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Abstract: Network mobility (NEMO) is a mobility management solution that allows various 

types of moving networks, e.g. network of sensors deployed in a vehicle, to be permanently 

connected to the Internet. An onboard mobile router (MR) connects the moving network to the 

wired infrastructure by means of high-speed cellular or any other wide area mobile data services. 

One application of NEMO attracting commercial interest is the deployment of wireless local area 

networks inside public transport vehicles, e.g., trains and buses, to provide Internet access to 

passengers. However, unlike the traditional terminal mobility, where the mobile hosts (MHs) 

connect to the cellular base station directly, passengers using the NEMO solution encounter an 

additional wireless link (MR-MH) before their MHs get connected to the wired infrastructure. In 

this paper, we analyze and quantify the impact of the additional wireless link on the performance 

of the widely used TCP protocol. Our analysis reveals that TCP performance schemes designed 

for conventional terminal mobility are not as effective in network mobility. We propose on-board 

TCP (obTCP) to effectively address the wireless link related issues in network mobility. We 

compare its performance against a classical scheme, called snoop, known for its effectiveness in 

terminal mobility. Using analytical means we demonstrate that the performance gain of obTCP 

over snoop increases linearly with delays and exponentially with the loss probabilities in the 

wireless links. These analytical observations are validated through extensive ns-2 simulations. 

We then extend these analyses to obtain throughput models of snoop and obTCP in NEMO. Our 

simulations further demonstrate that obTCP can coexist with snoop in the same infrastructure 

(e.g., cellular base stations) without causing serious unfairness to each other. 

Keywords: NEMO, wireless TCP, snoop, mobile router, performance analysis. 
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I. Introduction 

Figure 1 shows the connectivity model of various mobile communication elements 

when Internet hot spots are offered on public transport vehicles, e.g., trains and buses [1]. 

Passenger devices connect to an onboard wireless local area network (WLAN), which 

remains connected to the fixed host (FH) via a mobile router (MR). The MR manages the 

Internet connectivity of the entire vehicle by making use of any available wireless carrier 

networks, cellular, satellite, or even a roadside WLAN, in the background. This form of 

mobile communication, where an entire network is treated as a single mobile unit, is 

often referred to as network mobility or NEMO. The Internet Engineering Task Force 

(IETF) has recently released standards [2] supporting a MR-based solution for connecting 

any type of moving networks, including a personal area network (PAN), to the fixed 

Internet. The release of the standards is expected to accelerate the commercial 

deployment of this technology.   
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Figure 1: NEMO Connectivity Model 

While NEMO offers an attractive solution to fast and reliable Internet access onboard a 

moving vehicle, it raises several performance issues of its own. These issues (see  [3]-[5] 

for some of the key issues currently being investigated by the research community) arise 

primarily due to the existence of multiple wireless links. Unlike the traditional terminal 

mobility, where the mobile hosts (MHs) connect to the cellular base station (BS) directly, 

passengers using the NEMO solution encounter an additional wireless link (MR-MH) 

before their MHs get connected to the wired infrastructure. Investigating the impact of 

this additional wireless link on the performance of the widely used TCP protocol, and 

designing mechanisms to alleviate any negative impacts, is the primary objectives of our 

study.       

The performance problem for TCP in communication environments involving wireless 

links is well known. Because TCP was originally designed to operate over wired links 

with negligible loss probabilities, any packet loss is simply treated by TCP as signs of 

network congestion. Consequently, TCP invokes its elaborate congestion control routines 

whenever there is a random packet loss on the wireless link, resulting in a very slow 

recovery for the lost packets.  To speed up the recovery process, most classical solutions 

employ some sort of agents that buffer the passing TCP packets close to the MHs, e.g., in 

cellular base stations, to perform fast local retransmission in case the packet is lost on the 

wireless link. These solutions are known to improve the performance of TCP over 

wireless links dramatically. Although NEMO will benefit from such existing agents, 

these solutions may not provide the optimum performance enhancement because they 

would treat the BS-MH link as a single link. Any packet loss in this part of the path, 

whether they occur in the BS-MR link, or the MR-MH link, will have to be detected and 
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retransmitted by the agent located at the BS. Clearly, there is a room for further 

improving TCP performance in the context of NEMO by incorporating the MR into the 

performance enhancing design.  

In this paper, we propose obTCP, a novel performance enhancement scheme for TCP, 

to address the dual wireless links in NEMO.  obTCP uses agents at both BS and MR to 

quickly recover from wireless losses in BS-MR and MR-MH links.  We provide a loss 

recovery time analysis, which shows that in comparison to snoop, the recovery time 

improvement increases linearly with delays and exponentially with loss probabilities in 

the wireless links.  These observations are further substantiated by extensive ns-2 

simulations, which confirm that recovery time improvements are directly translated to 

TCP throughput improvements. We further extend our analysis to obtain throughput 

models for snoop and obTCP. In our simulation experiments, we observed throughput 

improvement of up to 42% over snoop at 20% packet loss probability. Finally, since 

network mobility is likely to coexistence with, rather than replacing, the traditional 

(terminal) mobility, we investigated the fairness issue when obTCP coexists with snoop 

in the same BS. Using simulations, we demonstrate that the presence of obTCP does not 

have any serious fairness effect on any coexisting snoop.  

The rest of the paper is organized as follows: In Section II we present some notable link 

layer protocols for terminal mobility, TCP enhancement schemes for NEMO and 

motivations for this study. The agent functionalities of obTCP are presented in Section 

III. Section IV presents timing diagrams of loss recovery operation of snoop and obTCP. 

In Section V, we present loss recovery time analysis followed by numerical experiments. 

Simulation experiments and the results are discussed in Section VI. In Section VII, we 
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present the throughput models for snoop and obTCP. We also provide simulation results 

to validate the throughput models. The coexistence issue of obTCP with other TCP 

enhancing schemes is explored in Section VII. Section VIII concludes the paper. 

 

II. Related Works 

A. Link layer protocols for terminal mobility 

Several papers in the literature have proposed link layer protocols as an effective 

solution for improving TCP performance in terminal mobility [6]-[10]. The protocols try 

to reduce the effect of high packet loss probability of wireless link in the performance of 

TCP. The protocols try to recover from wireless losses by locally retransmitting the lost 

packets. The snoop protocol [6] is one of the major developments in this category.  

The snoop protocol [6] is a TCP aware link level protocol. It uses an agent installed at 

the BS. The role of the agent is to cache TCP packets for each TCP connection. If the 

agent receives an ACK, it removes the corresponding packets from the cache and 

forwards the ACK to the FH. However, if a packet is lost in the wireless link, the MH 

generates DUPACKs. The agent intercepts and drops these DUPACKs, and retransmits 

the lost packet. Hence, the FH is kept unaware of this wireless loss thereby preventing 

unnecessary invocation of congestion control mechanisms by the FH. In addition, the 

agent starts a retransmission timer for each packet it transmits. If the timer expires, the 

agent retransmits the packet. 

Although snoop is quite effective in dealing with wireless losses, it also suffers from 

performance problem. If multiple losses occur from a window of data, it can recover only 

one packet per RTT. If the wireless links are slow such that RTT is large enough to cause 
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the sender timeout that leads to the retransmission at the FH when the retransmission is 

being performed on the wireless link. Thus, the protocol requires small RTT in the 

wireless link to allow multiple local retransmissions.  

As a result, several proposals ([11]-[13]) have been made in the literature to improve 

the performance of snoop protocol. But, those proposals are made only for terminal 

mobility. So. We do not discuss them here. 

 

B. TCP enhancement schemes for NEMO 

As of today, there exist only four proposals to enhance TCP performance in NEMO as 

shown in Figure 2. We categorize the protocols in three groups: wireless loss recovery, 

connectivity recovery, and fairness. Most of the proposed protocols try to adapt TCP 

behavior after a handoff. There are three proposals in connectivity recovery category: 

Freeze TCP model [14], Adaptive packet combining (APC) [15], Store and apply scheme 

[16]. There is only one proposal in fairness category: MR based fairness control scheme 

[17]. In general, the proposals in connectivity recovery category try to adapt TCP 

behavior after a handoff takes place. Freeze TCP eliminates the negative impact of 

handoff when the handoff takes place between similar networks. On the other hand, APC, 

store and apply schemes improves TCP performance when vertical handoff takes place. 

The MR based fairness control scheme guarantees fair share of available bandwidth to 

the MHs in NEMO. From Figure 2, we find that no attempt has been made to deal with 

the negative impact caused by dual wireless links of NEMO. Also, the fairness issue in 

co-existence of terminal mobility and NEMO is not studied yet. 
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Figure 2: TCP enhancement schemes for NEMO 

 

C. Motivation 

TCP performs poorly in wireless networks. TCP invokes its congestion control routines 

whenever there is a random packet loss on the wireless link, resulting in a very slow 

recovery for the lost packets.  To speed up the recovery process, most classical solutions 

employ some sort of agents that buffer the passing TCP packets close to the MHs (e.g., in 

cellular BS) to perform fast local retransmission in case the packet is lost on the wireless 

link [6]-[13]. These solutions are known to improve TCP performance over wireless links 

dramatically. Although NEMO will benefit from such existing agents, these solutions 

may not provide the optimum performance enhancement because they would treat the 

BS-MH link as a single wireless link, while, in practice, it is a concatenation of two 

consecutive wireless links. 

Unlike the traditional terminal mobility, where the MHs connect to the BS directly, 

users in NEMO encounter an additional wireless link (MR-MH) before their MHs get 
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connected to the wired infrastructure. With existing agents, any packet loss in this part of 

the path, whether they occur in the BS-MR link, or in the MR-MH link, will have to be 

detected and retransmitted by the agent located at the BS. So, although the existing agents 

are able to detect wireless losses, they are unable to locate the origin of wireless losses. 

As a result, the existing agents may take long time to detect and recover wireless losses. 

So, the existing agents may not provide optimum performance in NEMO.  Investigating 

the impact of this additional wireless link on the performance of the widely used TCP 

protocol, and designing mechanisms to alleviate any negative impacts may solve the 

problem to some extent. The objective of this paper is to extend the single point recovery 

mechanism to multipoint i.e., link-to-link recovery mechanism. In this case, the wireless 

losses in different wireless links could be recovered independently and simultaneously, 

thereby decreasing the loss recovery time. 

Also, since NEMO is likely to co-exist with terminal mobility, any TCP enhancement 

scheme designed for NEMO must share available network resources fairly with the TCP 

schemes for terminal mobility.  To ensure the fairness between the TCP enhancements 

from these two types of mobility scenario is an essential feature for them to be widely 

deployed. So, it is quite rewarding to study fairness issues between the TCP enhancement 

schemes. 

 

III. On-board TCP (obTCP) 

In this section, we describe agent functionalities in obTCP for data transfer from FH to 

MH direction. Figure 3 and Figure 4 summarize these functionalities. 
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A. obTCP agent at BS 

For each connection obTCP keeps track of incoming packet sequence numbers. When a 

packet arrives, it is stored in the transmission queue for transmission over the wireless 

link. Once the packet is sent, a copy of it is stored in the cache for possible local recovery 

later on. The obTCP agent will receive two types of ACK packet from MR: Standard 

TCP ACK and Selective Negative ACK (SNACK) packet. If an ACK is received it is 

forwarded to the FH and the buffer spaces are freed. However, if a SNACK is received, it 

checks its cache. If the packet is found, it is retransmitted immediately over wireless link. 

Otherwise, it assumes that the packet has been lost due to congestion in wired network or 

flushed prematurely from the cache. In this case, the obTCP agent sends an indication 

(congestion packet) to the MR saying not to suppress the Duplicate ACKs (DUPACKs) 

for these lost packets. Here, the observation is that, if MR suppresses the DUPACKs, it is 

unnecessarily delaying the Fast Retransmission from the FH because the packets are not 

available at the BS. In order to activate Fast Retransmission as early as possible, MR 

should not suppress the DUPACKs for these lost packets. 

   

 

 

 

 

 

 

Figure 3: obTCP agent at BS 
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Figure 4: obTCP agent at MR 

 

B. obTCP agent at MR 
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path between BS and MR, or in the wired network between FH and BS. When 

DUPACKs reach the MR, the obTCP agent checks its cache. If the packet is found it is 

retransmitted. Otherwise, it has definitely received an indication (congestion packet) from 

BS about this packet. If the packet has been lost in wired network, it will get an 

indication from the BS. In this case, the obTCP agent at MR will not suppress these 

DUPACKs in order to initiate fast retransmission at the FH.  

 

IV. Comparison of Loss Recovery in snoop and obTCP 
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in the BS-MR wireless link. Figure 5 depicts how wireless losses are recovered using 

snoop agents. In this case, the snoop agent treats two wireless links, BS-MR and MR-

MH, as a single link BS-MH. When the MH receives packet 16, the MH sends a 

DUPACK for packet 12. This DUPACK, when received by the snoop agent at BS, makes 

it retransmit packet 12 from its cache and drop the DUPACK for 12. When the MH 

receives packet 12 it generates ACK 13. Packet 17 generates DUPACK for packet 13 and 

snoop agent at BS also drops this. This process continues until all the lost packets are 

successfully recovered. Therefore, snoop can recover from packet losses in any wireless 

link but only one packet per RTT over BS-MH wireless link. So, even if snoop is quit 

effective in dealing with wireless losses, it takes longer time to detect and recover the lost 

packets as can be seen from the timing diagram. When the packets are lost in MR-MH 

link, operation of snoop remains same. 

In order to rectify the problem of unnecessarily waiting longer for the DUPACK at BS, 

obTCP includes MR in its design by placing an obTCP agent in MR. In this case, the path 

from BS to MH consists of two segments: one wireless link between BS and MR, another 

wireless link between MR and MH. Packet losses in each wireless link are handled 

separately. So, the wireless losses can be detected at an earlier time than snoop. This is 

explained in Figure 56 where it can be observed that after receiving the first out-of-order 

packet at MR, the obTCP agent at MR sends an SNACK packet to BS causing 

retransmission of all missing packets locally at once, in a lot shorter RTT than if the 

snoop agent has waited for the DUPACK. Following the same example, assume that 

packets 12, 13, 14 and 15 are lost. Assuming that all these packets are present in the 

obTCP cache at BS, MR generates an SNACK for packets 12, 13, 14 and 15 on reception 
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of packet 16 at MR. On reception of this SNACK packet; the obTCP agent at BS 

retransmits the requested packets. By using the MR, obTCP helps in reducing the loss 

recovery time and also enables retransmission of multiple packets in one local (and 

considerably shorter) RTT thus maintaining a good flow of packets. Note that one could 

use snoop to recover from multiple losses by introducing the SNACK mechanism at both 

the BS and the MH. However, that would require changes in the installed base making 

the deployment of snoop more difficult*. On the other hand, obTCP does not require any 

modification to the existing TCP implementations, yet is capable of exploiting the 

SNACK mechanism for recovering from multiple losses. 

 

V. Analysis of Loss Recovery Time 

Conventional TCP adjusts its congestion window size (w) according to two algorithms, 

namely slow start and congestion avoidance, where w is inversely proportional to RTT 

and square root of loss probability (p) [19]. Given that TCP throughput is directly 

proportional to the window size, we have: 

                                    
RTT

w
1

  and 
p

w
1

                    (1) 

    wThroughput             (2) 

As a result, when either delay or loss probability increases, TCP throughput deteriorates 

significantly. To overcome this, obTCP attempts to reduce the effect of high loss 

probability in wireless links by quickly recovering from the wireless losses thereby 

                                                 
* Even if the MH were to generate the SNACK, the SNACK mechanism would have to work over an RTT 
spanning the entire BS-MH link, which is much longer than the SNACK RTT in obTCP. 
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keeping RTT of the connection as low as possible. Hence, the benefit of obTCP depends 

on loss recovery time.  

Let us assume that the loss probability in BS-MR and MR-MH links are p1 and p2, 

respectively, and delay in BS-MR and MR-MH links are d1 and d2, respectively. In the 

following subsections, we model the loss recovery time and analyze the effectiveness of 

link-link loss recovery mechanism of obTCP. For easy reference, Table 1 lists the 

variables used in this paper. 

A. Modeling the Loss Recovery Time 

We know that the recovery process for snoop takes place only at the BS. Therefore, 

wherever the packet is lost (either BS-MR or MR-MH wireless link), the retransmissions 

happen from BS only. Hence, the effective loss probability for snoop ( sp ) is 

     21 111 ppps             (3) 

 

Table 1: List of Notations 

Notations Meaning 

d1, d2 One way delay in BS-MR and MR-MH wireless link respectively 

p1, p2 Loss probability in BS-MR and MR-MH wireless link respectively

Ps Effective loss probability for snoop 

Rs, Ro Loss recovery time for snoop and obTCP respectively 

ws, wo Congestion window size for snoop and obTCP respectively 

Ts, To Throughput for snoop and obTCP respectively 

Rgain Gain in recovery time for obTCP over snoop 

N Total number of transmissions of a packet over wireless link 
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It is easy to see that, for snoop, the total number of transmissions (N) required to 

successfully receive an ACK at BS is given by: 

   
sp

N



1

1
           (4) 

Hence, the recovery time for snoop is given by: 

        
s

S p
ddR




1

1
**2 21          (5) 

As the packet losses in different wireless links are handled separately in obTCP, we 

consider them as independent events. Hence, the number of transmissions in each link 

can be given by replacing ps in Equation (4) by p1 for BS-MR link and by p2 for MR-MH 

link. Then, the recovery time for obTCP can be given by: 

   
2

2
1

1 1

1
**2

1

1
**2

p
d

p
dRo 




                    (6) 

The gain (difference) in recovery time is: 

 
)1(*)1(

**2**2

21

1221

pp

pdpd
RRR osgain 


                    (7) 

Equation (7) is valid for p1<1 and p2<1. Note that, R.H.S. of Equation (7) is always 

positive which indicates positive gain in recovery time for all loss probability and delay 

values. From Equation (7), we can conclude that the gain in recovery time increases 

exponentially with loss probability in both BS-MR and MR-MH links. Small increases in 

p1 and p2 results in higher recovery time gain, reducing the RTT of the connection, which 

in turn allows w to grow faster (Equation (1)). Also, the gain in recovery time increases 

linearly with RTT in BS-MR and MR-MH link. Hence, according to Equations (1) and 

(2), we can expect that end-to-end throughput also increases (i) exponentially with loss 
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probability in BS-MR and MR-MH link and (ii) linearly with delay in BS-MR and MR-

MH link. 

As the errors in the wireless links are independent, losses may occur in both links or in 

any one link. If the losses take place in BS-MR link only, then Equation (7) can be 

rewritten as: 

1

1
2 1

**2
p

p
dRgain 

                                   (8) 

If losses occur in MR-MH link only, then Equation (7) can be rewritten as: 

2

2
1 1

**2
p

p
dRgain 

             (9) 

The observations from Equations (8) and (9) can be summarized as: 

1. Gain in Recovery time increases exponentially with loss probability of the 

erroneous link. 

2. Gain in Recovery time increases linearly with delay on the error free link. 

3. Gain in Recovery time is constant with delay in the erroneous link. 

Now, we establish the relationship between window size, throughput and loss recovery 

time. It is obvious that RTT of a TCP connection is directly proportional to loss recovery 

time. Using Equations (1), (5), and (6), we get 

                                                           
o

s

s

o

R

R

w

w
           (10) 

Using Equations (1), (2) and (10), we get 

                                                       
o

s

s

o

s

o

R

R

w

w

T

T
           (11) 
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From Equation (11), it is clear that window size is larger for obTCP, which results in 

higher throughput for obTCP. This is due to the fact that recovery time in snoop is higher 

than obTCP. Note that throughput improvement is linearly related with delay and 

exponentially with loss probabilities as in the case of gain in loss recovery time. 

B. Numerical Analysis 

We first examine the case when losses are present on both links. Figure 7 and Figure 8 

show the performance gain of obTCP over snoop in terms of gain in recovery time. For 

Figure 7, we use p1=0.15, p2=0.05, and, for Figure 8, we use d1=20ms, and d2=20ms. In 

Figure 7, we plot Rgain as a function of delay in MR-MH link, d2. From Figure 7, it can be 

seen that gain increases linearly with delay in both links. In Figure 8, we plot gain in 

recovery time Rgain as a function of loss probability in BS-MR link p1. From Figure 8, it is 

evident that gain increases exponentially with loss probability in BS-MR and MR-MH 

link. Hence, with small increase in loss probability in BS-MR and MR-MH link, obTCP 

can achieve significantly higher performance than snoop.  
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Figure 7: Effect of delay in MR-MH link for losses in both links 
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We now explore the cases when one link is erroneous and the other is error free. For 

simplicity, we present the results when MR-MH link is erroneous and BS-MR link is 

error free. In Figure 9 and Figure 10, we see the same trend (as of Figure 7 and Figure 8) 

for packet losses in MR-MH link. We also study the effect of delay in erroneous link on 

gain in recovery time. Figure 11 presents gain in recovery time as a function of delay in 

the erroneous link. We see that gain in recovery time is constant with delay in erroneous 
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Figure 9: Effect of delay in error free BS-MR link for losses in MR-MH link 
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Figure 10: Effect of losses in MR-MH link when BS-MR link is error free 
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Figure 11: Effect of delay in MR-MH link for losses in MR-MH link 

 

We now study the effect of delay and loss probability on the throughput performance of 

obTCP and snoop. In Figure 12 and Figure 13, we plot throughput ratio (Equation (11)) 

as a function of delay and loss probability in BS-MR wireless link respectively. We use 

the value of one for proportionality constant. For Figure 12, we use p1=0.1, p2=0.1, and 

d2=10ms. For Figure 13, we use p2=0.1, d1=10ms, and d2=10ms.We see that throughput 

ratio is constant for all delay values in BS-MR wireless link (Figure 12), which implies 

that throughput gain is linearly related with delay. We also note that, the throughput ratio 

is exponentially related with loss probability (Figure 13), which indicates that throughput 

improvement is exponentially related with loss probability over wireless links. 
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Figure 12: Variation of throughput ratio for delay in BS-MR link 
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Figure 13: Variation of throughput ratio for delay in BS-MR link 

 

 

VI. TCP Simulation 

To validate our claims, we evaluate throughput performance of obTCP and snoop in 

network simulator ns-2.29 [20]. Table 2 lists the TCP parameters used in our simulations. 

We assume a 100 Mbps wired link between FH and BS, a 2 Mbps wireless link between 

BS and MR (Cellular), an 11 Mbps wireless link between MR and MH (IEEE 802.11b). 

Wireless link delays are varied from 5ms to 35ms [10], [21]. Loss probability in wireless 

links is varied from 0.0001 to 0.3 [10], [21], [22]. We choose these values to demonstrate 

the fact that when wireless link condition deteriorates (both delay and loss probability 

increases) obTCP performs much better than snoop. It has been observed that, when 
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channel conditions are good (low delay variation, negligible loss probability), both snoop 

and obTCP performs similarly with negligible gain in throughput of obTCP. For the sake 

of clarity of presentation, we present results for three cases only: losses occur in BS-MR 

link only, wireless links are identical, i.e. loss probability in both links are same, and 

effect of delay in erroneous link. The results presented in this paper are taken from 2000 

sec run of the simulation. 

Table 2: TCP Parameters 

Parameter Value 

TCP version Reno 

Packet size 1000 Bytes

Initial congestion window 2 packets 

Maximum congestion window 16 packets 

Initial slow start threshold 10 packets 

Minimum retransmission timeout 0.3 sec 

 

A. Effect of losses in BS-MR wireless link 

Figure 14 and Figure 15 show the throughput performance of obTCP and snoop for 

d1=10ms and p2=0.0001. For Figure 14, we use p1=0.1, and, for Figure 15, we use p1=0.2. 

It is interesting to note that performance of snoop degrades more sharply than obTCP 

with increasing delay in MR-MH link, which indicates that throughput gain increases 

with increase in delay of MR-MH link.  
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Figure 14: Variation of throughput for loss probability 10% in BS-MR link 
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Figure 15: Variation of throughput for loss probability 20% in BS-MR link 

 

A more detailed picture of performance gains of obTCP over snoop are shown in 

Figure 16-Figure 17. We see that obTCP achieved 33% and 42% throughput gain over 
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snoop for p1=0.1 and p1=0.2 respectively. It can be seen from Figure 16 that with losses 

in BS-MR link, throughput gain increases linearly with delay in MR-MH link. 

We see the exponential increase of throughput improvement from Figure 17 for 

d1=20ms, d2=20ms and negligible loss probability p2=0.0001. obTCP achieved an 

improvement of over 39% over snoop. 

The higher performance of obTCP over snoop can be explained as follows: When 

packets are lost in BS-MR wireless link, the obTCP agent at MR detects the loss 

immediately and requests BS obTCP agent to retransmit the lost packets. So, the recovery 

mechanism has immediate reaction. But, for snoop, it has to wait for RTT over MR-MH 

wireless link to even detect the loss. Also, as SNACK mechanism is used over BS-MR 

wireless link, multiple packet losses are recovered in one RTT over BS-MR wireless link. 

But, in snoop, only one lost packet is recovered in one RTT over BS-MR and MR-MH 

wireless link. 
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Figure 16: Linear increase in throughput gain for losses in BS-MR link 
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Figure 17: Exponential increase in throughput gain for losses in BS-MR link 

 

B. Effect of losses in identical wireless link 

Now, we study the effect of delays in both links, considering that the BS-MR and MR-

MH links are identical, i.e. p1=p2. In both link we use loss probability of 0.05. We vary 

the delay in both link but each time we keep d1=d2. Performance results are shown in 

Figure 18-Figure 19. We see that performance gain increases linearly with delay in both 

links. In this case, obTCP achieves up to 18% performance gain over snoop. 
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Figure 18: Throughput performance for identical links 
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Figure 19: Linear increase in throughput gain for identical links 
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C. Effect of Delay in erroneous link 

In Section V, through numerical analysis, we have shown that gain in recovery time is 

independent of the delay in erroneous links. We conduct several simulations to verify our 

claims. Results are shown in Figure 20-Figure 21. For Figure 20 we use p1=0.1, p2=0.0, 

d2=20ms, and for Figure 21 we use p1=0.0, p2=0.1, d1=20ms. Figures show that our claim 

matches for simulation experiments too. In this case, when the delay is increased in 

erroneous links, both protocols are affected by this increased delay. So, the performance 

gain depends only on the delay on the error free link, which is kept constant. Hence, the 

performance gain becomes constant and the absolute value of gain depends on the delay 

of the error free link. 
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Figure 20: Constant gain for delay in erroneous link BS-MR 
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Figure 21: Constant gain for delay in erroneous link MR-MH 
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F. RTT seen by TCP Reno 

In this section, we describe some notable reasons for which obTCP achieved better 

performance than snoop in all simulations described above. We study how quicker 

recovery from wireless losses helps TCP to keep RTT of the connection as low as 

possible, which, in turn, helps in faster growth of congestion window. We use d1=10ms, 

d2=10ms, p1=0.1 and p2=0.0001. Figure 22 shows the Smoothed RTT (SRTT) of the 

connection measured between t1=1000s and t2=1050s of the simulation. We see that the 

RTT of the connection is low most of the time for obTCP, which helps in faster growth of 

TCP congestion window. For example, consider that a packet is lost in MR-MH wireless 

link. In case of snoop, the loss detection and its possible retransmission will take one 

RTT spanning BS-MR and MR-MH links. However, in case of obTCP, the agent at MR 

detects the loss and retransmits the lost packet quickly, which takes one RTT spanning 

MR-MH link only. As a result, the ACKs for the lost and recovered packets reach the 

sender much faster, which results in release of new packets faster in obTCP than snoop. 

Hence, obTCP achieved better performance than snoop.  
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Figure 22: Comparison of smoothed RTT 
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VII. Throughput Models 

We now develop the throughput models for snoop and obTCP in NEMO. We take a 

similar approach presented in [23], i.e. the window behavior is modeled in terms of 

rounds. To derive the duration of each round, we use the loss recovery time analysis 

presented in Section V. 

A. Snoop 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
W / 

Packets sent 

Number of rounds 1 2 X …….. 
 

Figure 23: Congestion window evolution for snoop 

 

One important assumption behind the design of snoop is that all wireless losses are 

recovered using local retransmission mechanism. So, the CWND will reach the 

maximum size (W /) and stays there for the rest of the communication. 

A sample path of the evolution of CWND is shown in Figure 23. In each round, W / 

packets are transmitted. So, the expected number of packets (E[Y]), transmitted in X 

rounds, can be given as follows: 

/*][ WXYE                                        (12) 

To derive mean duration of X rounds, let us consider the events of any one round. In a 

particular round, the number of packet losses (Lt) can be given by: 
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st pWL */                          (13) 

where ps is given by Equation (3). 

Each lost packet is recovered separately. So, the total recovery time is st RL * , where Rs 

is the loss recovery time for each packet and is given by Equation (5). Hence, the end-to-

end RTT seen by TCP Reno (t) is given as: 

st RLdddt *222 210                         (14) 

So, the mean duration of X rounds, E[A], is: 

tXAE *][                           (15) 

The end-to-end throughput, for snoop, can be derived as in [23]: 

ssst
s RpWddd

W

RLddd

W

AE

YE

**222*222][

][
/

210

/

210

/





                 (16) 

B. ObTCP 

To derive throughput expression for obTCP we take similar approach as presented for 

snoop. The window evolution is the same as shown in Figure 23. The mean number of 

packets transmitted is given by Equation (12). In a particular round, total number of 

packet losses in BS-MR link (Lt1) is: 

1
/

1 * pWLt                           (17) 

Let us assume that n1 packets are recovered per SNACK packet. So, the number of 

SNACK packets generated is 
1

1

n

Lt . Hence, the total loss recovery time in BS-MR link is 

1

1

1

1

1

2
*

p

d

n

Lt


, the second term represents the loss recovery time per SNACK packet (first 

term of Equation (6)).  
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Similarly, we can obtain the loss recovery time in MR-MH link. The total loss recovery 

time in MR-MH link is 
2

2

2

2

1

2
*

p

d

n

Lt


, where Lt2 is the total number of packet losses in 

MR-MH link, and n2 is the number of lost packets retransmitted. We note that 

retransmission of packets from MR follows go-back-n ARQ technique. 

Hence, the end-to-end RTT, seen by TCP Reno is given as: 

2

2

2

2

1

1

1

1
210 1

2
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1

2
*222

p

d

n

L

p

d

n

L
dddt tt





           (18) 

The mean duration of X rounds, E[A], is: 

tXAE *][                (19) 

where t is given by Equation (18). 

Finally, the end-to-end throughput is given by modifying Equation (16) as follows: 

2
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11
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2
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1
222

p

d

n

L

p

d

n

L
ddd

W

tt
o







           (20) 

 

C. Model Validation 

In this Section, we describe numerical results for the throughput model of snoop and 

obTCP (Equation (16) and Equation (20)). We also provide simulation result for obTCP 

to validate the proposed models. The wired network is assumed to be error free. The 

delay in wired network from FH to BS is 50 ms, in wireless link between BS and MR is 

20 ms, in wireless link between MR and MH is 10 ms. We use a fixed loss probability 

0.1% in MR-MH link and vary the loss probability in BS-MR link from 0.1% to 10%. 

Table 3 shows the TCP parameters used in our simulations. To validate the proposed 
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models with simulation results, we assume 5 ms MAC delay at BS and MR for every 

packet transmission. The results are shown in Figure 24. 

Table 3: TCP parameters for throughput model validation 

Parameter Value 

TCP Version TCP Reno 

  Packet Size 1024 Bytes

Initial Congestion Window 2 Packets 

Maximum Congestion Window 16 Packets 

Initial Slow Start Threshold 12 Packets 
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Figure 24: Throughput model validation for obTCP and snoop 
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From Figure 24, we see that obTCP achieves higher throughput than snoop for all loss 

probabilities. The performance increase of obTCP over snoop in this case ranges from 

1% to 40%. When the loss probability in BS-MR link is 0.001, both protocols perform 

almost equally. But, as the condition of BS-MR link deteriorates (i.e., loss probability 

increases), the performance of snoop drops more sharply than obTCP. At loss probability 

10%, obTCP achieves 40% throughput improvement over snoop. The higher performance 

of obTCP over snoop is due to the faster loss recovery mechanism of obTCP than snoop. 

Interestingly, the simulation result matches exactly with numerical results, thereby 

validating our models, i.e. our models can accurately predict end-to-end performance in 

NEMO. 

VIII. Co-existence problem 

It is established that obTCP achieves considerably better performance than snoop in 

network mobility. In future, two kinds of wireless mobility are likely to co-exist: (i) 

terminal mobility, and (ii) network mobility. Both the networks will use the same cellular 

BS to connect to the Internet. Also, they will use TCP as transport protocol. But it is 

already established that since TCP is not fit for networks with wireless links [8], we need 

its enhancements, such as snoop [6], which is a promising candidate for terminal 

mobility, and obTCP, which is a kind of dual agent solution (unlike single agent solution 

of snoop) for network mobility. This raises the issue of fairness between obTCP and 

snoop. Fairness measures the distribution of network resources among the sources using 

different protocols, such as obTCP and snoop. To assess the extent of fairness issue, we 

conduct several simulations where both obTCP and snoop co-exist in the same BS. We 
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use the fairness index function of [24] to quantify the fairness between obTCP and snoop. 

The fairness index function is expressed as: 

                                                        







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
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








 n

i in

n

i i

1

2

2

1




             (21) 

where  n  is the number of flows (i.e., sources in the network) through the bottleneck link, 

and i  is the fraction of the bottleneck link bandwidth obtained by flow i. The value of 

fairness obtained through this method ranges from (1/n) (i.e., extremely unfair) to 1 

(perfectly fair), with 1 indicating equal allocation to all sources. 

Link utilization   of the bottleneck link is calculated as [24]: 

  1001 



b

n

i i
          (22) 

where b is the bottleneck link bandwidth. 

 

 

 

 

 

Figure 25: Simulation model for co-existence scenario 

 

Table 4: Bandwidths and Delays of Links 

 

 

 

Links L0 L1 L2 

Bandwidth in Mbps 100 2 11 

Delay in ms 50 20 5 
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The network topology is shown in Figure 25. For each link the tuple (b*,d*) indicates 

the bandwidth and delay of that link. The bandwidth and delay values are summarized in 

Table 4. We use negligible loss probability in L2 (p2=0.0001). Results are summarized in 

Table 5. The throughput of obTCP and snoop are represented by λ1 and λ2 respectively. 

We see that the network is always nearly evenly used.  So, the degree of unfairness in the 

network is low. We also note that the link utilization is low.  

Table 5: Fairness comparison (Low utilization) 

p1 λ1 λ2  

  0.0 96.3 102.7 0.999 79.6 

0.005 78.8 85.7 0.998 65.86

0.01 61.3 65.6 0.998 58.19

0.05 55.7 47.62 0.981 33.64

0.1 49.4 27.17 0.92 21.34

 

Table 6: Fairness comparison (High utilization) 

 

 

 

 

 

 

 

 

p1 λ1 λ2  

0.0 12.0 12.03 0.999 96.12

0.005 10.03 9.99 0.999 80.11

0.01 9.5 8.45 0.997 71.8 

0.05 7.387 6.327 0.994 54.88

0.1 7.38 5.037 0.966 49.68
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To observe if there is any difference in fairness in the case when bottleneck link 

utilization is high, we conduct a separate simulation in which we use a very low value for 

the bottleneck link. The same topology is used with only difference of 0.2 Mbps 

bottleneck link. Table 6 shows the fairness index and link utilization. The results show 

that shared link utilization is improved considerably. It is also observed that the fairness 

index is high enough indicating fair share of bottleneck link bandwidth. Hence, obTCP 

and snoop can co-exist and use the same cellular BS to connect to the Internet. 

 

IX. Conclusion 

In this paper, we have proposed on-board TCP (obTCP) to effectively address the 

wireless link related issues in network mobility. obTCP places agents at both BS and MR 

to quickly recover from wireless losses. We have presented loss recovery time analysis 

that shows positive gain in wireless loss recovery time of obTCP over snoop for all loss 

probability and delay values. We then used the loss recovery analysis to obtain 

throughput performance of snoop and obTCP. The throughput models are validated 

through ns-2 simulations. We have shown that gain in recovery time increases linearly 

with delay and exponentially with loss probability in wireless links. It is also shown that 

obTCP keeps RTT of the TCP connection low compared to snoop which helps in faster 

growth of congestion window. Higher congestion window allows obTCP to achieve 

higher throughput than snoop, e.g. at 25% loss probability obTCP achieves throughput 

improvement of 52% over snoop. 

From the evaluation of obTCP through ns-2 simulation, the following points are 

proved. First, throughput improvement increases exponentially with loss probability in 
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erroneous link. Second, throughput improvement increases linearly with delay on the 

error free link. Finally, throughput improvement is constant with delay in the erroneous 

link. 

Since network mobility is likely to co-exist with conventional terminal mobility we 

have also examined the fairness issue when obTCP and snoop share the same cellular 

base station. It is shown that obTCP does not create any negative impact on snoop in the 

same cellular base station. 
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