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Modeling Regional Electricity Load in India 
 
 
Abstract 
 
Electricity as a product cannot generally be stored. Hence, it is required to match demand 
and supply on a real time basis in order to avoid disturbance in grid frequency and 
consequently ensure quality of power supply. The agencies involved in scheduling of 
power in India divide a day into ninety-six time buckets - each bucket of fifteen minutes 
duration. The load is matched for each time bucket. This matching is done the night 
before the start of actual dispatch. In fact, the demand supply schedule for a day is 
finalized at 11 PM on the previous day. The regulated bulk supply tariff in India has an 
unscheduled interchange component, which is linked to grid frequency. Thus, any smart 
generator of electricity would make abnormal profits provided she is able to forecast the 
load properly. 
 
The present paper attempts to model the hourly load in the northern grid in India. The 
hourly load is estimated by aggregating load over five-minute intervals. Data 
corresponding to each hour is treated as a single time series and each series is modeled 
independently. The paper has used an estimation window of eleven months and forecast 
window of one month. Autoregressive models with dummy variables to capture (a) day-
of-the-week effect, (b) national non-Sunday holiday effect, and (c) seasonality effect turn 
out to be quite effective in explaining the hourly load behavior.  
 
The results show evidences of clustering of load behavior. Five clusters of time period 
within a day were observed where the load behavior can be captured with a single model. 
These clusters take care of sixteen hours of a day. Each of the remaining eight hours 
behaves differently. Interestingly, the behavior of load around mid night and during 
morning hours of the day does not depend on day of the week.  Furthermore, Thursdays 
and Saturdays had the least impact on the hourly load. Another interesting finding is that 
there is no effect of national non-Sunday holidays on the load. The mean absolute 
percentage error of the best-fit model in calculating one-day-ahead out-of-sample log-
load forecast is quite small (ranging from 0.14% to 0.20%).  
 
The findings of the paper may have profound implications for the regulator - (a) the 
regulator can use the information to introduce time-of-the-day pricing; (b) a fifteen-
minute time bucket may be desirable for load scheduling, but for load forecasting one 
may use the clusters. Thus, the electricity generator may schedule its generation based on 
cluster-wise load forecast, rather than hourly forecast. 
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1. Introduction  
 

Electricity as a product cannot generally be stored. Hence, it is required to match demand 

and supply on a real time basis in order to avoid disturbance in grid frequency and 

consequently ensure quality of power supply. The agencies involved in scheduling of 

power in India divide a day into ninety-six time buckets- each bucket of fifteen minutes 

duration. The load is matched for each time bucket. However, there must be some reserve 

margin in the system so that local disturbances do not lead to collapse of the grid. The 

issue of developing an appropriate mechanism for load forecasting is important in the 

following ways: 

(a) In order to ensure minimum disturbance in the grid frequency ‘it is relevant for 

electricity systems optimization to develop a scheduling algorithm for the hourly 

generation and transmission of electricity’( [1] ). Hourly load forecasts are one 

of the main inputs to this algorithm.  

(b) The regulators in India are seriously discussing the possibility of introducing 

time-of-the-day pricing for bulk supply tariff. A proper understanding of intra-

day load behaviour is a prerequisite for introducing such pricing system. 

(c)  The regulated bulk supply tariff in India has an unscheduled interchange 

component, which is linked to grid frequency. Thus, any smart generator of 

electricity would make abnormal profits provided she is able to forecast the load 

properly.  

Forecasting electricity load demand has been a favorite subject of many researchers ([2]). 

Recently [3] followed a two-level seasonal autoregressive model and observed that this 

model reported better forecast results during the peak hours (i.e., hours 19-21). The paper 
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[4] fitted an autoregressive moving average model (ARMA) to estimate electricity loads 

in California power market and obtained an acceptable out of sample forecast. The 

obtained residuals seemed to be independent but with tails heavier than the Gaussian 

tails.  Another paper [5] applied a multiple regression model for each hour and found the 

model performing extremely well.  

The present paper attempts to model the hourly load in the northern grid in India. The 

hourly load is estimated by aggregating load over five-minute intervals. Data of each 

hour is treated as a single time series and each series is modeled independently. The 

results show evidences of clustering of load behavior.  

The plan of the paper is as follows. The next section briefly explains the Indian electricity 

scenario. Section 3 describes the data and the model proposed to fit the load demand, 

while Section 4 analyses the results. Section 5 offers some concluding remarks. 

 

2. Indian Scenario 

The electricity industry in India is mired in a complex network of problems. They range 

from inadequate capacities in generation, transmission and distribution, outdated 

technologies especially in transmission and distribution, poor maintenance, cross-

subsidization and consequent financial non-viability of a large part of the sector, over 

staffing, lack of a commercial culture, poor management and accounting practices, etc. 

The grid situation in India witnessed low frequency during peak load hours; rapid and 

wide changes in frequency – 1 Hz change in 5 to 10 minutes, for many hours every day; 

and very frequent grid disturbances, causing tripping of generating stations, interruption 

of supply to large blocks of consumers, and disintegration of the regional grids. The 
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regulator has introduced a tariff mechanism (called, the availability based tariff) that 

would address the grid behaviour and at the same time would give incentive to 

participants for restoring grid discipline.  

The heart of the availability based tariff (ABT) system is scheduling wherein both the 

generator and the subsequent beneficiary has to pre-commit themselves to day ahead 

schedules via declaration of plant availability status on ex-bus basis and drawal schedule 

at nodal intake point. The methodology is as framed below: 

 
(i) Each day starting from 00.00 hrs will be divided into 96 time blocks of 15 

minutes intervals. 

 
(ii) The generator will make an advance declaration of capability of its generating 

station by 10:00 hrs. The declaration will be for that capability which can be 

actually made available. 

 
(iii) The regional load dispatch centres (RLDC) shall communicate the respective 

shares to the beneficiaries based on the declaration of the generator by 11:00 

hours. 

(iv) Based on the requisitions given by the beneficiaries by 15:00 hours and taking 

into account transmission system constraints, if any, RLDC prepares the 

economically optimal generation schedules and drawal schedules and 

communicate the same to generator and beneficiaries by 17:00 hours. RLDC 

also formulates the procedure for meeting contingencies both in the long run 

and in the short run (daily scheduling). All the scheduled generation and 

actual generation shall be at the generator’s ex-bus. For beneficiaries, the 
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scheduled and actual net drawals are at their respective receiving points. For 

calculating the net drawal schedules of beneficiaries, the transmission losses 

are apportioned to their drawals. 

 
(v) The generators can however revise their schedule, which they intimate to the 

RLDC’s by 22:00 hours. 

 
(vi) Based on the final revised documents received by the RLDC, it draws up the 

final schedule by 23:00 hours and issues the schedule to both generators and 

beneficiaries alike. The new schedule comes into application at 00:00 hours. 

 

The commercial mechanism of the ABT contemplates the disciplining of all three entities 

in the grid viz., the generator, transmitter and the beneficiaries. It accords a uniform 

treatment to all participants in the grid. The basic advantage in ABT is that the total tariff 

payable by the beneficiary to the generating station is divided into 3 components viz. 1) 

Capacity charge 2) Energy charge and 3) the unscheduled Interchange (UI) charges. 

Variation in actual generation/drawal and scheduled generation/drawal is accounted for 

through Unscheduled Interchange (UI) charges.  

 
Though the UI charges are primarily intended to act as a penalty charge thus preventing 

the tendency of generators to over-generate in times of high frequency and the states to 

involve in under-drawal via the penalty mechanism, yet its very nature also provides a 

market pricing mechanism for the sale of power according to the intensity of demand.  
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All the generators irrespective of ownership would be dispatched with frequency based 

dispatch guidelines where at each frequency level, output of the generators are regulated 

by comparing their own variable cost with the frequency linked UI price. Thus, merit 

order scheduling as well as merit order dispatch of generators are ensured. Any generator 

can take advantage of a windfall in the form of UI, provided it can perform the hourly 

load forecast well. 

 
 

3. Data and Methodology 

 
The data consist of electricity load demands at five-minute intervals observed from 

January 1, 2005 through December 31, 2005 (1,05,120 data points). For each day, the 

hourly load demand is then estimated by averaging the load demands observed at twelve 

five-minute intervals. Data corresponding to each hour over the days is treated as a single 

time series (“sectional data”) and each of these 24 daily series is modeled independently 

of others (Figure 1a-1x). Modeling these “sectional” data is quite appropriate since the 

objective is to obtain 24-hour ahead forecasts. This helps avoid complex intra-day 

patterns in the hourly data and allows each daily series corresponding to an hour to 

capture a distinctive weekly behavior. The day of the week is expected to affect the load 

demand during the middle hours, when business and industrial activities are it their peak, 

more than the first and last hours of the day. This hour-by-hour approach has been 

adopted by [1] and [5] among others. However, we have used the lags of the load data 

and binary dummy variables representing the week-day effect, national non-Sunday 

holiday effect and seasonal effects as explanatory variables in linear regression models. 

No external variables such as the hourly average temperature of the day have been used 
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in our study as such data are not available to us. Such variables are expected to improve 

prediction of the load demand ( [6] ). However, for our data the linear regression models 

considered by us performed quite well.  

For each hour h of the day we have computed the average electricity load and then 

computed its logarithm h
tr  on day t, where h = 1, 2, …, 24. We chose to model with the 

logarithm of load demands since it allows one to model weekly seasonality and national 

non-Sunday holiday effect through simple linear models. For fixed h, we have considered 

various linear regression models ( [7] ), to explain the mean-behavior of the series h
tr , and 

tried GARCH models ( [8], [9])  to capture possible heteroscedasticity of the series.  

 Let  
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where h
1tF    is the information made available upto time (t1). The series { h

tr } may be 

either serially uncorrelated or may have minor lower order serial correlations, but it may 

yet be dependent. To capture such possible dependence in series volatility models may be 

used. Generally, the conditional mean h
t of such series { h

tr } can be modeled using a 

simple model such as a stationary AR(p) model with some additional variables like 

dummy variables to account for effect of a day of the week, and national non-Sunday 

holidays, and also the seasonal effect, i.e., 
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where the shock h
ta  represents a white noise series with mean zero and  variance 

2h
a , 

and p a non-negative integer.  We have used dummy variables h
t,jD  and h

t,kS . For j = 1, 2, 
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…, 6, the variables are defined as follows: h
t,jD = 1 if t = day j of the week and h

t,jD = 0, 

otherwise. The binary variable h
tH  is defined as: h

tH = 1 if t = a national non-Sunday 

holiday and h
tH = 0, otherwise. Exploratory data analysis indicated that the regional 

electricity load is affected by roughly 3 seasons, namely, winter, summer and fall (Figure 

2). For three seasons only two dummy variables h
t,kS are required to be included in the 

model. For k = 1, 2, the variable h
t,kS  is defined as h

t,kS = 1 if  t belongs to season k and 

h
t,kS = 0 otherwise. 

From equations (2) and (3) we have  
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h
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h
t                                                                  (3) 

In model (2), the unconditional variance )a(V h
t  may be constant, yet the conditional 

variance 
2h

t )F|a(V h
1t

h
t   may depend on t. Volatility models attempt to express the 

evolution of 
2h

t , or its positive square root h
t  using an exact function or a stochastic 

equation. The equation for h
t  is called the mean equation for the h

tr , and that for 
2h

t  its 

volatility (or conditional variance) equation. A GARCH model describes the volatility 

evolution through a simple parametric function. A detailed discussion on GARCH 

models can be found in [9] and [10]. 

 

4. Results 

We have used an estimation window of eleven months (January- November 2005) and 

forecast window of one month (December 2005). We ran various regression models for 
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each hour separately with the data specified in the previous section to find the best fit. 

The results are reproduced in Table 1. It is observed that AR(2) with dummies is the best 

fit model for all the hourly time series. The coefficient of any higher order lags proved to 

be insignificant. The usual diagnostics of residuals along with results from GARCH 

models (not reported here for brevity) indicate absence of heteroskedasticity in the data. 

This result is in conformity with that in [4]. 

 Table 1 reports only the models where the coefficients were significantly different 

from zero (at 10% level). An interesting feature of the result is that there is no effect of 

national (non-Sunday) holidays (7) on the load (in the northern grid of India). The paper 

considered the holidays as per Government of India’s Gazette of holidays. This implies 

that factories and offices in the private sector do not follow holidays as per Government 

of India’s Gazette. Seasonal dummies were used for winter (1 January- 15 April) and 

summer (16 April- 31 August). The seasonal dummy variable corresponding to the period 

Sep 1 – Dec 31 was not included in the model in the presence of the intercept variable. 

The negative coefficients (γ1) of winter dummy indicate usual inverse relationship 

between load and the winter season. The northern region of India experiences severe 

summer and winter. This relationship also implies that electricity load is more influenced 

by running of air conditioners rather than room heaters. The results also show that hourly 

load behavior does not always depend on the day of the week. In fact, Thursdays (4) and 

Saturdays (6) had the least impact on the hourly load.  

The models reported in Table 1 also show quite high adjusted R2 values, which indicate 

the strength of goodness-of-fit. The Durbin-Watson (DW) statistic values and Ljung-Box 

(LB) test P-values indicate validity of the independence assumption of the errors.  
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 Results show similar load behavior in certain clusters. For example, clusters were 

observed during 2300-0300 hours, 0500-0900 hours, 1400-1700 hours, and 2000-2300 

hours. This load behaviour makes sense. For example, during early hours of the day, most 

of the load arises from continuous process industry and residences. This load remains 

same throughout the week.  

These clustering of load behavior indicate that the regulators may use these clusters for 

time-of-the-day pricing. In other words, although hourly models have been used, time-of-

the-day pricing need not be different in every hour.  

After obtaining the best-fit model- AR(2) with dummies, the out-of-sample forecast is 

made for all the days of December 2005.  We compute the mean absolute percentage 

error (MAPE) for each hourly forecast. The results are reported in Table 2. It is observed 

that the transmission lines in the Northern Grid suddenly tripped during 22-23 December 

2005 due to heavy fog coupled with pollution ( [11] ). This disturbance is reflected in 

sudden fall in electricity load during 22-25 December 2005. Such a break in the data set 

is difficult to forecast well with the constructed best-fit model unless modified 

appropriately. Hence, Table 2 shows two sets of MAPE numbers - one for the entire 

month of December 2005 and the other for the normal days (excluding the days of grid 

disturbance) of December 2005. Our forecast results are quite encouraging. The MAPE 

ranges between 0.14% to 0.20% for normal days of December 2005. This is much better 

than that reported in Table 2 of [1] . 

 
 
5. Conclusions 
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The findings of the paper may have profound implications for the regulator - (a) the 

regulator can use the information to introduce time-of-the-day pricing; (b) a fifteen-

minute time bucket may be desirable for load scheduling, but for load forecasting one 

may use the clusters or individual hours. Thus, the electricity generator may, in some 

cases, schedule its generation based on cluster-wise load forecast, rather than hourly 

forecast. The paper observes five clusters covering sixteen hours of a day. The forecast 

for the remaining eight hours of a day can be made using respective hourly models. The 

paper did not use any external variables such as the hourly average temperature of the 

day.  Inclusion of such variable may further improve the prediction of load demand. The 

paper used data from only one region of the country. We intend to cover the load of other 

regions in our future research. 
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Table 1: Model Parameter Estimates for each hour along with adjusted R2, DW and LB-P 
values 
 

Hour 
0  1  2  1  2  3  4  5  6  1  2  Adj R2 DW LB P-

value 
1 2.349 0.541 0.221       

-0.019 0.025 0.810 2.106 0.436 

2 2.164 0.582 0.198       
-0.018 0.024 0.822 2.073 0.648 

3 2.125 0.608 0.176       
-0.018 0.023 0.820 2.060 0.764 

4 2.067 0.634 0.156   
0.01    

-0.018 0.022 0.822 2.047 0.584 

5 2.064 0.671 0.120       
-0.016 0.020 0.814 2.036 0.535 

6 1.839 0.714 0.099        0.020 0.784 2.037 0.201 

7 1.917 0.661 0.145        0.011 0.684 2.049 0.371 

8 1.522 0.666 0.180        0.008 0.717 2.057 0.508 

9 1.348 0.638 0.225        0.009 0.760 2.071 0.557 

10 1.251 0.680 0.193 0.010       0.012 0.824 2.068 0.270 

11 1.205 0.629 0.248 0.013    0.008   0.014 0.857 2.059 0.267 

12 1.489 0.591 0.258 0.015    0.010  -0.009 0.014 0.871 2.051 0.292 

13 1.457 0.670 0.182 0.014    0.008  -0.010 0.014 0.881 2.053 0.502 

14 1.437 0.636 0.218 0.014      
-0.010 0.015 0.882 2.055 0.172 

15 1.529 0.711 0.133 0.020 0.010   0.010  
-0.012 0.016 0.889 2.038 0.261 

16 1.474 0.736 0.113 0.023 0.011   0.011  
0.012 0.015 0.893 2.037 0.052 

17 1.391 0.741 0.117 0.023 0.011   0.010  
0.011 0.014 0.895 2.038 0.052 

18 1.221 0.739 0.137 0.017 0.014     
0.010 0.009 0.875 2.029 0.289 

19 0.838 0.739 0.175 0.031 0.030 0.016 0.019 0.021 0.016 0.008  
0.853 2.055 0.616 

20 1.813 0.659 0.160 0.009 0.011   0.008  
0.009  

0.704 2.036 0.433 

21 2.302 0.613 0.156  
0.008     

0.012 0.011 0.757 2.025 0.615 

22 2.210 0.592 0.185  
0.012     

0.013 0.017 0.806 2.047 0.440 

23 2.101 0.575 0.213  
0.012     

0.013 0.020 0.832 2.069 0.798 

24 2.449 0.564 0.188       
0.016 0.025 0.813 2.085 0.433 
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Table 2:   MAPE for the month of December 2005 for our best fitted models, as summarized in Table 
1, for each hourly log-load data  

 
 MAPE calculated over all 31 days of December 2005 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 
MAPE 0.14% 

 
0.15% 
 

0.16% 
 

0.18%
 

0.18%
 

0.18%
 

0.21%
 

0.41%
 

0.48% 
 

0.35% 
 

0.31%
 

0.28%
 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
MAPE 0.23% 

 
0.20% 
 

0.19% 
 

0.18%
 

0.18%
 

0.17%
 

0.17%
 

0.16%
 

0.14% 
 

0.13% 
 

0.14%
 

0.16%
 

 MAPE calculated over 27 days of December 2005, excluding 22-25 December 
Hour 1 2 3 4 5 6 7 8 9 10 11 12 
MAPE 0.14% 0.14% 

 
0.14% 
 

0.14%
 

0.13%
 

0.14%
 

0.17%
 

0.19%
 

0.20% 
 

0.18% 
 

0.17%
 

0.15%
 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
MAPE 0.14% 

 
0.16% 
 

0.17% 
 

0.16%
 

0.16%
 

0.17%
 

0.16%
 

0.14%
 

0.13% 
 

0.13% 
 

0.14%
 

0.16%
 

 

 


