

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

WORKING PAPER SERIES

WPS No. 628/ September 2008

Workflows as UML Activity Diagrams: Analytical Methods for Control-Flow
Verification

by

M Hema Sundari
Doctoral student, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700104,

India

Anup K. Sen
Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700104,

India

and

Amitava Bagchi
Professor, Indian Institute of Science, Education and Research, Kolkata, IIT Kharagpur

Extension Centre, HC Block, Sector III Saltlake, Kolkata – 700106,
India

1

Workflows as UML Activity Diagrams: Analytical Methods for Control-Flow Verification

 M Hema Sundari Anup K Sen Amitava Bagchi
 Indian Institute of Management Calcutta Indian Institute of Science, Educ & Research
Joka, D H Road, Kolkata – 700 104, INDIA Salt Lake HC III. Kolkata – 700 106, INDIA
 {hema, sen}@iimcal.ac.in bagchi@iimcal.ac.in

Abstract

A workflow is a directed graph that depicts a business process. It consists of tasks linked

together by AND and XOR connectors, and is usually drawn as a Petri Net or a UML Activity

Diagram; the latter notation has gained in popularity in recent years. Workflows sometimes

suffer from behavioral defects such as deadlock, lack of synchronization, and interminable

looping. Here we present new analytical results useful for verifying the control flow in workflows

represented as UML Activity Diagrams. We make use of the notion of ‘corresponding pair’ and

focus on loop-free structures, allowing connectors to form non-nested and overlapping patterns.

The analysis can be extended to workflows with loops. To clarify the significance of our results,

we provide illustrations of theoretical and practical interest.

Keywords: Workflow, Business process, Verification, Control flow, Analytical method

1. Introduction: A workflow is used by a business organization to perform a specific business

function, and is usually depicted as a directed graph consisting of tasks linked together by AND

and XOR connectors. A newly created workflow might contain defects that cause control flow

errors such as deadlock, lack of synchronization and interminable looping, and dataflow errors

such as missing data, redundant data and lost data. It is therefore necessary to verify it before

employing it in practice. The verification problem is known to be difficult; no existing algorithm

or software package does a completely satisfactory job.

 Workflows are often represented as Petri Nets [2]; their control flow can be verified by the

Woflan package [10]. In recent years, other graphical formalisms such as UML Activity

Diagrams [4], BPMN [7] and Metagraphs [3] have gained in popularity. UML Activity Diagrams

have the advantage of being convenient for both control flow and data flow analysis [8]. New

analytical results that pertain to this formalism for detecting control flow errors in non-nested

2

(unstructured) workflows are of topical interest. Our approach here has two distinctive features:

a) we provide, for the first time, control-flow verification procedures based on analytical results

for a formalism other than Petri Nets; b) our analysis makes use of the interesting notion of

‘corresponding pair’ [5,6]. We focus on the loop-free case, but our results can be extended to

workflows that contain loops and those that employ connectors other than AND and XOR [1].

1.1 Illustrative Example: MHA Inc. manufactures modern household appliances. It wants to

increase its production capacity and build a new factory within its premises. It floats a tender

inviting construction firms to apply for the project. A firm responds to the tender call, but since

the processing of the application by MHA might take time, it formulates in parallel a budget

estimate and plan of work. These are submitted to MHA and are considered for approval once

the tender application has been accepted. The UML Activity Diagram G for handling the

applications is shown in Figure 1. G is non-nested and has two case instances, i.e., control flows

in G in two different ways depending on the choice of the outgoing path at the XOR split. In the

first, which contains tasks a, b, d and e, the firm’s tender application is rejected. The AND join

never gets activated because task c is not part of the case instance and does not get performed.

Although tasks b and d get done unnecessarily, this gives a realistic picture of how the firm

would function. The second relates to the acceptance of the tender application and consists of

tasks a, b, c, d and f; here the AND join does get activated.

2. Analysis of the Loop-free Case: Let G be a loop-free workflow with XOR and AND

split/join connectors. G has the following structural characteristics:

 All splits and joins are binary. This causes no loss in generality, since, for example, a ternary

split (join) can always be broken up into two binary splits (joins).

 The START connector s has no incoming edge and one outgoing edge, and the END

connector r has one incoming edge and no outgoing edge.

 Tasks can follow one another without intervening connectors, and a connector can follow

another connector.

 G has no simple structural defects such as dangling nodes; there is a directed path from s to

every node and from every node to r.

3

 Deadlock, lack of synchronization and

inactive AND joins (see below) are the only

errors that can arise when G is processed.

Definition 1: A corresponding pair (cp) is a

pair (X,Y) of connectors in G, where X is a split

connector, Y is a join connector, and there are

two outgoing paths starting at X that meet at Y

but not at any predecessor of Y. CP refers to the

set of cps of a given workflow. A cp (X,Y) is a

strong corresponding pair (scp) if there is no

join connector Z that is a predecessor of Y in G

such that (X,Z) is a cp. SCP refers to the set of

scps in G. Different pairs of outgoing paths

from the split connector X meet at different join

connectors Y, Z, W, …, for the first time.

Typically, one of these pairs defines an scp,

while the others define cps. In overlapping

structures (see Figures 3,4), two cps with X as

the first element can both be scps. A weak

corresponding pair (wcp) is a cp that is not an

scp. WCP refers to the set of wcps in G. So CP

= SCP ∪ WCP, and SCP ∩ WCP = Φ (empty

set). A cp (X,Y) is proper if X and Y are connectors of the same type (either both XOR or both

AND); otherwise it is improper.

These definitions generalize the ones given in [5, 6]; ‘corresponding pair’ there is the same as

‘strong corresponding pair’ here. We bring in the additional concept of ‘weak corresponding

pair’ to achieve a more careful analysis of the theoretical properties of workflows.

Example 1: For the workflow of Figure 1, CP = {(2,4), (2,5), (3,5)}, SCP = {(2,4), (3,5)}, WCP

= {(2,5)}. Clearly, two outgoing paths from connector 2 meet for the first time at connector 4,

and two outgoing paths from connector 3 meet for the first time at connector 5. In addition, two

a
b

c

e f

1

2

3

4

5

6

d

a the construction

firm submits a

tender application

b the firm prepares a

budget estimate &

plan of work

c the firm gets

clearance and pays

the processing fees

d the firm submits its

budget estimate

and plan of work

for approval

e MHA informs the

firm that its tender

application has

been rejected

f the firm gets

approval from

MHA to begin the

construction job

Figure 1: Non-nested loop-free workflow

4

other outgoing paths from connector 2, namely the paths 2-3-5 and 2-4-5, meet for the first time

at connector 5. Since connector 4 is a predecessor of connector 5, (2,5) is in WCP and not in

SCP. The cps (2,4) and (3,5) are proper, but the cp (2,5) is improper. Thus in this example SCP

consists only of proper cps, but WCP contains only one cp and it is improper. □

Definition 2: A lack of synchronization error arises when both incoming edges at an XOR join

are simultaneously active. A deadlock error arises when: i) not all incoming edges at an AND

join are simultaneously active; and, ii) flow of control is halted at the AND join so it is not

possible to reach the END node. In a well-behaved workflow, neither of these errors ever occurs.

Sometimes a workflow is well-behaved but an AND join remains inactive in some case instance.

From an operational point of view this is not as serious as a deadlock error and might even help

to portray a realistic situation, as in Figure 1. But an inactive AND join has often been regarded

as an undesirable feature as it can lead to unnecessary execution of tasks. A well-behaved

workflow is strongly well-behaved if no inactive AND joins ever occur.

Example 2: A workflow with a single cp consisting of an AND split and an XOR join suffers

from a lack of synchronization error, and one with a single cp consisting of an XOR split and an

AND join suffers from a

deadlock error. In the loop-

free workflow G of Figure

2, SCP = {(2,4), (5,7),

(6,3)}, WCP = {(2,7),

(6,7)}, and (5,7) is the only

improper cp. There is lack

of synchronization at

connector 7 when the left outgoing paths are taken at connectors 2 and 6. If connector 4 is

changed to an AND join, there is deadlock at 4. If 4 is changed back to an XOR join, and 5 is

changed to an XOR split, G consists entirely of XOR connectors and is strongly well behaved,

and all cps are proper. The workflow of Figure 1 is well behaved since control reaches from the

START node to the END node in both case instances; it is not strongly well behaved since

connector 4 is inactive in one case instance. □

1

2

3 4

5

6

7

8 8

1

2

3 4

5 6

7

8

1

2

3 4

5 6

7

Figure 2: Lack of

synchronization error

Figure 3 : Well-behaved Figure 4 : Deadlock

error

5

Definitions 3: In a nested workflow, splits and joins occur in pairs as in nested balanced

parentheses. A workflow that is not fully nested is said to be non-nested. If the two connectors in

a nested pair are of different types, say (AND, XOR) or (XOR, AND), an error will occur. When

they are of the same type, they are said to be matched, i.e., proper, and for the purpose of our

theoretical analysis the matched pairs can be collapsed and omitted from the workflow as these

pairs do not give rise to errors. A workflow that is fully nested with matched pairs can be

reduced in this way to just the START and END nodes. Given a non-nested workflow G, we can

get a reduced workflow G’ from it by collapsing and omitting all the nested subparts that consist

of matched pairs. A workflow G is said to be non-planar if there is no way to draw G on a plane

without crossovers when the START connector is placed at plus infinity (upwards) and the END

connector is placed at minus infinity (downwards); G is planar if it is not non-planar. G is

overlapping if G is non-planar and G contains a split connector X such that there are at least two

scps starting with X. The workflow of Figure 3 is reduced and overlapping.

2.1 Theoretical Results: In the results presented here the notion of corresponding pair (cp)

plays an important role because errors such as deadlock and lack of synchronization occur at join

connectors, where two different paths merge to form a single path.

Theorem 1: Let G be a loop-free workflow. Then: a) if every cp in CP is proper then G is

strongly well-behaved; b) if a lack of synchronization error occurs at an XOR join Y in G, then

CP contains an improper cp (X,Y) of type (AND,XOR); c) if a deadlock error occurs at an AND

join Y in G, then CP contains an improper cp (X,Y) of type (XOR,AND); d) if there is an

inactive AND join in a case instance in G, then CP contains an improper cp of type (AND,XOR).

Proof: a) If G is not strongly well-behaved, there must be an improper cp in CP; otherwise no

error conditions can arise. b)–d) Depending on the type of the improper cp, there is a lack of

synchronization error, a deadlock error or an inactive AND join. □

Example 3: In the loop-free overlapping workflow of Figure 3, SCP = {(2,5), (2,6), (3,7), (4,7)},

WCP = {(2,7)}, every cp in SCP is proper, but the only cp in WCP is improper. The workflow is

strongly well-behaved. The overlapping workflow of Figure 4 has the same SCP and WCP but

suffers from deadlock error. Thus Theorem 1(a) does not hold when ‘CP’ is changed to ‘SCP’. □

Theorem 2: Let G be a loop-free workflow. If SCP contains an improper cp then G is not

6

strongly well-behaved.

Proof: Let (X,Y) be an improper cp in SCP. Suppose (X,Y) is of type (AND,XOR), and consider

a workflow instance that contains the connectors X and Y. If both incoming paths at Y are active

then there is a lack of synchronization error at Y. An attempt at merging the signals in the two

paths by means of a path (W,Z) of type (XOR,AND), as shown in Figure 5, makes Z inactive

when the right hand outgoing path is selected at W; moreover, (X,Y) ceases to be in SCP. If W is

an XOR split at any other position, or W is an AND split belonging to some other instance, Z is

inactive and G is not strongly well-behaved. When (X,Y) is of type (XOR,AND), the only way

to make G strongly well-behaved is by means of an overlap as shown in Figure 6, where

(W1,Z1) and (W2,Z2) are both of type (AND,XOR); but then the cp (X,Y) is no longer in SCP.□

Example 4: The workflow of Figure 7 is

well-behaved but not strongly well-behaved,

since the AND join 9 is inactive in two of the

three case instances. In one of them the left

outgoing edge is chosen at connector 2, and

in the other the right outgoing edge is chosen

at connector 3. Here SCP = {(2,7), (3,8),

(4,11), (5,9), (6,10)}, and (4,11) and (6,10) are improper. Thus Theorem 2 does not hold when

‘strongly well-behaved’ is changed to ‘well-behaved’. The overlapping workflow shown in

Figure 3 is strongly well-behaved, although WCP contains the improper cp (2,7).

Thus Theorem 2 fails to hold when ‘SCP’ is changed to

‘CP’. □

Theorem 3: Let G be a loop-free workflow. If G suffers

from a lack of synchronization error but no other errors,

then SCP contains an improper cp of type (AND,XOR).

Proof: Suppose a lack of synchronization error occurs at

the XOR connector Y (see Figure 5). Then by Theorem

1(b) there must be a cp (X,Y) of type (AND,XOR) in CP.

Y

X

Z

W

Y

X W 2W 1

Z 2 Z 1

Figure 5: Planar case Figure 6: Overlapping case

1

2

3

4 65

7 8

9

1 0

1 1

1 2

Figure 7: Well-behaved but contains

inactive AND-join

7

Suppose there is an edge (W,Z) as shown, so that (X,Y) is not in SCP.If W is of type AND, then

SCP contains an improper cp (W,Y) of type (AND,XOR). If W is of type XOR and Z is of type

AND, there is either no error or an inactive AND join. So both W and Z must be of type XOR.

But then the cp (X,Z) is of type (AND, XOR) and is contained in SCP. Note that if there is a

connector Y’ between W and Z, then Y’ can only be an AND join; this will lead to an inactive

AND join in some case instances. □

Example 5: Even when there is a cp of type (AND,XOR) in SCP, no lack of synchronization

error might result. In Figure 7, the cps (4,11) and (6,10) only cause an inactive

AND join. □

 Stronger results sometimes hold when a loop-free workflow can be drawn

on the plane.

Theorem 4: Let the workflow G be loop-free, planar and strongly well-

behaved. Then every cp in CP is proper. If G is also reduced, then the

connectors in G are all of the same type (either all XOR or all AND).

Proof: Since G is loop-free and planar, it can be drawn on the plane with no crossovers. It will

then have a mesh-like structure with polygonal regions (see Figure 8). G is also strongly well-

behaved, so all nested pairs in G must be matched; we can therefore assume G is reduced. In

Figure 8, the X’s are splits and the Y’s are joins. It is easily checked that if a single Y is of type

AND, then all splits and joins must be of type AND; otherwise there is an error or an inactive

AND join. Similarly, if a single Y is of type XOR, all splits and joins must be of type XOR. Thus

the connectors are either all AND or all XOR. □

Example 6: Theorem 4 does not hold for overlapping structures. The workflow of Figure 3 is

strongly well-behaved, but the cp (2,7) in CP is improper. □

Theorem 5: Let the workflow G be loop-free and planar. Suppose every cp in SCP is proper.

a) If WCP contains an improper cp of type (XOR,AND) then G suffers from deadlock error.

b) If WCP contains an improper cp of type (AND,XOR) then G has an inactive AND join.

Proof: a) In Figure 5, let (X,Y) represent an improper cp of type (XOR,AND). Since all cps in

X1

X2 X3Y1

Y2Y3

Figure 8: Planar

(Mesh)

8

SCP are proper, W must be an AND split and Z an XOR join. This immediately implies that

when the left outgoing path is taken at X, there will be a deadlock error at Y. The same error

occurs when there is more than one such path (W, Z) in parallel. The only way to resolve the

problem would be by an overlap as shown in Figure 6, but G is by assumption planar.

b) Let (X,Y) in Figure 5 represent an improper cp of type (AND,XOR). Then W must be an

XOR split and Z an AND join. If we take the right path at W, an inactive AND join occurs at Z.□

Theorem 6: Let the workflow G be loop-free and planar.

a) If SCP contains an improper cp of type (XOR,AND), then G suffers from deadlock error or

has an inactive AND join.

b) If SCP contains an

improper cp of type

(AND,XOR), then G

suffers from lack of

synchronization error

or has an inactive

AND join.

Proof: See the proofs of

Theorems 2 and 5. □

These results can be very

useful in verification (see

the summary in Table 1).

Remark 1: Table 1 does

not apply to overlapping

structures. The basic

overlapping structure has

three splits and three joins

(see Figure 3). Allowing

Given condition
No

SCP WCP
Conclusion

1

Contains an improper

scp of type

(XOR,AND)

-

Deadlock or inactive

AND join

2

Contains an improper

scp of type

(AND,XOR)

-

Lack of synchronization

or inactive AND join

3 All scps are proper

Contains an improper

wcp of type

(XOR,AND)

Deadlock

4 All scps are proper

Contains an improper

wcp of type

(AND,XOR)

Inactive AND join

5 All scps are proper All wcps are proper

Strongly well-behaved;

when reduced, the

connectors are either all

XOR or all AND

Table 1: Loop-free Planar Workflows

9

each split and join to be either AND or XOR, there are a total of 64 cases. Of these, one has

AND connectors only and another has XOR connectors only. Five of the remaining 62 are well

behaved and the remaining 57 are erroneous (Figure 4 shows one of them), but not all are

distinct. Figure 3 is the standard example of a strongly well behaved overlapping structure. □

2.2 Verification Procedure for Loop-free Workflows: We now proceed to the verification

procedure for loop-free workflows, assuming that the workflow, if it is overlapping, has the basic

structure of three splits and three joins as shown in Figures 3 and 4.

Step 1: Using a graph algorithm for detecting loops, determine whether the workflow G is loop-

free. If yes, proceed to Step 2, else exit.

Step 2: If G contains mismatched nested pairs then G is not well-behaved; give error message

and exit. Else collapse the nested pairs, get

reduced workflow G’ and proceed to next

step.

Step 3: Determine SCP and WCP for G’

using the algorithm findSCP&WCP (see

Table 2).

Step 4: Check whether there is a split

connector X in G’ such that two different cps

(X,Z) and (X,W) are both contained in SCP.

If yes, then G’ must be overlapping; compare

against known cases and see if it is (strongly)

well-behaved. Otherwise, G’ is planar. Using

Table 1, find out whether G’ is (strongly)

well-behaved. In either case, output an

appropriate message and exit.

3. Workflows with Loops: The analysis can

be extended to workflows with loops. In this

/* input: a loop-free workflow G */

{ initialize SCP, WCP, CP to empty sets;

 for every split node X in workflow G do {

 find every join Y reachable from X along two

 outgoing paths such that the two paths meet at Y for

 the first time; let XCJ be this set of joins;

 determine the subset of joins XSJ in XCJ which have

 no predecessors in XCJ;

 XCP = { (X,Y) | Y ∈ XCJ };

 XSCP = { (X,Y) | Y ∈ XSJ };

 XWCP = XCP – XSCP; CP = CP ∪ XCP;

 SCP = SCP ∪ XSCP; WCP = WCP ∪ XWCP; }

}

Table 2: Algorithm findSCP&WCP

10

case, it is not possible to define a consistent predecessor-successor relationship between

connectors, so SCP can not be defined. However, all the cps in CP can be identified. Such a

workflow will be valid only when each loop contains an XOR split for control to flow out and an

XOR join for control to flow in. In addition, AND joins in loops must satisfy certain conditions,

which are not specified here owing to lack of space.

4. Conclusion: We have derived analytical results and described simple verification procedures

for loop-free workflows consisting of AND and XOR connectors. These methods are adequate

for verifying most situations that arise in practice or are cited in the technical literature. Various

other types of connectors have been proposed in [1], e.g., inclusive ORs. The theoretical results

and verification procedures can be extended to these connectors, as well as to workflows with

loops. Since both the control flow and the data flow must be verified in a workflow, it would be

advisable to model a workflow as a Document Driven Activity Diagram [8, 9]. The ultimate

objective is to make use of the notion of ‘corresponding pair’ and develop a comprehensive

verification procedure capable of detecting both control flow and data flow errors.

References:

1. Aalst W V P, Hofstede A H M Kiepuszewski B, Barros A P, Workflow Patterns, Distributed

and Parallel Databases 2003, 14(1): 5-51, 2003.

2. Aalst W V P, Hee K v, Workflow Management: Models, Methods, and Systems, The MIT

Press, 2002.

3. Basu A, Blanning R W, A formal approach to workflow analysis, Info Sys Res 11(1): 17-36,

2000.

4. Booch G, Rumbaugh J, Jacobson I, The UML Reference Manual, Addison-Wesley, 1998.

5. Kiepuszewski B, Hofstede A H M, Bussler C, On Structured Workflow Modeling, Proc

CAiSE’2000, LNCS vol 1797, Springer Verlag, 2000.

6. Liu R, Kumar A, An Analysis and Taxonomy of Unstructured Workflows, BPM 2005, LNCS

3649, Springer-Verlag, 268-284, 2005.

7. OMG, Business Process Modeling Notation Specification, BPMN 1.0, Feb 2006.

11

8. Sun Sherry X, Zhao J L, Nunamaker J F, Sheng O, Liu R, Formulating the Data Flow

Perspective for Business Process Management, Info Sys Res, 17(4): 374-391, 2006.

9. Wang J, Kumar A, A framework for document-driven workflow systems, BPM 2005,

Lecture Notes in Computer Science, vol 3649, Springer Verlag, 285-301, 2005.

10. Verbeek H M W, Basten T, Aalst W V P, Diagnosing Workflow Processes using Woflan,

The Computer Journal, 44(4): 246-279, 2001.

