparisis,

2008; Lin and Ying, 2008; Valente and Alves, 2008; Wang, 2008; Ang et al., 2009; Anghinolfi

and Paolucci, 2009; Kim and Lee, 2009; Tasgetiren et al., 2009; Wang and Tang, 2010; Zhao

and Tang, 2010; Nekoiemehr and Moslehi, 2011). Another version of the problem that has drawn

limited attention is the consideration of quadratic penalty functions of job completion times

(Townsend, 1978; Bagga and Kalra, 1980; Gupta and Sen, 1984; Bagchi et al., 1987a, 1987b;

Szwarc et al., 1988; Sen et al., 1990; Croce et al., 1995; Mondal and Sen, 2000a). In this paper,

we consider the single machine scheduling problem with quadratic penalties and sequence-

dependent (QPSD) setup times. In QPSD, there are N jobs, iJ , i = 1..N, all of them available at

time 0. These jobs are to be processed on a machine one after the other. Associated with iJ are

the processing times, ia , penalty coefficients, ip , and setup times, jis , (being the setup time for

jJ when it is immediately preceded by iJ). The objective is to minimize the total penalty across

all jobs, i.e. to minimize the weighted sum of the squares of the completion times. When the

setup times are sequence-independent, they can simply be added to the processing times for the

corresponding jobs and thus possess no additional complexity over problems without setup

times. However, when the setup times are sequence-dependent, the quadratic penalty problem

becomes extremely difficult to solve. It is interesting to note that minimizing the weighted sum

of the completion times (i.e. the linear penalty case) can be transformed and treated as if the

setup times are sequence-independent (Sen and Bagchi, 1996). However, no such transformation

is possible for the non-linear penalty case with sequence-dependent setup times. In this paper, we

attempt to advance the state of the art for solving the QPSD problem.

4

Single machine scheduling problems with N jobs have N! possible distinct sequences, and except

for special cases, it is known that these problems are NP-Hard (Rinooy Kan, 1976), i.e. finding

an optimal solution requires an implicit enumeration of all possible sequences. QPSD has some

similarities to the asymmetric travelling salesman problem (ATSP) (Choi et al., 2003). However,

unlike ATSP, rotations of permutations are not equivalent in QPSD, and the processing sequence

affects the job completion times. It is, therefore, a more complex problem, and finding an

optimal solution requires exploring a larger search space. GREC (Sen and Bagchi, 1996) is a

general graph search algorithm that has been used to solve QPSD optimally. Although GREC

has been shown to be faster than Depth-First Branch-and-Bound (DFBB) for this problem, it

runs out of memory even for moderate-sized problems. To our knowledge, approximate

approaches to solve large instances of QPSD have not been reported in the literature so far. In

this paper, we present exact and approximate approaches for QPSD. In particular:

 We discuss the characteristics of QPSD. The presence of sequence-dependent setup times

makes conventional graph-search algorithms like A* (Hart et al., 1968) and dynamic

programming approaches (French, 1982) inapplicable.

 We describe QPSD_MDFBB, an application to QPSD of a Memory-Based Depth-First

Branch-and-Bound (MDFBB) approach proposed by Mondal and Sen (2001).

QPSD_MDFBB optimally solves QPSD instances up to 30 jobs.

 In order to propose approximate approaches for solving large instances, we first present a

greedy approach for QPSD and describe the concept of greedy stochastic search

(Viswanathan and Sen, 2010). We present an effective greedy stochastic algorithm,

QPSD_GSA that can generate moderately good solutions rapidly even for large instances.

The general idea of GSA is applicable to a wide range of combinatorial optimization

problems like the travelling salesman, knapsack, combinatorial auction and other problems

for which greedy solutions can be conceived.

 The major contribution of this paper is to combine the findings of QPSD_GSA with a new

genetic algorithm formulation called QPSD_GEN for the problem. QPSD_GEN does not

5

guarantee optimal solutions, but has been seen to generate near-optimal solutions in general.

Our findings indicate that QPSD_GEN can be used to generate solutions within 2.2% of the

optimal solutions for 100-job problem instances. We have used QPSD_GSA to generate a

subset of the initial population for the QPSD_GEN, and found this to have a great impact on

the quality of the solutions obtained. This way of integrating GSA into genetic algorithms is

also more generally applicable.

The paper is organized as follows. Section 2 discusses the problem with special emphasis on the

complexities introduced by sequence-dependent setup times. The algorithm QPSD_MDFBB and

experimental results for it are presented in Section 3. Section 4 presents QPSD_GSA and

experimental results for it. The implementation of the genetic algorithm, QPSD_GEN and the

associated experimental results are given in Section 5. Section 6 concludes the paper and

suggests areas for further work.

2. Effect of sequence-dependent setup times on QPSD

The QPSD problem may be formulated in IP (Integer Programming). However, such a formulation may

not be efficient to solve in practice. Sen and Bagchi (1996) have shown that the search space for

job sequencing problems can be modelled as a tree, or as a graph, and algorithms using the graph

search space run faster. For the QPSD problem under the tree formulation, two nodes with the

same set of jobs but in different orders and having the same last job will generally not have the

same cost because the setup times for the jobs could differ. Nevertheless, the sub-trees below them

are identical in terms of the structure. Algorithms using the tree search space cannot take advantage

of this fact and might wastefully traverse these identical sub-trees more than once. The graph

search space has far fewer nodes and offers the potential for faster search. The node count

reduction results from the fact that unlike in the tree search space, there could be multiple paths

from the root node to any given node, and this helps avoid replicating the identical sub-trees.

However, sequence-dependent setup times complicate traditional graph search because the

identical sub-trees may not have the same costs.

The main feature of graph search algorithms like the graph version of A* (Hart et al, 1968) is that

when these reach the same node through different paths, they retain the path having the lowest

6

cost, discarding any other paths from the root to the node. This approach works fine when the

incremental cost from a given node to a goal node is independent of the path by which the node

was reached. This is the same as the principle of optimality on which the dynamic programming

formulations are based (French, 1982). However, this does not hold for sequence-dependent

setup times. For example, consider the following 4-job problem given in Table 1 (Viswanathan and

Sen, 2010).

__

Insert Table 1 about here

__

In this example, it is assumed that the setup time for a job is zero if it is the first in the sequence.

Consider the ordered sequence of jobs (1, 2, 3) and (2, 1, 3). Under the graph formulation, a node

is represented by the set of completed jobs without regard to the ordering, except for the last job

in the sequence. Because the set of jobs and the last job in the two ordered sequences in question

are the same, the two are represented by a single node  3},2,1{ , where the first two jobs form a

set (unordered) and the last job is shown separately. The cost when the node is reached through

the sequence 1, 2, 3 is 182 and through the sequence 2, 1, 3 is 188. If a traditional graph search

algorithm reaches the node through the two different paths considered, it would simply discard

the higher cost path 2, 1, 3. However, if we look below this node, we see that the sequence 1, 2,

3, 4 has a cost of 1206, which is higher than the cost of the sequence 2, 1, 3, 4 which is 1088. A

traditional graph search algorithm thus runs the risk of missing the optimal solution.

Mondal and Sen (2001) have proposed the MDFBB search algorithm which is a memory

constrained graph search algorithm. MDFBB is unaffected by situations when the costs of paths

from a node to a goal node depend on the path through which the node was reached, as occurs in

the presence of sequence-dependent setup times. It has been proven to provide optimal solutions

and can therefore be applied to QPSD to take advantage of the graph formulation and yet

guarantee optimal solutions. The next section describes the QPSD_MDFBB algorithm. The

algorithm works on the graph formulation.

7

3. QPSD_MDFBB algorithm and empirical results

Algorithm QPSD_MDFBB is shown in Figure 1. It uses the recursive function QPSD_REC.

Unlike DFBB which stores only nodes on the current path and does not exploit the available

additional memory on today’s computers, QPSD_MDFBB uses a fixed predetermined amount of

memory to store nodes. As in DFBB, QPSD_MDFBB starts with an upper bound on the cost of

the optimal solution and examines all the paths from the start to the goal node in a depth-first

manner. Whenever a solution is found whose cost is lower than the best one found so far, the

upper bound is revised to the cost of this new solution. Whenever a path is found whose cost can

be guaranteed to equal or exceed the upper bound, it is pruned. When an already generated node

is encountered along a different path, QPSD_MDFBB can use the stored cost of the node to

decide whether it should be searched again.

__

Insert Fig. 1 about here

__

When memory becomes full, QPSD_MDFBB attempts to replace the less promising nodes, i.e.

the nodes which have been visited relatively less recently, with the newly generated promising

ones. QPSD _MDFBB maintains as much of the graph structure as memory will permit by

storing generated nodes.

A node has an associated cost denoted by its b-value. The b-value b(n) of a node n is the cost of

the currently known least cost path from n to a goal node. When n is generated for the first time,

b(n) is set to the heuristic estimate h(n) of the corresponding sub problem (calculated using

Townsend’s heuristic (Townsend, 1978), but with the effective processing times as shown in

Figure 1). When the successors of node n are generated or visited, the b(n) is updated by a

bottom-up cost revision procedure based on the b-values of the successors.

The value of b(n) is reset to the minimum of c(n, ni) + b(ni), where the minimum is taken over

all the immediate successors of n, and c(n, ni) is the cost of the arc between nodes n and ni. As a

result, as more and more nodes below a node n are searched, b(n) increases from h(n) to attain

8

the optimal cost below the node, while always remaining a valid lower bound. The use of b(n)

helps in avoiding repetitive search below n and also increases the pruning power of the

algorithm. Since algorithm QPSD_MDFBB is an adaptation of MDFBB, its optimality follows

from the optimality of MDFBB.

The difficult part in the algorithm is the computation of the b-value of a node and storing it,

knowing that it is path-dependent. The b-value at a node is stored using path-dependent and path-

independent components, and when a node is reached again along a different path, its path

dependent component and hence its b-value is recomputed. What this enables us to do even

though arc costs are path dependent, is to reuse the b-value components when a node is revisited by

simply modifying these values appropriately. Thus the effort expended in earlier explorations

under the node is not wasted and need not be repeated.

The b-value at a node n can be expressed in the form (Sen and Bagchi, 1996):

   TTnb 2)(

where α, ß and γ are parameters that depend on node n but not on T (the completion time of the last

job in n). For any job Jk in the set of Q jobs remaining to be processed at node n, the finish time tk

can be expressed as T + (tk - T); the coefficients of T2 can be grouped together yielding the

parameter α, the coefficients of T yield the parameter ß, and the remaining terms combine to give

γ. The value of α remains constant during the search, ß and γ change as more and more jobs in Q

get sequenced; α, ß and T must be stored at each node and reset from bottom and also when

reached along a different path. This method can be extended to penalty functions that are higher

powers of the job finish times.

Table 2 shows the experimental results for QPSD_MDFBB under a 512K node limit. The results

were obtained on an Intel Pentium 1.79 GHz PC running Windows XP. It can be seen that

QPSD_MDBB can readily solve 30-job problems. Previous experiments (Sen and Bagchi, 1996;

Mondal and Sen, 2000b) have reported solutions for only up to 22-job problems. Thus

QPSD_MDFBB is able to solve larger instances in reasonable time and with a relatively low

memory limit. Using a higher node limit, QPSD_MDFBB will be able to solve much larger

instances obviously at the cost of a considerable increase in running time.

9

__

Insert Table 2 about here

__

Can we solve larger instance of QPSD quickly? We suggest approximate approaches in the next

two sections.

4. Greedy Stochastic Approach for QPSD

Greedy algorithms are known for many combinatorial optimization problems (Kruskal, 1956;

Martello and Toth, 1990). As the name suggests, these algorithms aim to incrementally develop

good solutions by taking what appears to be the best local action without making any effort to

consider the global impact of these actions. For example, the nearest neighbour heuristic for the

TSP (Johnson and McGeoch, 1997) creates a tour by starting at an arbitrary city and visiting the

nearest unvisited city, and so on till the tour is completed. For the knapsack problem, the greedy

approach is to order the items in non-increasing order of their value per unit weight, and to

progressively fill the knapsack with as many units of the remaining highest valued item as will fit.

Although it is well known that these approaches cannot guarantee optimal solutions, in practice

they tend to give moderately good solutions.

Townsend (1978) presented sufficient conditions for optimality for sequencing problems with

quadratic penalties and no setup times (QP). A modified version of this can be used to develop a

greedy solution for QPSD. We first describe Townsend’s sufficient conditions for QP.

As already mentioned, let ia be the processing time for iJ and ip be its penalty coefficient.

Suppose there is a sequence S in which the jobs are ordered as

jiifjkikNikJJJ Nkkk )()(},..1{)(,,..,)()2()1(

Townsend showed that the sequence is optimal if it satisfies both of the following conditions:

)1...(....
)(

)(

)2(

)2(

)1(

)1(

Nk

Nk

k

k

k

k

a

p

a

p

a

p


10

)2...(....)()2()1(Nkkk ppp 

Of course, the problem data might be such that both of these cannot be simultaneously satisfied,

and therefore an implicit enumeration might be needed to obtain an optimal solution for QP.

Scheduling the jobs solely by their ratios as in (1) above can be seen as a greedy approach.

Viswanathan and Sen (2010) have shown that this approach is extremely effective for randomly

generated QP instances. In their paper, a greedy approach for QPSD based on Townsend’s

sufficient conditions has been proposed. The greedy algorithm is shown in Figure 2. The

algorithm proceeds by selecting the jobs to be scheduled one by one. At each stage the

unscheduled job with the highest Townsend ratio is selected, where the ratio is calculated using

the effective processing time based on the preceding job. This might not result in the jobs being

ordered in decreasing order of the ratio, but at each stage we are taking the best local action.

__

Insert Fig. 2 about here

__

The experimental results for QPSD_GREEDY on randomly generated problems are reproduced

in Table 3.

__

Insert Table 3 about here

__

It is not as effective as the direct application to QP, because QPSD is much more complex.

However, since the approach is based on only one of the two conditions, and since the condition

is sufficient, but not necessary, it seems likely that perturbing the approach and generating

multiple solutions and taking the best one could lead to improvements in the solution quality.

One way of perturbing the greedy approach is as follows. Rather than deterministically following

Townsend’s ordering, Viswanathan and Sen (2010) have suggested a probabilistic approach. In

11

this approach, while selecting the next job to be scheduled, the jobs are ordered as above by their

Townsend ratio values, but instead of deterministically selecting the job with the highest ratio,

the next job is selected based on a probabilistic model. This approach may be called the greedy

stochastic approach (GSA), and its application to QPSD as the algorithm QPSD_GSA, which is

presented in Figure 3.

__

Insert Fig. 3 about here

__

The performance of QPSD_GSA depends crucially on the specific discrete probability

distribution used. The main issue is that of how far to deviate from a straight allocation based

strictly on the Townsend ratio. We experimented with uniform, geometric and binomial

distributions to reflect a complete random selection, selection based on an exponentially

declining model and a bell shaped model, respectively. At any stage when there are, say m

unscheduled jobs, the random choice process requires the selection of a number between 1 and

m, both inclusive. Under the uniform distribution, we picked any of the unscheduled jobs with

equal probability. (For this, reordering the jobs by their Townsend ratios is not necessary).

The geometric distribution, (shown in Figure 4, and suitably translated to the right by 1 to avoid

choosing zero) appears intuitively to be ideal for this problem since it has a high probability of

selecting the job with the highest ratio, with decreasing, but non-zero probabilities for lower

ratios. Since the geometric distribution provides a finite probability of picking integers greater

than m, whereas we want only values between 1 and m, we adjusted the probabilities by

redistributing the cumulative probability for values greater than m proportionately to the values

in the range 1 to m. The use of the binomial distribution (which has a bell shape) is

straightforward, except that it too needs to be shifted to the right by 1 to avoid picking 0.

The experimental results of using each of these are reproduced from Viswanathan and Sen

(2010) and shown in Table 4. For each problem instance, we generated 256 random greedy

stochastic solutions and took the best one. We chose the parameters for the geometric and

12

binomial distributions by trial and error and retained the values that yielded the best results. For

the geometric and binomial distributions studied, the parameter values of 0.85 and 0.025,

respectively, gave the best results with binomial being the better of the two. Interestingly, the

graph for the binomial distribution with this parameter looks very much like the geometric

distribution. The left half of the bell disappears. This graph is shown in Figure 5.

__

Insert Table 4 about here

__

__

Insert Fig. 4 and 5 about here

__

The binomial distribution consistently outperformed the geometric distribution. The geometric

distribution with parameter values close to 1 tends to give too much weight to the higher ranked

jobs and too little to the rest, whereas, the binomial distribution with a low parameter value is

somewhat less lopsided and appears to provide better stochastic perturbation.

From the results given in Table 4, it is clear that the stochastic version of the greedy algorithm

provides much better solutions than the deterministic version for QPSD. Nevertheless, the

solutions are not sufficiently close to optimal for standalone use. In the next section we show

how this approach can be effectively integrated into a proposed genetic algorithm

implementation.

5. Genetic Algorithm – QPSD_GEN

Genetic Algorithms (GA) make use of methods developed by Holland (1975) and popularized by

Goldberg (1989) to find good solutions to complex combinatorial optimization problems. The

approach is motivated by the biological process of natural selection. Genetic algorithms as well

13

as other evolutionary approaches like simulated annealing and tabu search (Reeves, 1993) have

been applied to scheduling and sequencing problems earlier (Mattfeld, 1996) with success. There

is continuing work in applying GA for scheduling. Lee and Choi (1995) reported a GA

application to the problem with due dates and earliness-tardiness penalties. Chang et al. (2006)

reported a novel case-injected GA for single machine sequencing with release times. Tiwari and

Vidyarthi (2000) described a GA for machine loading in flexible manufacturing systems.

Norman and Bean (1999) proposed a random keys-based GA application for complex scheduling

problems. Sadegheih (2006) described an application of GA to sequence job operations in

machine shops with precedence constraints. Dowsland and Thompson (2006) reported an

application of ant colony optimization to the examination scheduling problem. A few other

relevant references on the application of GA to machine scheduling problems with sequence-

dependent setups are Vallada and Ruiz (2011), Vela et al. (2010), Tavakkoli-Moghaddam et al.

(2009), Ruiz and Maroto (2006), and Cheung and Zhao (2001). Interestingly, QPSD has not yet

been addressed using such techniques. Since the problem is very complex, the size of problems

that can be solved optimally is drastically limited. In an effort to make progress on large problem

instances, we applied GA to QPSD and have obtained very encouraging results. Although the

optimality of the solutions cannot be guaranteed, our findings indicate that near-optimal

solutions can be obtained very quickly for even large problem instances. Our earlier discussion

has revealed that optimal search algorithms for the problem either run out of memory (GREC) or

take too long to run to completion (DFBB and QPSD_MDFBB with values of N > 30).

The salient aspects of our GA implementation are:

 Use of the greedy stochastic algorithm to generate a portion of the initial population

 Use of a modified version of the single point crossover for mating

 Use of an auxiliary operation based on neighbour exchanges after every fixed number of

generations to improve the fitness of the solution pool

5.1 Chromosome representation

A permutation of 1 to N, N being the number of jobs, is a natural chromosomal representation

for QPSD since the set of all permutations is the same as the set of all feasible schedules. Other

schemes have been adopted for scheduling and related problems. For instance, in solving the

14

asymmetric travelling salesman problem, Choi et al. (2003) deliberately expanded the search

space to consider infeasible solutions as well. They therefore used an adjacency representation

that accommodated sub-tours. Lee and Choi (1995) used the permutation notation, augmented

with minus signs to represent blocking information for the single machine sequencing problem

with early-tardy penalty weights. We decided to restrict the search to just the feasible region and

hence adopted a simple permutation representation for the chromosomes. The fitness value of a

permutation is simply the cost of the associated schedule.

5.2 Initial population

It is common practice in genetic algorithms to start with a randomly generated initial population.

We introduced a novelty in our experiments; our initial population is comprised of three distinct

classes of schedules. The first (and largest) class consists of randomly generated schedules. The

second class is made up of solutions generated using the greedy stochastic approach QPSD_GSA

described in the previous section using the binomial distribution and the third class is generated

using QPSD_GSA with the geometric distribution. This provided a good deal of diversity in the

population.

5.3 Mating and fitness scaling

To minimize the effects of good fitness values dominating the solution pool early on in the

process and reducing diversity, we chose to use a rank-weighted mating strategy (Goldberg,

1989). Under this, the chromosomes are first ranked in increasing order of their fitness values.

The probability of chromosome with rank i being selected for mating is
)1(

)1(2




NN

iN
. This

provides chromosomes with poor fitness values a higher probability of being selected as parents

than would have been possible if fitness value alone were used to determine parent selection.

5.4 Crossover

Several mating schemes have been considered for permutation representations. Prominent among

these are partially matched crossover (PMX), cycle crossover (CX) and tie-break crossover

(TBX). In addition, we also considered a new single point crossover operation adapted from

PMX. Under this, a random crossover point is chosen and the portion to the left of this point is

15

first exchanged between the mating chromosomes. This process generally results in infeasible

schedules (with duplicate and missing values) and an additional repair step is needed. The repair

process is exactly analogous to the repair process in PMX. An example is shown in Figure 6 to

illustrate the process with N = 6 (the crossover point is shown with a solid triangle in each

chromosome). In the example, the first child gets the values 1, 3 and 5, and loses the values 3, 4

and 2. As a result of this, it has duplicate values for 1 and 5, and is missing the values 2 and 4.

We leave the portion to the left of the crossover point intact and substitute 1 with 4 and 5 with 2

to the right of the crossover point. Child 2 is also repaired analogously. We found that the single

point crossover and PMX were the best performers, with the former being marginally better.

__

Insert Fig. 6 about here

__

5.5 Elitism

At the end of each generation, the population doubles because each mating of two chromosomes

produces two new offspring. Retaining only the best values from the resultant set tends to reduce

the diversity and causes the algorithm to converge quickly to a local optimum. In order to retain

diversity, it is common to use a process of elitism. Under this, the extended population

comprising the population at the start of a generation along with the newly generated offspring is

ranked and then divided into buckets, for example 40%, 40% and 20% based on the ranks. From

each bucket, a specified proportion of the final population for the next generation (say 60%, 30%

and 10%) is picked. This allows a certain percentage of chromosomes with poor fitness values to

be included in the population so that there is a better chance of breaking out of local minima.

5.6 Mutation

We tested out several mutation options. Unlike in a binary string representation for

chromosomes, where a bit is simply flipped if chosen for mutation, in a permutation

representation there is the additional problem of maintaining feasibility. We tried several

different mutation operators. In the 2-opt operator (Lin and Kernighan, 1971), when an element

16

is chosen for mutation, it is swapped with another randomly chosen element. In the neighbour

swap mutation, when an element is chosen for mutation, it is swapped with its neighbour to the

right (with wrap-around). In the three-point-swap operation, when an element is chosen for

mutation, two others are also randomly chosen and the three are cyclically swapped. Finally, in

the random-two-swap operation, the choice for mutation is done at the chromosome level rather

than at the individual element. Here if a chromosome is chosen for mutation, two of its elements

are randomly selected and swapped.

5.7 Auxiliary operations

Akin to the repair process adopted in Choi et al. (2003) for the ATSP, once every fixed number

of generations, we carried out an enhancement operation where we took each chromosome in the

population and applied all possible neighbour exchanges that increased the fitness.

5.8 Experimental results

We tested QPSD_GEN on randomly generated problems. We generated problems having

between 10 and 30 jobs, and for each value we generated 100 problems with processing times

varying uniformly between 1 and 100 and setup times and penalty coefficients as integers

ranging uniformly between 1 and 10. We used a population size of 256. The initial population

comprised 50% random solutions, 25% generated using QPSD_GSA with binomial distribution

with p = 0.025 and 25% generated with a geometric distribution with p = 0.85. We ran the

algorithm for 100 generations for all problems. We found that the single point crossover operator

and neighbour mutation performed best. We used a fixed mutation probability of 0.03. For

elitism, we retained the top 5% of the best solutions from the extended population after mating.

We divided the rest of the solutions into three buckets of 40%, 30% and 25% and from these

buckets we randomly picked 62.5%, 50% and 20%, respectively, at random to survive into the

next generation. We used the auxiliary operation described above once every 4 generations, as

well as at the end of the final generation. The results are shown in Table 5. As expected, the

deviation from optimal for QPSD_GEN grows with the number of jobs, but this growth is not

alarming. It is interesting to note that these results have been obtained using very conservative

GA parameters (100 generations, population size 256). For larger instances these can be

increased – it is very common for GA’s to be run for over 200 generations and also to use larger

17

population sizes. Therefore, good solutions can be expected for even much larger instances.

Figure 7 compares the percentage deviation from optimal for QPSD_GEN with those for the

deterministic and stochastic greedy approaches. This underscores the robustness of QPSD_GEN

since its solutions do not deteriorate as rapidly as those of the greedy solutions with increasing

problem size.

__

Insert Table 5 about here

__

__

Insert Fig. 7 about here

__

To get an idea of how QPSD_GEN will perform beyond our experimental range, we ran a

regression of the problem size with the percentage deviation. The 2R value was 0.921 and the

regression model was significant at 99%. Extrapolating based on the regression results, we can

expect a 2.19% deviation from optimal for 100 job problems, provided the regression model is

valid in that range. To solve larger instances by QPSD_GEN and to avoid numeric overflow, we

used 64-bit 1.6 GHz Intel Itanium processor running Linux and the algorithm took around 47, 61

and 77 seconds for solving 80, 90 and 100 job instances respectively.

6. Conclusions and scope for further research

We have presented exact and approximate approaches to the QPSD problem with a view to

advancing the state of the art. We have outlined the complexities that sequence-dependent setup

times cause for traditional graph search algorithms. We presented QPSD_MDFBB, an exact

memory-constrained algorithm that advances the state of the art by optimally solving larger

problem instances than is possible with exact approaches reported earlier. We also presented a

new greedy solution for QPSD and suggested the idea of greedy stochastic algorithms (GSA)

with an application to QPSD called QPSD_GSA which can find moderately good solutions very

quickly and can hence be applied for extremely large instances. We integrated QPSD_GSA into

18

a new genetic algorithm implementation QPSD_GEN which was shown to provide near-optimal

solutions very quickly. The deviation from optimal for QPSD_GEN appears to be linear and

hence it is useful for getting very good approximate solutions for large problem instances.

It is clear that although QPSD_MDFBB does advance the state of the art, the size of problems

that can be solved optimally is still quite small. The reason seems mainly to be the lack of tight

heuristic estimating functions. This is one important area for further research. There is also scope

for further work in the area of GSA as applied to QPSD and also more generally to other

combinatorial optimization problems. Theoretical analyses as well as empirical studies of its

applications to various problems should be interesting. It will also be interesting to compare the

performance of QPSD_GEN with that of other evolutionary approaches to the problem including

tabu search, simulated annealing and ant colony optimization.

19

References

Ang, A.T.H., Sivakumar, A.I., Qi, C., 2009. Criteria selection and analysis for single machine

dynamic on-line scheduling with multiple objectives and sequence-dependent setups. Computers

and Industrial Engineering. 56(4), 1223-1231.

Anghinolfi, D., Paolucci, M., 2009. A new discrete particle swarm optimization for the single-

machine total weighted tardiness scheduling problem with sequence-dependent setup times.

European Journal of Operational Research. 193(1), 73-85.

Bagchi, U., Sullivan, R.S., Chang, Y-L., 1987a. Minimizing mean squared deviation of

completion times about a common due date. Management Science. 33(7), 894-906.

Bagchi, U., Chang, Y-L., Sullivan, R.S., 1987b. Minimizing absolute and squared deviations of

completion times with different earliness and tardiness penalties and a common due date. Naval

Research Logistics. 34(5), 739-751.

Bagga, P.C., Kalra, K.R., 1980. A node elimination procedure for Townsend’s algorithm for

solving the single machine quadratic penalty function scheduling problem. Management Science.

26(6), 633-636.

Balas, E., 1985. On the facial structure of scheduling polyhedra. Mathematical Programming. 24,

179-218.

Biskup, D., Herrmann, J., 2008. Single-machine scheduling against due dates with past-

sequence-dependent setup times. European Journal of Operational Research. 191(2), 587-592.

Chang, P-C., Hsieh, J-C., Liu, C-H., 2006. A case-injected genetic algorithm for single machine

scheduling problems with release time. International Journal of Production Economics. 103(2),

551-564.

Cheung, W., Zhou, H., 2001. Using genetic algorithms and heuristics for job shop scheduling

with sequence-dependent setup times. Annals of Operations Research. 107(1), 65-81.

20

Choi, I-C., Choi, D-S., 2002. A local search algorithm for jobshop scheduling problems with

alternative operations and sequence-dependent set-ups. Computers and Industrial Engineering.

42(1), 43-58.

Choi, I-C., Kim, S-I., Kim, H-S., 2003. A genetic algorithm with a mixed region search for the

asymmetric traveling salesman problem. Computers and Operations Research. 30(5), 773-786.

Croce, F.D., Szwarc, W., Tadei, R., Baracco, P., di Tullio, R., 1995. Minimizing the weighted sum

of quadratic completion times on a single machine. Naval Research Logistics. 42(8), 1263-1270.

Dowsland, K.A., Thompson, J.M., 2005. Ant colony optimization for the examination scheduling

problem. Journal of the Operational Research Society. 56(4), 426-438.

French, S., 1982. Sequencing and scheduling: An introduction to the mathematics of job shop. Ellis

Horwood Ltd., Reading, Chichester.

Goldberg, D.E., 1989. Genetic algorithms in search, optimization and machine learning. Addison

Wesley, Reading, MA.

Gupta, S.K., Sen, T., 1984. On the single machine scheduling problem with quadratic penalty

function of completion times: An improved branching procedure. Management Science. 30(5),

644-647.

Gupta, S.R., Smith, J.R., 2006. Algorithms for single machine total tardiness scheduling with

sequence-dependent setups. European Journal of Operational Research. 175(2), 722-739.

Hart, P., Nilsson, N., Raphael, B., 1968. A formal basis for the heuristic determination of

minimum cost paths. IEEE Trans. Syst. Science and Cybernetics. SSC4(2), 100-107.

Holland, J. H., 1975. Adaptation in natural and artificial systems. University of Michigan Press,

Ann Arbor.

21

Johnson, D.S., McGeoch, L.A., 1997. The traveling salesman problem: A case study in local

optimization, in: Aarts, E.H.L., Lenstra, J.K. (Eds.), Local search in combinatorial optimization.

John Wiley and Sons, pp. 215-310.

Kim, J-G., Lee, D-H., 2009. Algorithms for common due-date assignment and sequencing on a

single machine with sequence-dependent setup times. Journal of the Operational Research

Society. 60(9), 1264-1272.

Koulamas, C., Kyparisis, G.J., 2008. Single-machine scheduling problems with past-sequence-

dependent setup times. European Journal of Operational Research. 187(3), 1045-1049.

Kruskal, J., 1956. Greedy algorithm for the minimum spanning tree problem. Proceedings of the

American Mathematical Society, pp. 48-50.

Lee, C.Y., Choi, J.Y., 1995. A genetic algorithm for job sequencing problems with distinct due

dates and general early-tardy penalty weights. Computers and Operations Research. 22(8), 857-

869.

Liao, C-J., Juan, H-C., 2007. An ant colony optimization for single-machine tardiness scheduling

with sequence-dependent setups. Computers and Operations Research. 34(7), 1899-1909.

Lin, S., Kernighan, B., 1973. An effective heuristic algorithm for the travelling salesman

problem. Operations Research. 21 (2), 498-516.

Lin, S.W., Ying, K.C., 2008. A hybrid approach for single-machine tardiness problems with

sequence-dependent setup times. Journal of the Operational Research Society. 59(8), 1109-1119.

Luo, X., Chu, C., 2007. A branch-and-bound algorithm for the single machine schedule with

sequence-dependent setup times for minimizing maximum tardiness. European Journal of

Operational Research. 180(1), 68-81.

Luo, X., Chu, C., Wang, C., 2006. Some dominance properties for single-machine tardiness

problems with sequence-dependent setup. International Journal of Production Research. 44(17),

3367-3378.

22

Martello, S., Toth, P., 1990. Knapsack problems: Algorithms and computer implementations.

John Wiley & Sons.

Mattfeld, D.C., 1996. Evolutionary search and the job shop. Physica Verlag, Heidelberg.

Mondal, S.A, Sen, A.K., 2000a. An improved precedence rule for single machine sequencing

problems with quadratic penalty. European Journal of Operational Research. 125(2), 425-428.

Mondal, S.A, Sen, A.K., 2000b. TCBB scheme: Applications to single machine sequencing

problems. Proc AAAI-2000, pp. 792-797.

Mondal, S.A, Sen, A.K., 2001. Single machine weighted earliness-tardiness penalty problem with a

common due date. Computers and Operations Research. 28(7), 649-669.

Nekoiemehr, N., Moslehi, G., 2011. Minimizing the sum of maximum earliness and maximum

tardiness in the single-machine scheduling problem with sequence-dependent setup time. Journal

of the Operational Research Society. 62(7), 1403-1412.

Norman, B.A., Bean, J.C., 1999. A genetic algorithm methodology for complex scheduling

problems. Naval Research Logistics. 46(2), 199-211.

Pinedo, M. 1995. Scheduling: Theory, algorithms and systems. Prentice Hall.

Reeves C.R., 1993. Modern heuristic techniques for combinatorial problems. Orient Longman.

Rinooy Kan, A.H.G. 1976. Machine Complexity Problems: Classification Complexity and

Computations. Nijhoff, The Hague.

Ruiz, R., Maroto, C., 2006. A genetic algorithm for hybrid flowshops with sequence-dependent

setup times and machine eligibility. European Journal of Operational Research. 169(3), 781-800.

Sadegheih, A., 2006. Scheduling problem using genetic algorithm, simulated annealing and the

effects of parameter values on GA performance. Applied Mathematical Modelling. 30, 147-154.

23

Sen, A.K., Bagchi, A., 1996. Graph search methods for non-order-preserving evaluation

functions: Applications to job sequencing problems. Artificial Intelligence, 86(1), 43—73.

Sen, T. Dileepan, P., Ruparel, B., 1990. Minimizing a generalized quadratic penalty function of job

completion times: An improved branch-and-bound approach. Engineering Costs and Production

Economics. 18, 197-202.

Szwarc, W., Posner, M.E., Liu, J.J., 1988. The single machine scheduling problem with a quadratic

cost function of completion times. Management Science. 34(2), 1480-1488.

Tasgetiren, M.F., Pan Q-K, Liang, Y-C., 2009. A discrete differential evolution algorithm for the

single machine total weighted tardiness problem with sequence-dependent setup times. Computers

and Operations Research. 36(6), 1900-1915.

Tavakkoli, R., Taheri, F., Bazzazi, M., Izadi, M., Sassani, F., 2009. Design of a genetic algorithm

for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and

precedence constraints. Computers & Operations Research. 36(12), 3224-3230.

Tiwari, M.K., Vidyarthi, N.K., 2000. Solving machine loading problems in a flexible

manufacturing system using a genetic algorithm based heuristic approach. International Journal of

Production Research. 38(14), 3357-3384.

Townsend, W., 1978. The single machine problem with quadratic penalty function of completion

times: A branch-and-bound solution. Management Science. 24(5), 530-534.

Valente, J.M.S., Alves, R.A.F.S., 2008. Beam search algorithms for the single machine total

weighted tardiness scheduling problem with sequence-dependent setups. Computers and

Operations Research. 35(7), 2388-2405.

Vallada, E., Ruiz, R., 2011. A genetic algorithm for the unrelated parallel machine scheduling

problem with sequence-dependent setup times. European Journal of Operational Research. 211(3),

612-622.

24

Vela, C.R., Varela, R., Gonzalez, M.A., 2010. Local search and genetic algorithm for the job shop

scheduling problem with sequence-dependent setup times. Journal of Heuristics. 16(2), 139-165.

Viswanathan, K.V., Sen, A.K., 2010. Greedy by chance – Stochastic greedy algorithms.

Proceedings of the Sixth International Conference on Autonomic and Autonomous Systems

(ICAS 2010), pp. 182-187.

Wang, J-B., 2008. Single-machine scheduling with past-sequence-dependent setup times and time-

dependent learning effect. Computers and Industrial Engineering. 55(3), 584-591.

Wang, X., Tang, L., 2010. A hybrid metaheuristic for the prize-collecting single machine

scheduling problem with sequence-dependent setup times. Computers and Operations Research.

37(9), 1624-1640.

Zhao, C., Tang, H., 2010. Single machine scheduling with past-sequence-dependent setup times

and deteriorating jobs. Computers and Industrial Engineering. 59(4), 663-666.

25

Tables

Table 1: 4-job QPSD problem

Job
 Setup Times Proc.

Times
Penalty
Coeff. 1 2 3 4

 1 - 1 1 3 1 2

 2 1 - 3 2 4 1

 3 5 4 - 10 3 1

 4 3 6 9 - 10 1

Table 2: QPSD_MDFBB with 512k node limit

 Node limit = 512k nodes

Job
size

QPSD_MDFBB
Optimal

Cost
Node
Gen

Time
(secs)

20 17953992 163459 0.70
22 21587074 461720 2.32
24 31098438 1088649 6.3
26 36795831 3357289 23.15
28 48335631 13514071 110.72
30 58034706 39696969 398.57

26

Table 3: Performance of greedy algorithm, QPSD_GREEDY

No. of jobs (N) % Deviation from optimal: 100*(value-opt)/opt
10 7.70
11 9.06
12 10.02
13 11.04
14 11.13
15 11.02
16 11.05
17 12.22
18 12.50
19 13.64
20 13.91
21 14.66
22 14.45
23 14.51
24 14.41
25 14.63
26 15.64
27 15.22
28 15.55
30 15.71

Table 4: Performance of greedy and stochastic greedy algorithms under binomial and
geometric distributions (averages over 100 problem instances for each value of N)

No. of jobs (N)
% Deviation from optimal: 100*(value-opt)/opt

Greedy
SGA – Binomial

(p = 0.025)
SGA – Geometric

(p = 0.85)
10 7.70 1.67 2.07
11 9.06 2.53 3.10
12 10.02 2.81 3.48
13 11.04 3.04 4.05
14 11.13 3.70 4.65
15 11.02 3.66 4.73
16 11.05 4.01 5.14
17 12.22 4.70 6.18
18 12.50 4.93 6.20
19 13.64 5.90 7.57
20 13.91 6.10 7.61
21 14.66 6.95 8.12
22 14.45 7.11 8.34
23 14.51 7.51 8.59
24 14.41 7.43 8.93
25 14.63 7.70 9.05
26 15.64 8.31 9.92
27 15.22 8.13 9.70
28 15.54 8.53 9.75
30 15.71 9.22 10.56

27

Table 5 - Performance of QPSD_GEN

No of jobs
CPU Time (secs)

% Deviation from optimal:
100*(value-opt)/opt

QPSD_MDFBB
(512K node limit) QPSD_GEN QPSD_GEN GREEDY

10 0.001 0.157 0.009 7.704
11 0.003 0.181 0.027 9.063
12 0.005 0.207 0.012 10.020
13 0.010 0.236 0.022 11.043
14 0.017 0.266 0.103 11.131
15 0.031 0.298 0.078 11.017
16 0.061 0.337 0.071 11.051
17 0.125 0.374 0.132 12.223
18 0.205 0.412 0.153 12.497
19 0.382 0.457 0.136 13.645
20 0.700 0.500 0.180 13.906
21 1.303 0.548 0.229 14.664
22 2.328 0.598 0.224 14.447
23 3.791 0.654 0.301 14.508
24 6.332 0.705 0.260 14.413
25 16.240 0.764 0.361 14.626
26 22.934 0.817 0.496 15.643
27 44.129 1.480 0.398 15.223
28 110.645 1.533 0.427 15.549
30 382.3298 2.148 0.483 15.715

28

Figures

Algorithm QPSD_MDFBB {
Compute the effective processing times }..1{},..0{,, NjNiase jjiji  .

Sort the
ji

j

e

p

,

values in non-ascending order }..1{},..0{ NjNi  (for heuristic

computation and successor ordering).
Generate the start node s, represented as))(),((sLsJ where J(s) is the set of jobs
completed and L(s) represents the last job; J(s) is empty and L(s) is null

0)(sT /* completion time of jobs in s */
)()(shsb  /* h(s) is the heuristic estimate of node s */
bound

 Call),(_ boundsRECQPSD
}

Function QPSD_REC(n, bound) {
 if n represents a complete schedule then return 0
 newbound
 for each of the successors ni of n do
 Generate successor ni by scheduling an unscheduled job k
 knJnJ i )()(and knL i )(

 knLi enTnT),()()(

 2)(),(iki nTpnnc 

 if in is not already stored set)()(ii nhnb 

 if boundnbnnc ii )(),(then

)),(,(_)(iii nncboundnRECQPSDnb 

 Store node ni if memory is available or if a less recently used node can be
replaced by ni

}),(),(min{ newboundnbnncnewbound ii 

),min(newboundboundbound 
 return newbound
}

Fig. 1: Algorithm QPSD_MDFBB

29

Algorithm QPSD_GREEDY {

Let js ,0 represent the setup time for jJ when it is the first job to be scheduled.

For job jJ , calculate its effective processing time when it follows job iJ as

NjNisae jijji  1;0,,

Order the jobs such that
)(,0

)(

)2(,0

)2(

)1(,0

)1(....
Nk

Nk

k

k

k

k

e

p

e

p

e

p


Schedule job)1(kJ as the first job

)1(kr 

For Ni ..2 do the following {

 Order the 1 iN unscheduled jobs such that
)1(',

)1('

)2(',

)2('

)1(',

)1('



iNkr

iNk

kr

k

kr

k

e

p

e

p

e

p

 Schedule job)1('kJ as the ith job

)1('kr 
}

Fig. 2: Algorithm QPSD_GREEDY

Algorithm QPSD_GSA

Let js ,0 represent the setup time for jJ when it is the first job to be scheduled.

For job jJ , calculate its effective processing time when it follows job iJ as

NjNisae jijji  1;0,,

Order the jobs such that
)(,0

)(

)2(,0

)2(

)1(,0

)1(....
Nk

Nk

k

k

k

k

e

p

e

p

e

p


Pick job)(xkJ randomly based on a predefined probability distribution.

Schedule job)(xkJ as the first job

)1(kr 

For Ni ..2 do the following {

 Order the 1 iN unscheduled jobs such that
)1(',

)1('

)2(',

)2('

)1(',

)1('



iNkr

iNk

kr

k

kr

k

e

p

e

p

e

p

 Pick job)(xkJ randomly based on a predefined probability distribution.

 Schedule job)(' xkJ as the ith job

)(' xkr 
}

Fig. 3: Algorithm QPSD_GSA

30

Fig. 4: Geometric distribution with p = 0.85 (translated to the right by 1 to avoid 0)

Fig. 5: Binomial distribution with p = 0.025 (translated to right by 1 to avoid 0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6

31

Initial configuration:

Chromosome 1 3, 4, 2, ▲ 1, 6, 5
Chromosome 2 1, 3, 5, ▲ 4, 2, 6

Immediately after exchange:

Intermediate child 1 1, 3, 5, ▲ 1, 6, 5
Internediate child 2 3, 4, 2, ▲ 4, 2, 6

Final configuration (after repair):

Child 1 1, 3, 5, ▲ 4, 6, 2
Child 2 3, 4, 2, ▲ 1, 5, 6

Fig. 6: Example of crossover

0

2

4

6

8

10

12

14

16

18

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30

No of jobs

%
 d

ev
ia

ti
o

n
 f

ro
m

 o
p

ti
m

al

GA-dev% Greeedy dev% GSA dev%

Fig. 7: Percentage deviation from optimal for QPSD_GEN and the greedy approaches

32

