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A Tale of Two Searches:

Bidirectional Search Algorithm that Meets in the Middle

List of notation

m, n, p,q,r, ng,ns...

d

(m,n)

c(m,n)

ga*(n)
ha*(n)
h*(s)
ga(n)
hy(n)

['(n)

c(P,m,n)

FE4(P,n)

Implicit Graph
Start node
Goal node
Nodes in G

Direction of the current search; d=1 implies forward search from s to t,

d=2 implies backward search fromtto s
Directed arc from node m to node n in G
Cost of arc (m,n) = the cost of reverse arc (n,m)

Small positive number

Cost of a minimal cost path from s to n if d=1, or from n to t if d=2
Cost of a minimal cost path from n to t if d=1, or from s to n if d=2
Cost of a minimal cost solution path in G

Estimate of gq*(n)

Estimate of hy*(n)

Operators at node n

Directed path

Cost of a directed path P from node m to node n

Forward Error on a path P from s to n if d=1, or from n to t if d=2



BEd(Pan)

TEd(Pan)

FEq*(n)
d=2

BE4*(n)
d=2

TE¢*(n)

FEd(n)
BEd(n)

TEd(n)

Backward Error on a path P from s to n if d=1, or from n to t if d=2

Total Error on a path P from s to n if d=1, or from n to t if d=2; equals

FE4(P,n) + BE4(P,n)

FE4(P,n) when P is a minimal-cost path from s to n if d=1, or from n to t if

BE4(P,n) when P is a minimal-cost path from s to n if d=1, or from n to t if

TE4(P,n) when P is a minimal-cost path from s to n if d=1, or from n to t if

d=2; equals FE4*(n) + BEg*(n)
Estimate of FE4*(n)
Estimate of BE4*(n)

Estimate of TEq*(n)



1. Introduction

The Sliding Tiles problem (also known as n-puzzle) is quite popular as a problem testbed in Al. This
problem is basically a game on a square grid, containing several tiles numbered consecutively from 1
to n and one blank space, such that n+1 is a square number. The blank space allows the movement of
an adjacent tile to the blank position, thereby swapping the positions of the blank space and the tile.
The objective of the n-puzzle is to arrive at a desired tile configuration (the end or goal state) starting
from a given configuration (the start state), in a minimum number of moves.

Minimization problems in discrete domains such as the n-puzzle are often modeled as directed
graphs. Each graph G contains a specified start node (s), a specified goal node (t), and a cost
function mapping each arc <m,n> into a nonnegative cost c(m,n). Modeled this way, the objective
function reduces to finding a least-costly path from s to t. Occasionally, a non-negative heuristic
function h(n) is defined on the nodes of the graph, with h(n) being an estimate of h*(n), the cost of a
minimal-cost path from n to t. Used appropriately, the heuristic can cut down the combinatorial
explosion of the search space and guide the search along better (more promising) solution paths.

Heuristic estimates are used in the evaluation functions of classical Al search algorithms such as A*

(1), IDA* (2), etc.

Algorithm A* finds a minimal-cost path from s to t by searching the graph in a best-first manner. It
creates two lists, one for the nodes which are yet to be expanded (the OPEN list) and another for
nodes which have already been expanded (the CLOSED list). For each node n in OPEN and
CLOSED, A* maintains three values: g(n) which is the cost of a currently known minimal cost path
from s to n; h(n), which is an estimate of a minimal-cost path from n to t; and the total path-cost f(n)
= g(n) + h(n) which is the estimate of cost of minimal-cost path from s to t constrained to go through
n. Initially, OPEN is set to {s} with g(s) =0 (i.e f(s) = h(s)), while CLOSED is set to Null. In each
iteration, A* removes from OPEN a least-costly node n (giving priority to a goal node), expands it if
it not a goal node and generates all its children, say nj, ny, .. nx. While the expanded node n is sent to
CLOSED, each of the children n; are evaluated using a cost function f(n;) = g(n;) + h(n;), where g(n;)
is the cost of reaching n; via n, i.e. g(n;) = g(n) + c(n,n;) (recall that c¢(n,n;) is the cost of the arc
(n,n;)). After evaluating each n;, if it is found that the child did not exist in OPEN or CLOSED earlier
(or existed with a higher g-value), it is put in OPEN; in the latter case, its g-value is updated to the
lower g-value available now. A* terminates when the goal node is selected from OPEN, outputting

f(t) as the solution cost. It has been well-established in the literature that under the assumption of
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admissible heuristics (h(n) <= h*(n) for all nodes n in G), A* terminates with an optimal solution,

h*(s).

In domains such as the n-puzzle problem, several heuristics have been proposed, each capturing the
domain information to a different degree. Some popular heuristics are: number of tiles out of place,

the Manhattan distance, etc.

A* is an admissible search algorithm, but it takes up too much memory (due to the maintenance of
OPEN and CLOSED lists) which can be prohibitive in many domains such as 15 and 24-puzzle. To
overcome this memory requirement of A* while also outputting an optimal solution, algorithm IDA*
has been proposed (2). IDA* works iteratively, each iteration being a depth-first search starting from
node s. In each iteration, a branch of the search tree is cut off when its total cost (f = g+h) exceeds a
particular threshold. Initially the threshold is set to the total cost estimate of start node s, h(s). Then
in each iteration IDA* sets the threshold for the next iteration equal to the minimum of all node costs
which exceeded the current threshold. Operating iteratively in this depth-first manner, IDA* outputs
the optimal solution cost if the heuristic function is admissible. Note that the memory requirement is
vastly reduced when compared to A*, as in each iteration IDA* needs to maintain only one path

from s to the current node n.

IDA* has been extensively studied in the heuristic search literature and it has been found efficient to
solve problems such as the 15-puzzle, for which the first successful execution of an algorithm was

reported in (2).

However, on larger instances of the n-puzzle, such as the 24-puzzle, neither A* nor IDA* have been
successful — A* due to its larger memory requirement, and IDA* due to its longer time of
processing. For such domains the Bidirectional Search is supposed to be more successful. We briefly
introduce this variant below. The rest of the paper will contain detailed description of different

Bidirectional search approaches, as well as our version of the same.
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Backward
Search

)

Figure 1. The concept of Bidirectional Search. Ideally, the two search frontiers (Forward

and Backward) should meet around the line in the center, thereby eliminating the search

spaces shown in color.

The concept of bidirectional search is relatively simple. A bidirectional search consists of two
searches, one from s to ¢ and the other from ¢ to 5. The two searches are conducted alternately and
when they meet under some suitable condition, they together would have found a minimal-cost path

from s to t (see Figure 1.)

The idea behind bidirectional search is that, an A*-like search essentially unfolds in the form of a
tree, and two half-trees, taken together, may be smaller than a full tree - thereby resulting in reduced
space and time requirement of the algorithm. Although the premise of bidirectional search is quite
intuitive, it suffers from the problem that the two searches may not meet in the middle, but at either
end of the graph (near s or near t.) In that situation, instead of having two half-trees which reduce the
time-space complexity, we will have two nearly full trees thereby increasing the time and space
requirement. This problem which is also known as the “Missile Metaphor”, has vexed researchers

for the last few decades.



In this paper, we take a closer look at bidirectional search. We start with a brief survey of past
approaches to the bidirectional search — particularly algorithms such as BHPA, BS*, BIDA* etc.
Then we develop a more efficient bidirectional algorithm by exploiting particular search
characteristics. This is done by developing an “error-function” on the search path as a surrogate
of the evaluation function f. By defining the error function suitably, we show how it helps to
control the search more tightly and converges the Forward and Backward searches always in the
middle. Our theoretical results prove the admissibility and complexity of the algorithm. Traces of
the algorithm on n-puzzle illustrate how it works.

This paper is organized as follows: The problem definition is presented in section 2. Section 3 contains
the literature survey. In section 4 we present our new bidirectional search algorithm called MSG*
(named after Mahanti Sadhukhan and Ghosh). In section 5 we present a new approach to heuristic
search using a novel technique of error minimization. Section 6 contains the experimental results. We
conclude the paper in section 7.

2. Problem Definition

Now we introduce some of the basic concepts and notation, which will be used throughout the
paper.

Figure 2. Search Direction
and notations

Figure 2 shows the search directions: d=1 indicates search in Forward direction (from s to t) and
d=2 indicates search in Backward direction (from t to s). Then g;(n) and h;(n) which refer to the
Forward search (d=1) have the usual connotations as g(n) and h(n). g»(n) and h2(n) pertain to the
Backward search (d=2) and have analogous connotations in a backward sense: g»(n) is the



currently-known least cost of a path from t to n, while hy(n) is the heuristic estimate of a path
from n from t. In the figure, dotted arrows indicate heuristics for unexplored paths in either
direction.

Admissible heuristics: The heuristic function is said to be admissible, if for both d=1 and d=2,

h,(n)<h,(n)vVneG

we have:

Clearly, we have, ford=1ord=2:

h:r (n) = g;—d (n)<g; ,4(n)

Clearly, we have g4(n) >= g4*(n) and hg*(n) = g3.4*(n), where d can be 1 (for forward search) or
2 (for backward search).

Assumptions

ol

. All operators are reversible. The operator in forward direction (i.e. the arc given in the

implicit graph) is used for searching in the forward direction only. The reversed operators are
used in the backward search only. (Note: Whenever we speak of a directed path in the search
process, it means a path consisting either of arcs or of reverse arcs, but never a combination
of the two.) A reverse arc or reverse operator has the same cost as that of the corresponding
arc or operator. We denote this common arc-cost with only single link between nodes m and
n as ¢(m,n), where c(m,n) > 6 > 0.

The graph must contain exactly one goal node, denoted by t.

The goal node must be explicitly specified.

There is a path from the start node s to the goal node t with finite cost.

We place a mild restriction on the heuristic distribution, as follows: hj(s) = hy(t). This
assumption, which is quite realistic, is critical to prove the theoretical properties of our
algorithm.



3. Literature Survey

Most bi-directional search algorithms contain two sets of OPEN and CLOSED nodes: OPENf and
CLOSEDr for search in the Forward direction, and OPENg and CLOSEDg for search in the
Backward direction. The algorithm starts with the Forward direction, putting s in CLOSED, its
successors in OPENg and computing their heuristic values and evaluation functions. After the
first Forward iteration, it does the first Backward iteration, using t, OPENg and CLOSEDg , and
proceeding in a reverse-A* like manner, generating parent nodes instead of child nodes from
the graph. In the iterations that follow, the search alternates between Forward and Backward
directions; however the alternation is not strict. A common strategy employed by most
bidirectional search algorithms is to search in the direction which has the smaller size of OPEN;
thus if the current search direction is Forward and |OPEN(| < |OPENg| at the end of this
iteration, then the next search direction will still be Forward — it will not reverse. Similar rule
holds for the Backward pass. Ensuring that we always search from the direction of smaller
OPEN seems quite intuitive and may help reduce the width of the search graph.

As discussed in (3), there are mainly two types of bidirectional searches: where the evaluation
function measures the distance from the selected node to a goal node (known as front-to-end
evaluation), and where the distance is measured from the selected node to any node in the
opposite OPEN (known as front-to-front evaluation.)

Front-to-end Evaluations

Front-to-end evaluation was employed in the first bidirectional search algorithm, BHPA (4),
through two functions, fr and fz (for forward and backward passes, respectively). Per their
definition, fr = gr + hr, where gr and hr are same as g and hin A* (1), and fz = gg + hg, where

gs(n) is the currently-known shortest distance from t to n, and hg(n) is an estimate of the
shortest distance from n to s. The termination condition of BHPA is dependent on an, the
currently-known cost of a complete path from s to t. Initially ani, is set to infinity, indicating that
no s-t path has been found yet; then in each iteration, if the selection of a node n from OPEN
results in the discovery of a complete s-t path through n (indicated by #n £ CLOSEDf

CLOSEDg), amin is set to the new pathcost gr(n) + gg(n) if the new pathcost is less than the
existing amin value. Doing so in every iteration ensures that a.;, is set to the minimum cost of all
complete s-t paths found so far. Further, if

B ™™ AN E‘miﬁﬁiﬂ?fff,: (Fr ), Milttygopers (fo ()3
then the nodes in OPENr and OPEN; cannot further improve (reduce) the value of ap;,, implying
the current an, is the cost of an optimal s-t path, and BHPA terminates outputting ami» as



solution cost. The admissibility of algorithm BHPA under a monotone heuristic is proved in
Pohl’s paper. Although admissible, Pohl has pointed out that the Forward and Backward
searches may meet only near t (or s), thus making the bidirectional search no more efficient
than unidirectional. This has resulted in the quest for a bidirectional search algorithm where the
two search frontiers meet mostly in the middle.

However, it has been pointed out in (3) that the problem of two search frontiers not meeting
each other, as originally mentioned by Pohl, is a misconception; the actual problem is that the
two frontiers pass through each other before a complete path is detected. This issue has been
tackled in algorithm BS* (5) via a set of techniques, such as trimming (removing nodes with f >=
Qmin), screening (inserting new nodes in OPEN only if f < anmin), and nipping and pruning (putting
the selected node into CLOSED without expansion, if it is already CLOSED in the opposite search
tree, and also removing its OPEN children from the opposite search tree.) With these
optimizations, and using front-to-end evaluation functions as in BHPA, BS* is admissible under
the monotone restriction, and has some performance improvement compared to BHPA (though
compared with A* it is at par or even at a slight disadvantage.)

Front-to-front Evaluations

Sensing the difficulty of meeting in the middle, algorithm BHFFA was presented (6) using a pair
of more powerful heuristics, hg and hg which use front-to-front evaluation. To compute hg,
BHFFA first estimates the cost from node n to t in two parts: cost of reaching from n to some
node in OPEN; (an estimate), plus the cost from the same node in OPEN;g to t. he is then set to
the minimum of all such sums, i.e. kg (n) = iR, g ppeys (im0 = gz(3)}, where h(x, ¥)is a

nonnegative estimator of the distance between x and y with h{x,») = h(», &), In the Backward

search, hg is defined similarly with respect to s and OPENg. Algorithm BHFAA terminates when
the node selected from one OPEN list also belongs to the other OPEN.

Even though BHFFA was originally claimed to be admissible, in a subsequent paper (7) De
Champeaux clarified the claim to be wrong; to overcome this issue, an updated algorithm
BHFFA2 was presented and proved to be admissible. BHFFA2 uses two loops, the first one
being a “Find a Path” loop to find any {s-t} path and thereby determine an upper bound on the
solution cost. As soon as an {s-t} path is found, control switches to the other loop, “Find Best
Path” loop, and stays there till an optimal path is found.

BHFFA and BHFFA2 are known as wave-shaping algorithms as they try to force the opposing
wavefronts to converge in the middle of the search space. The issue in front-to-front algorithms
is that the time taken to compute heuristic functions is too high, since now we are not
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computing the heuristic just with respect to a goal, but with respect to the entire OPEN set in
the opposite tree.

An intermediate method of bidirectional search, known as perimeter search, has been
proposed in (8). In this method, first a one-time breadth-first search around the goal node is
conducted, creating a perimeter P around the goal node to a pre-determined fixed depth d".
Then the algorithm proceeds unidirectionally from s in search of this perimeter, using the
heuristic function hg(n) = min, g.[hin.m) + R"(m,.8)], where A(r.m) is as above and
B (m,t) is the minimum cost of a path from m to t. The forward search from s can be

conducted either like A*, when the algorithm is called PS*, or like IDA* (2), when it is called
IDPS*.

There is an interesting variant of perimeter search, which uses IDA* and hence known as BIDA*
(9). BIDA* is more efficient compared to IDPS* on Fifteen Puzzle and works as follows. After the
perimeter P has been generated, it starts IDA* from s, using the threshold value at each
iteration to filter the nodes in the perimeter P; only those nodes in P having f-values less than

I”

or equal to the current threshold T are retained in a “virtual” perimeter P4(n,T) (n being the

currently expanded node.) As IDA* proceeds from a node n to its successor 7 along a path, the
virtual perimeter gradually shrinks (B, (# T} = P;(#.T), eventually becoming null, and is used
to decide the cutoff of that path instead of checking f(u” = T'. This technique obviates the

need to compute f-values repeatedly against each node in the perimeter P, and places BIDA* at
a considerable performance advantage over IDPS* and other algorithms. However as reported
in experimental studies, the advantage is domain-dependent; it has been reported that BIDA*
has strong advantage on Fifteen Puzzle relative to IDA*( (9), (3)), but not on the Maze Problem
relative to A* (3).

In yet another variation of Perimeter Search, a best-first search (A*) is conducted from one end
and a linear-space search (IDA*) from the other, giving the name of the algorithm BAI* (3). The
A* search creates the perimeter around the goal, and the IDA* then searches for this perimeter
instead of the goal. An advantage of this approach is that IDA* can utilize the higher threshold
generated by A*, thereby terminating in fewer iterations. This is the approach followed if
memory is limited; however if memory is sufficient, then they conduct A* from the other end
too (instead of IDA*), leading to the algorithm being named BAA. BAA has further variants of its
own, based on the incorporation of several “error” functions - such as

! A variation of this algorithm creates the perimeter as a pre-determined fixed cost to the goal
using a reverse A* search from t. As mentioned in (8), this method is no more efficient than the
fixed depth method.
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Mindlff, = Miny, 3 coogep, (#2(n) — hg{n)]}, which is just a constant error value to be added
to hr during Forward Search (algorithm Add-BAA).

Other approaches to bidirectional search include choosing a representative node from each
front as a target for the opposite search (d-node retargeting, (10)); conducing bidirectional
search till the search trees meet for the first time and then switching to unidirectional mode in
the direction which has higher minimum f-value in OPEN (11); and an iterative-deepening
approach to BHFFA (12).

Other notable work related to bidirectional search include an algorithm employs a much more
efficient front-to-front evaluation method but is inadmissible (13), and the Divide-and Conquer
Bidirectional Search (14) which reduces the space complexity of the algorithm by storing only the OPEN
lists and not the CLOSED ones.

4. Algorithm Meet-At-The-Middle — Dual Threshold MSG*

(As implemented in program)

Global variables: next backward threshold, next forward threshold, solution found

Procedure Main()
Variable: threshold

1. next backward threshold = A,(2);
next forward threshold = 4,(s);
solution_found=0;

while (!solution_found)

{
threshold = next_backward_threshold;

next backward threshold = create_backward_frontier(threshold);
if (!solution_found) {
threshold = next forward threshold;

next forward threshold = forward search(threshold);

}

12



Procedure create_backward_frontier(Threshg)
Do a dfs under Threshg:
If 5 is encountered, set solution_found = 1 and return;

Else create OPENp as a hash table with every distinct node #, such that # is the first node on a
path from 7 to n with f(n) > Threshg;

Eliminate duplicate nodes by keeping the one with least path cost. Calculate f(n) as c¢(P,s,n) +
hi(n) + c(P,s,n) — hy(n)

Set next backward_threshold = min {f(n) | n ¢ OPEN3}.

Return next backward threshold.

0
Procedure forward_search(Threshy)
Set next forward_threshold = Infinity.
For every path P from s, do a dfs with threshold Threshy . (If Goal node is detected, exit with
solution cost.) Let n be the first node on P such that f(n) > Threshy.
If q be the parent of n on P:
if ¢ € OPENp
Set solution_found = 1; exit with g;(q) + g2(q) as the solution cost ;
else
set next forward threshold = min {f(n), next forward threshold}.
0

5. A New Approach to Heuristic Search using Error Minimization
FE;(P,n) = hj(n) + ¢(P,s,n) — h(s)

BE;(P,n) = c¢(P,s,n) — hy(n)
FE»(P,n) = c¢(P,t,n) +hy(n) — hy(t)

BE,(P,n) = c¢(P,t,n) — hy(n)

13



TE,(P,n) = FE,(P,n) + BE,(P,n)

TE,(P,n) = FE»(P,n) + TEx(P,n)

Theorem-1: Let P; and P, be two solution paths in G. Let n; be a node on P; and n, be a node on P,.
Then TE](Pl,nl) + TEQ(P],nl) > TE](Pz,nz) + TEQ(Pz,nz) iff C(P],S,t) > C(Pz,S,t).

Proof: Let us assume that c(Py,s,t) > c(P2,s,t). Now, by substituting TE;(P,n) and TE,(P,n) by their

values, we get
TEi(Py,n;) + TEx(Py,ny)
=FE(Py,n;) + BE(Py,n;) + FE»(Py,n;) + BE»(Py,n;)
=h;(n;) — {hi(s) — c(P1,s,n1)} + c(Py,8,n1) — ha(ny)

+ ho(ny) — {ha(t) — c(Py,t,ny)} + c(Pr,t,ng) — hi(ng)
=2 {c(P1,s,n1) + c(Py,t,n1)} — {hi(s) + ha(t)}

=2 c(Py,s,t) — 2 hy(s)

Similarly,
TE (P2,n;) + TEy(P2,ny)
= FE(P2,n;) + BE(P3,n;) + FE(P,,n,) + BE;(P2,n5)
= hj(n2) — {hi(s) — c(P2,5,n2)} + c(P2,8,n2) — ha(ny)
+ ha(nz) — {ha(t) — c(Pa,t,ny)} + c(Pa,t,nz) — hi(no)

=2 {c(P2,s,ny) + c(Pa,t,n2)} — {hi(s) + hy(t)}

14



=2c¢(Pys,t)—2hi(s) )

Thus (1) — (2) yields

TEl(Pl,l’ll) + TEz(Pl,l’ll) — TE](Pz,nz) — TEz(Pz,Hz)
=2 { c(Py,s,t) — c(Py, s,t)}

> 0, by assumption.

Conversely, let us assume that

TE(P,n;) + TEy(Py,n;) > TE(P2,n;) + TE(P2,ny)

i.e. 2 {c(Py,s,n;) + c(Pr,t,n;)} —2 hi(s) >2 * {c(Pa,s,n2) + c(Pa,t,n2)} — 2 hy(s)
i.e. ¢(Py,s,n)) + c(Py,t,ng) > c(Pa,s,n2) + c(Pa,t,ny)

i.e. ¢(Py,s,t) > c(Pa2,s,t).

Theorem-2: Let P be a solution path in G and n; and n, be two nodes on P such that n, is the

child of n; on P. Then, if the heuristic function h4 is monotone, TE(P,n;) > TE;(P,n;).
Proof: TE(P,ny) — TE(P,n))

= ¢(P,s,nz) + hi(nz2) — hi(s) + ¢(P,s,n2) — ha(ny)

—c¢(P,s,n;) —hi(n;) + hi(s) — c(P,s,n;) + ha(n;)

=2 {c(P,s,n2) —c(P,s,n1)} + {hi(nz) —ha(ny)} + {ha(ni) —hay(nz)}

=2 c(ny,np) + {hi(ng) — ha(ny)} + {ha(n1) —ha(ny)}

15



= {hi(n) —hi(ny) + c(ng,na)} + tha(ni) — ha(nz) + c(ny,n2)}

= >0+ >0, as the heuristic is monotone.

Hence TE;(P,n;) > TE(P,n)).
U

Theorem-3a: Let P be a path below s in G. Let n; and n, be two nodes on P such that n; is a
child of n; on P. Then, if the heuristic function hy is monotone, TE1(P,ny) >= TE1(P,n;).

Proof: Clear.
UJ

Theorem-3b: Let P be a path below t in G. Let n; and n, be two nodes on P such that n; is a

child of n; on P. Then, if the heuristic function h4 is monotone, TE,(P, n;) >= TE; (P,n,).
Proof: Clear.
UJ

Theorem-4: At any instant prior to the termination of the algorithm MSG*, during any forward

and backward search, if n is the node selected for expansion,
TEq4 (n) <= TE*4(n) <= Omin q

Proof: Clear.

Assumptions:

1) h(n,m) = h(m,n). Thus h(s,t) = h(t,s) or h1(s) = h2(t)
2) c¢(n,m) = c(m,n)

(1) and (2) imply # of forward thresholds = # of backward thresholds
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During Forward Search, let P be one optimal path. Let nil, ni2,...,nik be all the nodes on P
where hl(nij), I <=j <=k, increases in value (instead of decreasing.) Clearly then, along path P,
these k nodes define the forward error thresholds. Because of (1) and (2), similarly there will be
k backward error thresholds along path P. If these forward and backward error thresholds are
non-overlapping, then in total there will be 2K thresholds. In general, along any optimal path P,
there will be total T thresholds, where K <= T <= 2K.

Theorem-5: MSG* will meet at middle and find optimal solution for both T even and T odd.

Proof: Omitted.

Assumptions:
(1)Heuristic is monotone
(2) Algorithm MSG* works in alternate directions in successive iterations

Lemma-1: At any instant prior to the termination of MSG*, both OPENr and OPENg contain

the forward and backward leading nodes from any optimal path P.

Proof: Let P be an optimal path. Initially s and t from P will belong to OPENy and OPENg
respectively. We may assume that the statement is true up to iteration i, i may be an iteration in
either forward or backward direction. We will show that the lemma is true for iteration i+1. Also

at iteration i, we call the leading node of optimal path as n;*.

Case [: In iteration i, n;* is not expanded.

Then ni+1* = n;*, meaning the same node remains as leading node of P in the next iteration in that

particular direction (F or B).

Case II: ni* is expanded at iteration i.

Let n;+1 * be the child of n;* on P. Then:

Case I1(a): nj+1* is a new node. Then it becomes a leading node at iteration i+1.
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Case I1(b): nj+1* belongs to CLOSED. Proof that n;:;* belongs to another optimal path P’.

Then consider leading node of P* which is at OPEN at instant i. This becomes leading node of
P at instant i+1.

Case 1I(c): nj:1* belongs to OPEN through:

Case II(c)(i): an optimal path. Then n;;;* will also be the leading node of P with

same g-value.

Case II(c)(ii): a suboptimal path. Then n;;;* will have revision of g-value and will

become leading node of P.
U

Theorem-6: When the algorithm MSG* finds a match at node x (i.e. x has been selected from
OPEN in one direction and x also belongs to OPEN in the other direction) and Lyin £ Omin, X

must be on an optimal path.
Proof:

Let P an optimal path in G. Let n* be the leading node of P in FS and m* be the leading node of
P in BS.

Since leading node belongs to OPEN, we have

Omink < TE1(n*), Oming < TE»(m*). Let the searches meet at node x. Then at termination of the

algorithm,

TE (n*) + TE2(m*) = Opin = Liin (given) = TE(x) + TE,(x), which is valid only if x is on an
optimal path.

6. Experimental Results

We now show the distribution of forward and backward thresholds for three problem instances
namely, Problem Nos. 12, 47 and 48 in Table Nos. 1, 2, and 3. Table-4 contains detailed data on
the working of unidirectional IDA* and the newly proposed bidirectional search technique.
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01 hs h, 92 gi+hi-hy g2+hy-hy
0 35 0 45 35 10
1 34 1 44 34 11
2 33 2 43 33 12
3 32 3 42 32 13
4 33 4 41 33 12
5 32 5 40 32 13
6 31 6 39 31 14
7 30 7 38 30 15
8 29 8 37 29 16
9 28 9 36 28 17
10 29 8 35 31 14
11 28 7 34 32 13
12 27 8 33 31 14
13 26 9 32 30 15
14 25 10 31 29 16
15 24 11 30 28 17
16 25 12 29 29 16
17 24 13 28 28 17
18 25 14 27 29 16
19 24 15 26 28 17
20 23 16 25 27 18
21 22 17 24 26 19
22 21 18 23 25 20
23 20 19 22 24 21
24 19 20 21 23 22
25 18 21 20 22 23
26 17 22 19 21 24
27 16 21 18 22 23
28 15 22 17 21 24
29 14 23 16 20 25
30 13 24 15 19 26
31 14 23 14 22 23
32 13 24 13 21 24
33 12 25 12 20 25
34 11 26 11 19 26
35 10 27 10 18 27
36 9 28 9 17 28
37 8 29 8 16 29
38 7 30 7 15 30
39 6 31 6 14 31
40 5 32 5 13 32
41 4 33 4 12 33
42 3 34 3 11 34
43 2 35 2 10 35
44 1 36 1 9 36
45 0 35 0 10 35

Table-1: Showing data for Problem No. 12
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01 hy h, 92 g1+hs-hy g2+hy-hy
0 35 0 47 35 12
1 34 1 46 34 13
2 33 2 45 33 14
3 34 3 44 34 13
4 33 4 43 33 14
5 32 5 42 32 15
6 31 6 41 31 16
7 30 7 40 30 17
8 29 8 39 29 18
9 28 9 38 28 19
10 27 10 37 27 20
11 26 11 36 26 21
12 27 12 35 27 20
13 26 13 34 26 21
14 25 14 33 25 22
15 26 13 32 28 19
16 25 12 31 29 18
17 24 13 30 28 19
18 25 14 29 29 18
19 24 15 28 28 19
20 23 16 27 27 20
21 22 17 26 26 21
22 21 18 25 25 22
23 20 19 24 24 23
24 19 20 23 23 24
25 18 21 22 22 25
26 17 22 21 21 26
27 16 23 20 20 27
28 15 24 19 19 28
29 14 25 18 18 29
30 15 24 17 21 26
31 14 25 16 20 27
32 13 26 15 19 28
33 12 27 14 18 29
34 13 28 13 19 28
35 12 29 12 18 29
36 11 30 11 17 30
37 10 31 10 16 31
38 9 32 9 15 32
39 8 33 8 14 33
40 7 34 7 13 34
41 6 35 6 12 35
42 5 36 5 11 36
43 4 35 4 12 35
44 3 36 3 11 36
45 2 37 2 10 37
46 1 36 1 11 36
47 0 35 0 12 35

Table-2: Showing data for Problem No. 47
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g1 hy h, g2 g:1thi-hy g2the-hy
0 39 0 49 39 10
1 40 1 48 40 9
2 39 2 47 39 10
3 38 3 46 38 11
4 37 4 45 37 12
5 36 5 44 36 13
6 35 6 43 35 14
7 34 7 42 34 15
8 33 8 41 33 16
9 32 9 40 32 17
10 33 10 39 33 16
11 32 11 38 32 17
12 31 12 37 31 18
13 30 13 36 30 19
14 31 14 35 31 18
15 30 15 34 30 19
16 29 16 33 29 20
17 28 17 32 28 21
18 27 18 31 27 22
19 26 17 30 28 21
20 25 18 29 27 22
21 24 18 28 27 22
22 23 20 27 25 24
23 22 21 26 24 25
24 21 22 25 23 26
25 20 23 24 22 27
26 19 24 23 21 28
27 18 25 22 20 29
28 17 26 21 19 30
29 16 27 20 18 31
30 15 28 19 17 32
31 16 27 18 20 29
32 15 28 17 19 30
33 14 29 16 18 31
34 13 30 15 17 32
35 12 31 14 16 33
36 11 32 13 15 34
37 10 31 12 16 33
38 9 32 11 15 34
39 10 33 10 16 33
40 9 34 9 15 34
41 8 35 8 14 35
42 7 34 7 15 34
43 6 35 6 14 35
44 5 36 5 13 36
45 4 37 4 12 37
46 3 38 3 11 38
47 2 39 2 10 39
48 1 38 1 11 38
49 0 39 0 10 39

Table-3: Showing data for Problem No. 48
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Pno | BTh HTable BackPass FwdPass Total IDA* Imprv | h-val Opt CPU
1 7 201132 665061 16140424 16805485 276361933 16.44 | 41 57 30.00
2 5 703468 2782240 2177237 4959477 15300442 3.09 43 55 10.00
3 8 3055024 | 15539341 21008424 36547765 565994203 15.49 | 41 59 86.00
4 6 383710 1486864 5408966 6895830 62643179 9.08 42 56 14.00
5 6 421209 1585590 1585192 3170782 11020325 3.48 42 56 7.00
6 7 98621 335650 2282543 2618193 32201660 12.30 | 36 52 5.00
7 10 528562 2209638 9039013 11248651 387138094 34.42 | 30 52 23.00
8 8 214267 762163 3267753 4029916 39118937 9.71 32 50 7.00
9 6 93290 360167 295035 655202 1650696 2.52 32 46 2.00
10 7 932383 3621225 8829163 12450388 198758703 15.96 | 43 59 26.00
11 6 242108 925926 9265885 10191811 150346072 14.75 | 43 57 20.00
12 4 13438 37797 143370 181167 546344 3.02 35 45 2.00
13 4 71304 252153 1822609 2074762 11861705 5.72 36 46 3.00
14 8 1341230 | 5934093 36314595 42248688 1369596778 3242 |41 59 84.00
15 8 7326349 36083156 21325891 57409047 543598067 9.47 44 62 210.00
16 8 163389 662331 1734376 2396707 17984051 7.50 24 42 10.00
17 9 2809350 | 11862075 26615351 38477426 607399560 15.79 | 46 66 80.00
18 5 145428 487242 2722444 3209686 23711067 7.39 43 55 8.00
19 4 7830 21731 337332 359063 1280495 3.57 36 46 1.00
20 7 630851 2534038 1866615 4400653 17954870 4.08 36 52 10.00
21 9 635224 2803392 9320012 12123404 257064810 21.20 | 34 54 25.00
22 8 1028194 3678935 18757405 22436340 750746755 33.46 | 41 59 47.00
23 7 212937 845504 1836250 2681754 15971319 5.96 33 49 6.00
24 9 841007 3194647 2792616 5987263 42693209 7.13 34 54 13.00
25 9 501572 2056026 5261191 7317217 100734844 13.77 | 32 52 15.00
26 8 1497079 | 6914580 12753424 19668004 226668645 11.52 | 40 58 39.00
27 9 799114 3566072 11926202 15492274 306123421 19.76 | 33 53 29.00
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Pno BTh | HTable BackPass FwdPass Total IDA* Imprv | h-val Opt | CPU
28 7 103829 351729 744800 1096529 5934442 5.41 36 52 3.00
29 7 439094 1835847 6011908 7847755 117076111 14.92 | 38 54 16.00
30 5 34989 110789 443384 554173 2196593 3.96 35 47 2.00
31 5 18395 55322 408125 463447 2351811 5.07 38 50 1.00
32 7 3665125 16714650 26575412 43290062 661041936 15.27 | 43 59 105.00
33 8 2125911 | 9709309 16434860 26144169 480637867 18.38 | 42 60 56.00
34 7 528287 2087381 1633201 3720582 20671552 5.56 36 52 8.00
35 7 1009283 | 4340836 4518596 8859432 47506056 5.36 39 55 18.00
36 7 298725 1158203 4275956 5434159 59802602 11.00 | 36 52 10.00
37 8 625293 2664890 11259900 13924790 280078791 20.11 | 40 58 25.00
38 5 44532 143261 2801568 2944829 24492852 8.32 41 53 6.00
39 6 341856 1488319 2222306 3710625 19355806 5.22 35 49 7.00
40 8 597149 2407238 4018758 6425996 63276188 9.85 36 54 13.00
41 8 379578 1400077 3090963 4491040 51501544 11.47 | 36 54 8.00
42 5 21919 70813 195168 265981 877823 3.30 30 42 1.00
43 7 985886 3382647 3861866 7244513 41124767 5.68 48 64 18.00
44 8 445724 1869522 6025995 7895517 95733125 12.12 | 32 50 15.00
45 5 70663 246670 1041812 1288482 6158733 4.78 39 51 3.00
46 6 90553 286254 2303442 2589696 22119320 8.54 35 49 5.00
47 5 25169 85305 325956 411261 1411294 3.43 35 47 1.00
48 4 45681 135863 398468 534331 1905023 3.57 39 49 1.00
49 12 5831003 36617867 32037125 68654992 1809933698 26.36 | 33 59 242.00
50 6 186062 674175 5143738 5817913 63036422 10.83 | 39 53 11.00
51 5 487236 1921378 3339133 5260511 26622863 5.06 44 56 9.00
52 8 719058 3045723 13040367 16086090 377141881 23.45 | 38 56 29.00
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Pno | BTh | HTable BackPass | FwdPass | Total IDA* Imprv | h-val Opt CPU
53 6 1642114 6248260 29839431 | 36087691 465225698 12.89 | 50 64 64.00
54 7 1079724 4446693 11702724 | 16149417 220374385 13.65 | 40 56 33.00
55 5 6454 18543 189752 208295 927212 4.45 29 41 1.00
56 12 2419166 12522987 | 23932839 | 36455826 1199487996 | 32.90 | 29 55 78.00
57 6 184256 735640 884759 1620399 8841527 5.46 36 50 4.00
58 6 61377 186955 1296121 1483076 12955404 8.74 37 51 3.00
59 10 2474181 12184952 | 28737374 | 40922326 1207520464 | 29.51 | 35 57 76.00
60 8 7218881 32145822 | 73717585 | 105863407 3337690331 | 31.53 | 48 66 246.00
61 6 99004 355769 1051980 1407749 7096850 5.04 31 45 5.00
62 6 720326 3082844 2208331 5291175 23540413 4.45 43 57 11.00
63 7 878869 3780370 28800165 | 32580535 995472712 30.55 | 40 56 55.00
64 9 684088 2955025 9280787 12235812 260054152 21.25 | 31 51 24.00
65 7 97757 342600 1719152 2061752 18997681 9.21 31 47 4.00
66 9 1982024 8427787 47308972 | 55736759 1957191378 | 35.11 | 41 61 105.00
67 10 746588 3280177 10460866 | 13741043 252783878 18.40 | 28 50 28.00
68 9 348816 1439661 4778834 6218495 64367799 10.35 | 31 51 12.00
69 7 900081 4785592 6099223 10884815 109562359 10.07 | 37 53 22.00
70 10 576116 2397684 5395603 7793287 151042571 19.38 | 30 52 16.00
71 6 73821 271041 1247909 1518950 8885972 5.85 30 44 3.00
72 8 839927 3479968 29299284 | 32779252 1031641140 | 31.47 | 38 56 56.00
73 5 40990 138320 334579 472899 3222276 6.81 37 49 1.00
74 4 23327 68880 496306 565186 1897728 3.36 46 56 2.00
75 8 497318 2035823 3091389 5127212 42772589 8.34 30 48 9.00
76 7 882266 3881765 6124821 10006586 126638417 12.66 | 41 57 21.00
77 9 776237 3248532 1358480 4607012 18918269 4.11 34 54 12.00
78 5 77150 245470 1326581 1572051 10907150 6.94 41 53 3.00
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Pno BTh | HTable BackPass FwdPass Total IDA* Imprv h-val | Opt CPU
79 6 31872 96617 146270 242887 540860 2.23 28 42 2.00
80 6 615895 2369719 7219175 9588894 132945856 13.86 43 57 17.0
81 6 39760 120769 1193495 1314264 9982569 7.60 39 53 2.00
82 10 6071770 30557880 91579379 122137259 5506801123 45.09 40 62 279.0
83 8 192812 703360 3831857 4535217 65533432 14.45 31 49 10.00
84 8 457948 1678539 7319872 8998411 106074303 11.79 37 55 16.00
85 5 53659 193865 467397 661262 2725456 412 32 44 1.00
86 4 99213 391938 460840 852778 2304426 2.70 35 45 2.00
87 8 591092 2557289 3877647 6434936 64926494 10.09 34 52 12.00
88 10 17948104 95521198 84280802 179802000 6009130748 33.42 43 65 827.0
89 7 661622 3012393 8303480 11315873 166571097 14.72 36 54 27.00
90 6 120263 407354 1069855 1477209 7171137 4.85 36 50 3.00
91 7 303839 1036159 22448731 23484890 602886858 25.67 41 57 37.00
92 9 1553975 6635901 28252407 34888308 1101072541 31.56 37 57 60.00
93 5 48021 174480 309286 483766 1599909 3.31 34 46 2.00
94 3 45075 156875 291483 448358 1337340 2.98 45 53 1.00
95 7 145675 547011 856576 1403587 7115967 5.07 34 50 3.00
96 6 191900 714282 1313533 2027815 12808564 6.32 35 49 4.00
97 5 64569 204198 238016 442214 1002927 2.27 32 44 2.00
98 9 1499198 7459573 8060138 15519711 183526883 11.83 34 54 31.00
99 8 1125482 5146510 5168507 10315017 83477694 8.09 39 57 22.00
100 7 819191 3656733 4473008 8129741 67880056 8.35 38 54 18.00

Table-4: Performance of IDA* and the newly proposed Bidirectional Search

25




7. Conclusion

In this paper we have proposed a new search technique for bidirectional heuristic search. We
have assumed that the heuristic is monotone. In this preliminary study we have shown how a
bidirectional version of IDA* can be used so that the two opposite search frontiers always meet
at the middle and an optimal path is obtained. We have obtained an average speed up of
12.3837 times compared to the unidirectional IDA* in terms of total node generations on the
select 100 problem instances of 15-puzzle as presented in Korf (2). The heuristic used was
Manhattan distance. This experiment was conducted on a Wipro Netpower 10220: Itanium
Processor 64 BIT, Single CPU, 8GB RAM, 73GB*3 HDD, RAID 5. We are in the process of
designing more efficient version of the proposed algorithm.
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