

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

WORKING PAPER SERIES

WPS No. 667/ November 2010

Cross Entropy based Neighborhood Reduction and Initial Tour Formation for Tabu
Search on the Asymmetric Traveling Salesman Problem

by

Sumanta Basu
Assistant Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700 104

India

&

Diptesh Ghosh
Associate Professor, IIM Ahmedabad, Vastrapur, Ahmedabad Pin-380015, India

Cross Entropy based Neighborhood Reduction and

Initial Tour Formation for Tabu Search on the

Asymmetric Traveling Salesman Problem

Sumanta Basu∗ Diptesh Ghosh †

Abstract

The objective of this paper is to implement tabu search on moderate
sized asymmetric traveling salesman problems (ATSPs). We introduce
a preprocessing scheme based on the cross entropy method which al-
lows us to reduce the number of arcs in the graph defining an ATSP
instance, without significantly affecting the cost of the tour output by
tabu search. This reduction helps us to apply tabu search methods es-
pecially designed for ATSPs defined on sparse graphs. We also provide
a scheme to generate good initial tours for multi-start tabu search to
run on large problems. We report our computational experiences on
randomly generated problems as well as benchmark problems to show
that our method yields good quality tours for moderate sized ATSPs
much faster than conventional tabu search implementations.

1 Introduction

Consider a digraph G = (V,A), where V = {v1, v2,, vn} is a set of n nodes,
and A = {(vi, vj)|vi, vj ∈ V } is a set of arcs. Each arc (vi, vj) has a cost
cij . Its density is defined as ρ = |A|/{|V |(|V | − 1)}. If ρ = 1, the digraph
is called complete, and if ρ is significantly less than 1, the graph is called
sparse. If the existence of an arc (vi, vj) in A implies that (a) (vj , vi) ∈ A,
and (b) cij = cji, then the graph is called symmetric, otherwise it is called
asymmetric.

A tour in G is a simple directed cycle covering all nodes in V . The cost
of a tour is the sum of costs of all arcs in the tour. The traveling salesman
problem (TSP) is one of finding a minimum cost tour in G. The cardinality n
of V is called the size of the TSP. If a TSP is defined on a symmetric digraph,
it is called a symmetric traveling salesman problem (STSP), otherwise it is

∗OM Area, Indian Institute of Management Calcutta. Email: sumanta@iimcal.ac.in
†P&QM Area, Indian Institute of Management Ahmedabad. Email: diptesh@iimahd.

ernet.in

1

called an asymmetric traveling salesman problem (ATSP). In this paper, we
deal with ATSPs.

Karp (see Karp, 1972) showed that the Hamiltonian Cycle problem is
NP complete, which implies that the TSP is NP hard, and so both exact
algorithms (for an overview, see e.g., Applegate et al., 2006; Fischetti et al.,
2002) and heuristic algorithms (for an overview, see e.g., Johnson et al.,
2002) have been used in the literature to solve these problems.

In practice, for example in logistics, ATSPs occur more commonly than
STSPs. However, most of the research in TSP has focused on the STSP.
For STSPs, researchers have been successful in obtaining results which allow
us to solve most large instances in very little time. However, such results
are not available for the ATSP. According to Johnson et al. (2002), one
reason for this could be the absence of particular instance type for the ATSP
which will enable algorithms to reduce computational time by exploiting
specific problem characteristics. One line of approach (see, e.g., Cirassela
et al., 2001) attempts to convert an ATSP instance into an equivalent STSP
instance to obtain solutions. This approach has limited success since the
size of the equivalent STSP instance is typically much larger than the size
of the original ATSP instance. Implementation of metaheuristics on ATSP
instances also has limited evidence of success in published literature. Basu
and Ghosh (2008) notes that most of the literature on tabu search for the
TSP is restricted to the STSP.

In this paper we develop tabu search implementations for the ATSP. We
assume that the ATSP has been defined on a complete graph. Our aim
is to make use of a tabu search implementation developed in Basu et al.
(2008) which speeds up tabu search significantly in ATSP instances defined
on sparse graphs. To that end, in Section 2, we devise a scheme to reduce
the density of the graph underlying a TSP problem instance. This reduction
may eliminate an optimal tour, but that fact is not of grave concern to us,
since we plan to use a tabu search algorithm on the sparse graph which is
itself not guaranteed to output an optimal solution. It is interesting to note
that there is almost no literature on preprocessing of TSP instances. On the
contrary, preprocessing algorithms exist for other well-studied combinatorial
problems, see for example, Goossens and Baruah (2001) for uniprocessor
scheduling, and Khumawala (1975) for the uncapacitated facility location
problem. Toth and Vigo (1998) and Glover and Laguna (1998) describe
approaches that can be used for preprocessing, however none of the papers
explicitly describes a preprocessing procedure.

Tabu search, when designed to solve large problems is often implemented
in a multi-start manner, where it is run from multiple starting points suit-
ably separated in the solution domain. The best solution encountered by
tabu search from among all the runs is output as the final solution. In de-
signing a multi-start tabu search implementation, one needs to ensure that
the starting solutions are widely dispersed in the solution domain. In Sec-

2

tion 3, we describe ways in which the preprocessing method described in
Section 2 can be modified to generate suitable initial tours for multi-start
implementations of tabu search.

In Section 4 we describe our computational experience with randomly
generated instances as well as benchmark problem instances. The random
instances varied in size from 200 to 600. The benchmark instances were ob-
tained from the collection of ATSP instances from Johnson et al. (2002). We
chose only those instances in the collection which are defined on graphs with
at least 100 nodes. We created three implementations, named A through
C, such that comparisons among the implementations provide us with infor-
mation about the efficiency of our preprocessing and initial tour generating
operations. Finally, in Section 5 we conclude the paper with a summary of
the contributions.

2 The Preprocessing Scheme

Consider an ATSP instance defined on a complete graph. Within its set of
arcs, some are either too costly or too inconveniently located to be included
in any low cost tour. Preprocessing is a process by which such arcs are
eliminated from the graph. The sparse graph thus formed can then be
addressed efficiently using tabu search implementations designed to work on
sparse graphs (i.e., Basu et al., 2008), which make use of the fact that the
neighborhood of a tour in a sparse graph is smaller than the neighborhood
of the same tour in a complete graph. In the remainder of this section,
we describe a preprocessing algorithm for this purpose. This algorithm is
based on cross entropy. Cross entropy (CE) was developed as a tool for
rare event simulation in Rubinstein (1997). This tool was later used in
Rubinstein (1999, 2001) to solve combinatorial optimization problems. CE
has been used for the TSP in Chepuri and Homem-de Mello (2005); Boer
et al. (2005). It is an iterative process in which arcs that are less likely to be
in good quality tours are progressively eliminated until only those arcs that
are in the “best” tour remain. We use a truncated CE algorithm to reduce
the number of arcs in a graph defining a TSP instance.

In our preprocessing algorithm, we take a directed graph G = (V,A) as
input, along with three parameters k, e, and iter . We define a probability
matrix P = [pij] where pij denotes the probability that arc (vi, vj) will be
included in a random tour during a particular iteration. At the beginning
of the preprocessing algorithm, pij = 1/n(n − 1) and pii = 0 for all i, j ∈
{1, . . . , n} with i 6= j. The P matrix gets updated after each iteration of the
algorithm. A typical iteration starts with a probability matrix P . During
the iteration, we generate k tours in G such that the probability of an arc
(vi, vj) being chosen in a tour is proportional to pij . We then create an
elite tour list E containing the e lowest cost tours from among the k tours

3

generated. At the end of the iteration, we update P as follows. Let nij
be the number of times that arc (vi, vj) appears in the tours in E . Then
pij = nij/(e.n). After iter iterations get over, a sparse graph G′ = (V,A′)
is formed where A′ = {(vi, vj) : pij > 0}.

From preliminary experiments we observed that at the end of the speci-
fied number of iterations, the output graph became too sparse and as a result
some of the tours did not have any neighboring tour. In such graphs, tabu
search was unable to better the best tour in the E list after iter iterations.
So motivated by Toth and Vigo (1998), we added a step in our algorithm in
which we chose a threshold τ , and added those arcs in A whose costs were
less than the threshold to A′. The result of this operation is a denser G′ but
one in which some neighboring tours do exist for most tours.

Based on preliminary experiments with randomly generated ATSP in-
stances of sizes 100 and 250, we chose k, e, and iter as 50000, 1.5n and 20
respectively. We chose the threshold value τ as 1.5 times the average of the
costs of arcs in E weighed by the frequency of their appearance.

3 Generation of Initial Tours

Performance of any local search heuristic like tabu search is often critically
dependent on the quality of the solution used as a starting point for the
algorithm. As the problem size increases, the solution space increases ex-
ponentially, and the choice of initial solutions becomes increasingly impor-
tant. Tabu search is implemented for large sized problems in the multi-start
mode. In this mode, tabu search is started from several initial tours which
are widely separated in the solution space. The best tour obtained in all
the runs is output by the algorithm. The preprocessing algorithm described
in Section 2 can be easily tweaked to generate initial tours. To do this, the
required number of initial tours are obtained from the tours present in the
elite set E at the end of the preprocessing algorithm.

4 Computational Experience

In this section, we first describe the tabu search implementations that we
create to test our preprocessing and initial tour generation schemes. We
then report the experiment design and test beds of problems that we use
for our experiments. Finally we present the results of our computational
experiments.

Tabu search implementations: We combined our preprocessing method
and initial tour generation method into three tabu search implementations,
labeled A through C. Each implementation is defined as a combination of the
preprocessing method used, method used to generate initial tours, and the

4

implementation of tabu search used. Two implementations of tabu search
described in Basu et al. (2008) were considered; the TS-CI implementa-
tion which is the conventional implementation designed for tabu search on
instances defined on complete graphs, and the TS-SAG implementation de-
signed for tabu search on instances defined on sparse asymmetric graphs. In
conventional implementations, non-existent arcs in a graph are represented
as infinite cost arcs. Hence even though the neighborhood of a tour is much
smaller for an ATSP instance defined on a sparse graph than one defined on
a complete graph with the same number of nodes, conventional implemen-
tations of tabu search actually search a complete graph in the both cases.
TS-SAG uses special data structures to eliminate the need for infinite cost
arcs and so tabu search actually searches a much smaller neighborhood.
This speeds up the TS-SAG algorithm significantly compared to TS-CI on
ATSPs defined on sparse graphs. Table 1 describes the implementations
that we use for our computational experiments. All the implementations

Table 1: Details of implementations

Implementation Preprocessing Initial Tabu Search
Scheme Scheme Solution Implementation

A None Generated randomly TS-CI
B None From Section 3 TS-CI
C From Section 2 From Section 3 TS-SAG

were coded in C, were run on a computer with an Intel Quad Core 2.4GHz
processor and 3 GB of RAM. The length of the tabu list in all tabu search
implementations was fixed at 8.

Comparisons between different implementations allow us to comment
on the usefulness of the preprocessing method and initial tour generation
method. A comparison of qualities of the tours obtained by implementa-
tions A and B shows us the effectiveness of the use of special methods to
generate initial tours for multi-start tabu search. A comparison between im-
plementations B and C shows us the usefulness of the preprocessing scheme
combined with the use of special tabu search implementation designed for
ATSPs defined on sparse graphs.

Test beds and computational experiments: We performed our ex-
periments on randomly generated ATSP instances as well as on benchmark
ATSP instances. Each of the instances was taken as described on a com-
plete digraph. The randomly generated instances consisted of ten problem
instances each of size 200, 300, 400, 500, and 600. The arc costs were cho-
sen as integers randomly in the interval [1, 1000]. The benchmark instances
consisted of 25 ATSP instances from Johnson et al. (2002) with 100 nodes

5

or more. Note that these instances include all similar instances in TSPLIB
(Reinelt, 1991).

Our computational experiments were divided into two parts. In the first
part we examined the performance of the three implementations when tabu
search was allowed to run for 1000 iterations in each implementation. The
performance parameters used to compare the implementations in this part
for the randomly generated instances were (a) the average of the costs of the
tours output by the implementation on all ten instances of a given size, and
(b) the average of the execution times required by the implementation over
all ten instances of a given size. For benchmark problem instances, the per-
formance parameters were the cost of the tour output by the implementation
for the instance, and the execution time taken by the implementation.

The second part deals with the performance of the three tabu search
implementations when the execution time was fixed. We fixed the execution
time for different problem sizes ensuring that a sufficient number of tabu
search iterations are possible within the specified time limit. We defined tk
as the execution time that implementation A required to first encounter the
tour it output after 1000 iterations on a ATSP instance of size k. Then for
ATSPs of size s, we allot an execution time limit of 1000 ts/t500 seconds.
The performance measure used in this part is simply the average of the
costs of the tours output by a given implementation on all ten instances of
a particular size for randomly generated problems, and the cost of the tour
output by a given implementation on a benchmark problem instance.

Computational results (first part): We first present the average of the
costs of tours output by the three implementations on randomly generated
ATSP instances in Table 2. In Table 3 we present the time required on
average by the three implementations to run 1000 tabu search iterations
on problems of a given size. The execution time is broken up into two
parts, the time for preprocessing and the time for executing tabu search on
the preprocessed instance. The time required to generate initial tours is
included in the time for preprocessing, since the initial tours are generated
as a by-product of the preprocessing operation itself.

Table 2: Average of the cost of tours output by the three implementations
at the end of 1000 tabu search iterations

200 300 400 500 600

A 40520.70 61666.70 85110.10 107101.60 131068.90
B 19909.20 37726.10 58923.10 80903.00 103893.20
C 20017.00 38628.30 59630.70 82305.40 106046.30

From Table 2 we see that the tours output by implementations B and C

6

Table 3: Execution time in seconds required by the three implementations
to complete 1000 tabu search iterations

200 300 400 500 600
A Avg. preproc. time 0.00 0.00 0.00 0.00 0.00

Avg. of time for TS 43.16 127.94 277.31 497.39 821.05
Avg. of total time 43.16 127.94 277.31 497.39 821.05

B Avg. preproc. time 117.40 264.10 469.20 732.70 1052.50
Avg. of time for TS 42.32 131.77 287.32 533.45 873.23
Avg. of total time 159.72 395.87 756.52 1266.15 1925.73

C Avg. preproc. time 117.40 264.10 469.20 732.70 1052.50
Avg. of time for TS 3.14 7.44 12.83 19.69 29.18
Avg. of total time 120.54 271.54 482.03 752.39 1081.68

were better than those output by implementation A. Implementation B pro-
duced slightly better tours than implementation C although the tour costs
were not significantly different when tested at a significance level of 0.01 (in
a paired-t test). From Table 3 we see that as expected, the time required
by tabu search in implementation C is much less than that required by tabu
search in implementations A and B. Overall, implementation C required
less time than implementation B, with the difference in the total time re-
quired increases with increasing problem size. Based on these observations,
implementation C seems to dominate other implementations for randomly
generated ATSP instances.

Table 4 summarizes the quality of tours output by the three implemen-
tations on the 25 benchmark ATSP instances. Since the costs of optimal
tours for these problems are very different, we expressed the quality of tours
output by the three implementations as a multiple of the Held-Karp lower
bound (see Held and Karp, 1970, 1971) for that ATSP instance. Observe
that implementations B and/or C produced the least cost tours in 19 out
of the 25 instances. The four problems in the rgb class form a notable
exception, implementation A generated the best tours to these problem in-
stances. Table 5 presents the execution times required by the implemen-
tations on the benchmark problem instances. Between implementations B
and C which provide the best quality tours in most cases, implementation C
requires much less time, and is hence the preferred implementation. Notice
that here too, the difference between the execution times of implementations
B and C increases with increasing problem size.

Computational results (second part): Recall that in the second part
of our experiments, we allowed each implementation to run for a pre-specified
duration, and compared the quality of tours output by the implementation
at the end of that duration. Table 6 presents the average of the costs of

7

Table 4: Costs of tours output by the implementations as a multiple of
Held-Karp bound at the end of 1000 tabu search iterations

Implementation
Instance Size A B C

atex8 600 5.39 5.18 5.10
big702 702 5.22 5.30 5.36
dc112 112 1.01 1.01 1.01
dc126 126 1.00 1.00 1.03
dc134 134 1.01 1.01 1.02
dc176 176 1.02 1.01 1.03
dc188 188 1.01 1.01 1.02
dc563 563 1.05 1.05 1.08
dc849 849 1.05 1.05 1.05
dc895 895 1.02 1.02 1.13
dc932 932 1.01 1.01 1.11
ftv100 100 2.73 2.02 2.02
ftv110 110 2.78 2.16 2.29
ftv120 120 2.67 2.20 2.20
ftv130 130 3.11 2.25 2.25
ftv140 140 3.20 2.70 2.71
ftv150 150 3.34 2.27 2.45
ftv160 160 3.45 2.64 2.71
ftv170 170 3.64 2.89 2.85
kro124p 124 1.34 1.25 1.25
rbg323 323 2.86 3.16 3.16
rbg358 358 3.55 4.21 4.21
rbg403 403 2.11 2.48 2.48
rbg443 443 2.05 2.43 2.43
td100 1 100 1.32 1.12 1.12

the tours output by the different implementations over the ten randomly
generated ATSP instances of a given size. The trends in the results from
these experiments closely follow their counterparts in the first set. Here
too, implementations B and C produced the least cost tours output and the
difference in the quality of tours output by implementations B and C is not
statistically significant.

For benchmark problem instances, we increased the time limit to ensure
that tabu search could run from at least three initial tours for each of the in-
stances. These allowable time limits were made proportional to the problem
size. The execution times for the 25 instances are given in Table 7.

Table 8 reports the costs of tours output by the implementations as mul-
tiples of the Held-Karp bound for the corresponding problem. We see that
implementations B and/or C produced the best tours in 21 of the 25 bench-
mark instances. Implementation A was seen to outperform implementations

8

Table 5: Execution time in seconds required by the three implementations
to complete 1000 tabu search iterations on benchmark instances

Implementation
Instance Size A B C

atex8 600 848.9 1911.9 1176.4
big702 702 1188.6 2715.9 1538.5
dc112 112 8.1 44.7 38.6
dc126 126 10.4 56.8 49.0
dc134 134 12.9 66.8 55.7
dc176 176 25.9 114.3 96.3
dc188 188 31.6 135.3 110.7
dc563 563 675.0 1482.0 957.3
dc849 849 2139.1 4104.3 2213.2
dc895 895 2541.1 5098.3 2420.5
dc932 932 2978.9 5482.3 2625.1
ftv100 100 6.8 37.1 32.2
ftv110 110 9.3 44.6 38.2
ftv120 120 14.7 53.7 47.2
ftv130 130 12.9 64.4 57.2
ftv140 140 15.6 73.6 63.7
ftv150 150 20.1 88.1 75.6
ftv160 160 24.0 99.9 83.0
ftv170 170 29.1 111.5 95.0
kro124p 124 6.4 36.1 34.4
rbg323 323 138.9 450.8 323.8
rbg358 358 319.0 618.5 466.4
rbg403 403 208.7 693.1 503.0
rbg443 443 351.8 880.1 607.9
td100 1 100 6.6 38.2 35.4

Table 6: Average of the cost of tours output by the three implementations
at the end of a pre-specified execution time

200 300 400 500 600

A 39977.60 61282.20 85110.10 107101.60 131616.50
B 19819.50 37726.10 59032.90 81428.80 104865.30
C 19915.00 37993.60 58871.10 81610.10 105054.20

B and C for some of the dc instances. However, the difference in tour qual-
ity obtained from implementation A for these instances is only marginally
better than those produced by implementations B and C.

In summary therefore, we observe that the preprocessing scheme and
the initial tour generation scheme described in this paper combined with

9

Table 7: Execution times for benchmark problems

Problem Time Limit

atex8 2000
big702 3000
dc112 50
dc126 75
dc134 80
dc176 120
dc188 140
dc563 1500
dc849 4500
dc895 5500
dc932 7000
ftv100 50
ftv110 60

Problem Time Limit

ftv120 70
ftv130 80
ftv140 90
ftv150 100
ftv160 110
ftv170 120
kro124p 50
rbg323 1000
rbg358 1100
rbg403 1200
rbg443 1300
td100 1 50

the TS-SAG implementation of tabu search produces results for moderate
sized ATSP instances which are superior to conventional tabu search imple-
mentations for this problem.

5 Summary

In this paper, we suggest a tabu search implementation to solve asymmetric
traveling salesman problems (ATSPs). In our implementation, we first use
a cross entropy method based preprocessing algorithm to reduce the density
of the graph describing the problem instance, and to generate good starting
tours for tabu search to operate in a multi-start mode. We then use a tabu
search implementation specially designed to solve ATSPs defined on sparse
graphs.

We created three implementations, one without any of the enhancements
suggested in the paper, a second in which only initial tours were generated
with our method and a third in which the graph was preprocessed and ini-
tial tours were generated, both by the method we suggested in this paper.
The special tabu search implementation designed for sparse graphs from
Basu et al. (2008) could only be used in the third implementation. We
compared the implementations based on extensive computational experi-
ments using randomly generated ATSP instances and benchmark problem
instances. We performed two types of experiments, one in which we fixed
the number of tabu search iterations, and another in which we fixed the to-
tal execution time. From our experiments we concluded that the best tabu
search implementation for medium sized ATSPs is the one in which both
the preprocessing and the initial tour generation are done based on the cross

10

Table 8: Costs of tours output by the implementations as a multiple of
Held-Karp bound at the end of the pre-specified execution time

Implementation
Instance Size A B C

atex8 600 5.51 5.25 5.05
big702 702 12.65 4.91 5.19
dc112 112 1.01 1.01 1.01
dc126 126 1.00 1.00 1.02
dc134 134 1.01 1.01 1.02
dc176 176 1.02 1.01 1.03
dc188 188 1.00 1.01 1.02
dc563 563 1.05 1.05 1.08
dc849 849 1.05 1.05 1.05
dc895 895 1.03 1.03 1.13
dc932 932 1.00 1.01 1.11
ftv100 100 2.65 1.90 1.90
ftv110 110 2.78 1.93 1.93
ftv120 120 2.67 2.16 2.16
ftv130 130 3.04 2.30 2.30
ftv140 140 3.20 2.42 2.52
ftv150 150 3.34 2.59 2.59
ftv160 160 3.45 2.78 2.68
ftv170 170 3.64 2.85 2.84
kro124p 124 1.34 1.25 1.25
rbg323 323 3.61 2.19 2.20
rbg358 358 859.84 2.72 2.78
rbg403 403 405.68 1.69 1.74
rbg443 443 367.65 1.74 1.79
td100 1 100 1.32 1.13 1.12

entropy method, followed by the TS-SAG tabu search implementation (see
Basu et al., 2008) specially designed for performing tabu search on ATSPs
defined on sparse graphs.

References

Applegate D, Bixby R, Chvatal V and Cook W (2006). The Traveling Sales-
man Problem: A Computational Study. Princeton University Press.

Basu S, Gajulapalli R and Ghosh D (2008). Implementing tabu serach to
exploit sparsity in atsp instances. Working Paper Series, Indian Institute
of Management Ahmedabad, 2008-10-02.

Basu S and Ghosh D (2008). A review of the tabu search literature on

11

traveling salesman problems. Working Paper Series, Indian Institute of
Management Ahmedabad, W.P. No. 2008-10-01.

Boer P, Kroese D, Mannor S and Rubinstein R (2005). A tutorial on the
cross-entropy method. Annals of Operations Research 134: 19–67.

Chepuri K and Homem-de Mello T (2005). Solving the vehicle routing
problem with stochastic demands using the cross entropy method. Annals
of Operations Research 134: 193–181.

Cirassela J, Johnson D, McGeoch L and Zhang W (2001). The asymmetric
traveling salesman problem: algorithms, instance generators, and tests.
In: Buchsbaum A and Snoeyink J (eds). Algorithm Engineering and Ex-
perimentation. Third International Workshop, ALENEX 2001, Lecture
Notes in Computer Science 2153, pp 32–59. Springer-Verlag.

Fischetti M, Lodi A and Toth P (2002). Exact methods for asymmetric trav-
eling salesman problem. In: Gutin G and Punnen P (eds). The Traveling
Salesman Problem and Its Variations 4, pp 169–206. Kluwer Academic
Publisher: London.

Glover F and Laguna M (1998). Tabu Search. Kluwer Academic Publisher:
London.

Goossens J and Baruah S (2001). Multiprocessor preprocessing algorithms
for uniprocessor on-line scheduling. In: The 21th International Conference
on Distributed Computing Systems.

Held M and Karp R (1970). The traveling salesman problem and minimum
spanning trees. Operations Research 18: 1138–1162.

Held M and Karp R (1971). The traveling salesman problem and minimum
spanning trees: Part II. Mathematical Programming 1: 6–25.

Johnson D, Gutin G, McGeoch L, Yeo A, Zhang W and Zverovich A (2002).
Experimental analysis of heuristics for the ATSP. In: Gutin G and Punnen
P (eds). The Traveling Salesman Problem and Its Variations 10, pp 445–
488. Kluwer Academic Publishers: London.

Karp R (1972). Reducibility among combinatorial problems. Complexity of
Computer Computations, pp 85–103. Plenum Press.

Khumawala B (1975). An efficient branch and bound algorithm for the
warehouse location problem. Management Science 18: B718–B731.

Reinelt G (1991). TSPLIB – A traveling salesman problem library. ORSA
Journal on Computing 3: 376–384.

12

Rubinstein R (1997). Optimization of computer simulation models with rare
events. European Journal of Operational Research 99: 89–112.

Rubinstein R (1999). The simulated entropy method for combinatorial and
continuous optimization. Methodology and Computing in Applied Proba-
bility 2: 127–190.

Rubinstein R (2001). Combinatorial Optimization, Cross-Entropy, Ants
and Rare Events. In: Uryasev S and Pardalos P M (eds). Stochastic
optimization: algorithms and applications, pp 445–488. Kluwer Academic
Publishers: London.

Toth P and Vigo D (2003). The granular tabu search and its application
to the vehicle-routing problem. INFORMS Journal on Computing 15:
333–346.

13

