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Capacity Choice under Demand Uncertainty: Effects of Production 

Postponement and Product Flexibility 

 

Abstract: This paper deals with the optimal capacity choice under demand uncertainty. A single period 

two product model with stochastic demand has been developed to determine the optimal capacity level 

that maximizes the expected profit. Dedicated plant with no production postponement strategy has been 

considered as base case. The model has been extended to examine the effect of production postponement 

and product flexibility on optimal capacity decision. While it is apparent that the cost of over-production 

has been eliminated under production postponement, the other major benefit depends on whether the 

products have been produced in a single product flexible plant rather than dedicated plants. It has been 

shown that investment in flexible plant makes sense only if the possibility of production postponement 

exists. The model has been extended to multi-product situation with correlation in demand. Simulated 

data based optimization procedure has been applied to solve the multi-product problem as the same is 

analytically intractable. The concept of PdPPF Index has been introduced to observe the effect of 

production postponement on product flexible plant. Finally the effects of imposing service level objective 

on firm’s optimal profit and capacity have been studied for both dedicated and flexible plant strategies. 

 

Keywords: Demand Uncertainty; Capacity Planning; Production Postponement; Product Flexibility; 

Stochastic Programming; Service Level 

 

1. Introduction: 

Up to the middle of the last century, the paradigm of manufacturing had an emphasis on the mass 

production, mass markets and standard design. The existence of national market and absence of 

foreign competitors helped firms to act in the seller‟s market. Over the years the complexity in 

business environment has increased due to globalization and rapid technological advances. The 

changing nature of global business has led to highly competitive markets. Increased competition 

has changed the nature of demand in the market place both in terms of product variety as well as 

uncertainty associated with the product demands. This has increased challenges in all facets of 

manufacturing. Capacity planning in such scenario assumes complexity as one has to deal with 

the trade off between the cost of investment in excess capacity and the opportunity loss from not 

meeting the demand due to capacity constraint.  
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In the context of production decision under capacity planning objective, two distinct situations 

may arise: (a) the firm has to decide on capacity as well as the production quantity before the 

demand has been realized, (b) while capacity needs to be decided a priori, the firm can decide on 

production after the demand is realized. The above two have been normally referred to as “No 

Postponement” and “Production Postponement” respectively. While it has been apparent that the 

cost of over-production has been eliminated under production postponement, the other major 

benefit depends on whether the products have been produced in a single product flexible plant 

rather than dedicated plants. Yang et al. (2004) have argued that both flexibility and 

postponement are “reactive adaption behaviors” as they deal with the consequences of 

uncertainty rather than attacking the causes of uncertainty.  

Product flexibility has been recognized as an important tool for coping with demand 

uncertainties. However, investment and management issues regarding product flexibility have 

been recently incorporated in operation management models (Bish and Wang, 2004). It is 

intuitive that in the presence of production postponement, the firm stands to gain from product 

flexibility by exploiting the differences in the realized demands of the individual products. The 

capacity decision being taken considering aggregate demand of all the products; at the 

production stage potential benefit exists in terms of utilizing the idle capacity due to the below 

average realized demand for one product by the higher than average realized demand for another 

product. On the other hand, as product flexibility allows production of different products in the 

same plant, it would typically involve higher marginal cost of investment compared to dedicated 

plant. This motivates to look at the economics of dedicated plants versus product flexible plant in 

the context of capacity planning decision. For this purpose, a single period multi-product model 

with stochastic demand has been developed to determine the optimal capacity level that 

maximizes the expected profit. Dedicated plant with no production postponement strategy has 

been considered as base case. This model is similar to the classical newsboy model with capacity 

as decision variable. The model has been extended to consider (a) Dedicated plant with 

production postponement and (b) Flexible plant with production postponement. The base model 

as well as (a) above, are essentially extension of Mieghem and Dada (1999) for multi product 

case. In literature, the extensions (a) and (b) have been modeled as two stage stochastic 

programming problem; where, in the first stage the firm decides the capacity that maximizes the 
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expected profit. In the second stage, demands have been realized and the firm decides on 

production quantity.  

In this paper the stochastic programming problem has been solved to determine the capacity 

level which maximizes the expected profit. However, in case of multiple products following 

correlated multivariate demand distribution, the problem becomes analytically intractable. 

Because of the analytical intractability, most of the literatures have come out with 

characterization of optimal solution with possibilities and dominant conditions. (Some of them 

have been discussed in literature review.) To make the problem analytically tractable, for three-

product case, where demands follow correlated multivariate distribution, finite discretization of 

the random data allows writing the expectation in the form of summation and helps to solve the 

stochastic problem.  

The rest of the paper is as follows. Relevant literature survey has been done in section 2. In 

section 3, the models for expected profit maximization and opportunity loss minimization under 

postponement and product flexibility have been introduced and shown that simulated data based 

optimization gives very good approximation of the analytical results in case of two-product 

example. In section 4, analysis has been done for multi product case. The results and insights of 

the analyses have also been shown in this section. In section 5, service level constraint has been 

added to observe its effect on various strategies. Section 6 concludes the paper. 

 

2. Literature Survey: 

The choice of dedicated and flexible plant combination for capacity planning under demand 

uncertainty has been considered by Fine and Freund (1990), followed by Meighem (1998) and 

Bish and Wang (2004). Eppen et al (1989) have considered capacity planning problem under risk 

and presented a mixed integer programming model based on a scenario planning approach. 

Peronne et al (2002) have tried to capture the economic advantage of flexible resource over the 

dedicated one. 

Fine and Freund (1990) have worked with n different product families which can be produced in 

n dedicated plants or in a single flexible plant. K possible states of demand with known 

probability have been assumed. The market demand has been realized by the firm only after 

investment in capacity for the combination of dedicated and flexible plant. The capacity 
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acquisition cost, revenue and production costs has been known. With the objective of profit 

maximization, followings have been included in their findings: 

a) There is no guarantee of getting a unique optimal solution if the total no of products is 

greater than or equal to three. This has been shown by a counter example. 

b) Shadow values at optimality for dedicated and flexible capacity constraint have been 

obtained. They have shown that, for a particular state of market demand, shadow value of 

flexible capacity is equal to the maximum of shadow values of dedicated capacities over all 

products. From that they have also derived the profitable condition for the investment in 

flexible capacity.  

c) With the increase in dedicated capacity cost, dedicated capacity decreases, flexible capacity 

increases and vice-versa. Decrease in any type of capacity cost profit increases. 

d) For downward sloping demand curves, in case of two products they have shown the 

relationship between the capacity, capacity cost and optimal profit for correlated demand 

scenario. 

Mieghem (1998) has extended the works of Fine and Freund (1990) with same two product 

example with product one contribution is greater than that of product two. The benefits of 

product flexibility under uncertainty has been observed for the role of price and cost mix 

differentials in addition to demand correlation. He has expressed optimality condition in terms of 

dual variables. He has also highlighted the role of investment cost for choosing among possible 

investment strategies. For this he has defined two threshold values for flexible capacity cost. 

Similar to Fine and Freund (1990) he has observed substitution effect of marginal cost change on 

capacity. Similarly the investment in corresponding dedicated capacity has been increased with 

higher price. Increase in price differential increases flexible capacity and decreases dedicated 

capacity of less profitable product. He has proposed capacity investment strategy for perfectly 

positively correlated and perfectly negatively correlated demand under different conditions. 

Contradicting Fine and Freund (1990) he has shown that investment in flexible plant can give 

better benefit even in case of perfectly positively correlated demand if there is price difference 

between the products. 

In line with the above literatures, Bish and Wang (2004) have also considered two-product case 

considering continuous distribution which makes it different from Fine and Freund (1990) and 

price dependent demand which makes it different from Mieghem (1998). The problem is two 
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stage stochastic programming in nature. They have divided demand space into six regions and 

for each region they have derived optimal closed form expression for optimal profit of stage two 

as a function of capacity vector. For stage one problem they have derived necessary and 

sufficient condition for optimal profit. They have also derived necessary and sufficient 

conditions for investment in flexible capacity. They have proposed capacity investment strategies 

under perfectly correlated demand conditions for different parameter values. 

Eppen et al (1989) have considered a multiproduct, multiplant, multiperiod capacity planning 

problem. Three scenarios (or states of nature) have been specified for each year. They have 

argued that variance is not a good measure of risk in this environment and suggested an 

alternative based on expected downside risk. Their works have been based on following 

assumptions: 1) a retooling decision determines which products can be produced at a site as well 

as other cost and capacity parameters; 2) there is a changeover cost for shutting down a plant as 

well as for retooling it; 3) the demand has been realized before the production decision has been 

made and no inventory has been carried from period to period; 4) production levels can be 

altered within the time period in order to satisfy as closely as possible the demand that has been 

actually experienced; 5) the probability of a scenario occurring in a year is independent of earlier 

outcomes and the capacity of a plant depends upon the configuration chosen and at any period 

any plant should be under one and only configuration. Interest rate has been taken as 0.1. They 

have added a constraint for expected downside risk to the original problem of the form EDR (0) 

< 7.0, where 0 is the target value of desired profit. Expected profit and EDR has been calculated 

from histogram generated using 15 cases (3 scenarios and 5 periods). 

Peronne et al (2002) have assumed the following for their theoretical model: 1) demands follow 

uniform distribution, 2) price depends on mean demand only and 3) the variable cost is same for 

both dedicated and flexible plants but investment costs are different. System wise profit has been 

maximized by maximizing each products profit. Investment cost, which has been expressed in 

terms of unit time multiplied by the service time of the product, in flexible plant has been 

depended on scope economy factors α and β. According to them, flexibility has been most 

effective when products with longest service times have been performed in most expensive 

dedicated resource. The cumulative scope economy factor α for flexible machine is (investment 

cost of flexible machine)/(investment cost of dedicated machine capable of producing the 

products that have been produced in flexible plant). This flexible investment cost is less than sum 



Page 6 of 40 
 

of the total dedicated cost and greater than any of the dedicated cost. Similarly, service time 

scope economy factor β for any product is (service time in flexible machine)/(total service time 

in dedicated machine capable of producing the products that have produced in flexible plant). 

The difference between flexible resource and dedicated resource has been presented in the form 

of hyperbola i.e. αβ = constant.  

By simulating truncated normal distribution in 10-product-10-plant case Jordan and Graves 

(1995) have shown that limited flexibility with single chain captures more than 90% of the 

benefit of total flexibility in terms of expected sales and capacity utilization. According to them, 

benefit of flexibility has been affected by two factors; demand correlation and total capacity 

relative to expected total demand. Negatively correlated products have been required to be in the 

same chain, but might not be in the same plant. If total capacity deviates far from the total 

expected demand, flexibility has no value. They have argued that there can not be single optimal 

plan; rather many near optimal plans exist. The product-plant links have been added based on the 

following rules: 1) try to equalize the no of plants (measure in total units of capacity) to which 

each product in the chain has been directly connected, 2) try to equalize the no of products 

(measure in total units of expected demand) to which each plant in the chain has been directly 

connected and 3) create circuit that encompasses as many plants and products as possible. 

Fine and Freund (1990), Meighem (1998) and Bish and Wang (2004) have examined two 

product situation and analytically studied characteristics of the optimal solution for two product 

case. In contrast to them, simulated data based models, developed in this paper, have been 

capable of finding optimal profit and capacity under given parameter values for multiproduct 

case with complete characterization of demand correlation into the model. However separate 

values for marginal cost of capacity for dedicated and flexible plants have not been considered. 

Also, partial product flexibility discussed by Jordan and Graves (1995), has been considered as 

out of scope for this paper.  

 

3. Two Product Cases: 

Consider a manufacturer producing two products wants to set capacity level(s) before realizing 

the demands. Also consider that, after demand realization, there is no inventory carry over or 

backorder which can affect next period‟s planning. Remaining inventory has been sold at 
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discount, called salvage value. Take Di as demand and di as the realized demand for the product 

i. The price of product i is Pi per unit, cost is Ci per unit and salvage value is Si per unit. The firm 

can decide the production quantity Q
i
 before demand for product i has been realized or, it can 

wait till demand realization so that no over-production happens. Similarly firm can go for two 

dedicated plants with capacity Ki or single flexible plant to produce the products with capacity 

K. In the following subsections the possible cases has been discussed. For simplicity, subscript i 

have been omitted in case of dedicated plant strategies.  

Assume that the manufacturer starts with no initial resource(s) and incurs investment cost C(K). 

For simplicity, also assume that C(K) is linear in K, i.e., C(K) = CKK, where CK depends on 

whether the firm is using dedicated technology or flexible technology. It has been considered 

that same amount of capacity has been required to produce one unit of each product, so capacity 

has been expressed as the number of product units that can be produced. Moreover, there is no 

cost associated with producing away from installed capacity. These types of assumptions are 

common in literature. 

 

3.1. Analytical Findings for Two Products: 

3.1.1. Dedicated Plant, No Production Postponement: 

As there is no production postponement the firm needs to decide both the capacity and 

production before the demand realization. So there is no point in invest in capacity higher than 

the production level. In other words, in case of no production postponement K = Q 

Possible two situations have been described below with the help of under production and over 

production costs: 

Situation Profit Opportunity loss 

D > K  P – C – CK K  P – C – CK (D – K) 

D ≤ K   P – C – CK  –  S – C – CK  D +  S – C – CK K  S – C – CK (D – K) 

So expected profit = E Π  

=    P – C – CK K 
∞

K
f d dd+     P – C – CK  –  S – C – CK  d +  S – C – CK K 

K

0
f d dd    

= P – C – CK K –  P – S   (K – d) 
K

0
f d dd     ……… (1) 

Similarly expected opportunity loss = E O  

=    P – C – CK (d – K) 
∞

K
f d dd+    S – C – CK (D – K) 

K

0
f d dd    
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Now, 
d

dK
 df d dd = Kf(K)

K

0
  

∂E Π 

∂K
=  P – C – CK  –  P – S  F K +Kf(K) – Kf(K)  =  P – C – CK  –  P – S F K   

Hence, F K  =  
 P – C – CK 

 P – S 
    ……… (2) 

3.1.2. Dedicated Plant, Production Postponement: 

In case of production postponement, production has been done only after demand realization. 

Hence there is no over production cost and Q = Min (D, K). However, there has been a need to 

consider overcapacity cost in this case. There can be two situations as described below: 

Situation Profit Opportunity loss 

D > 𝐾  P – C – CK K  P – C – CK (D – K) 

D ≤ K  P – C – CK D – CK(K – D) CK(K – D) 

 

So expected profit  

= E Π =    P – C – CK K 
∞

K
f d dd+    P – C – CK d – CK(K – D) 

K

0
f d dd    

= P – C – CK K –  P – C   (K – d) 
K

0
f d dd     ……… (3) 

Similarly expected opportunity loss  

= E O =    P – C – CK (d – K) 
∞

K
f d dd –   CK(K – D) 

K

0
f d dd 

Hence, F K  =  
 P – C – CK 

 P – C 
    ……… (4) 

 

For the strategies discussed above, following propositions have been developed. 

Proposition 1: Production postponement always gives higher optimal capacity and profit for 

dedicated plant. 

Proof: As C > S, (P – C) < (P – S). Hence, F(K) in eq. (4) > F(K) in eq. (2), where, F(.) is c.d.f. 

of the distribution and F(.) increases monotonically in K.   

Again (P – C) < (P – S) implies E Π in eq. (3) > E Π in eq. (1). ∎ 

Proposition 2: For normally distributed demand, in absence of production postponement, 

optimal capacity increases with the increase in variance as long as 
 P – C – CK 

 P – S 
  0.5, else optimal 

capacity decreases with the increase in variance.  
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Proof: Consider demand follows normal distribution with mean μ and standard deviation σ. 

Then, F(K) = Φ(
K– μ

σ
). 

From eq. (2), K = μ + σ Φ-1  
 P – C – CK 

 P – S 
 . ∎ 

For the rest of this sub-section proofs have been done taking 
 P – C – CK 

 P – C 
  0.5 for both the 

products. 

Proposition 3: For normally distributed demand, optimal profit decreases with the increase in 

variance. 

Proof:   (K – d) 
K

0
f d dd =   (K – d) 

K

0

1

σ 2Π
e

-
1

2
(
d-μ

σ
)

2

dd  = (K – μ)F(K) + σ2{f(K) – f(0)}. 

With increase in σ this part increases, which in turn reduces E Π in eq. (1) and eq. (3). ∎ 

 

3.1.3. Product flexible Plant, No Production Postponement: 

When there is no production postponement, it has been shown that there is no added benefit from 

being product flexible. On the other hand, the investment required might be more for achieving 

product flexibility. Take total capacity = K, where K =Q
1
+Q

2
. Below possible situations and the 

profit values corresponding to those situations have been presented. 

 

Situation Profit 

D1>Q
1
, D2>K – Q

1
 (P1 – C1 – CK)Q

1
+ P2 – C2 – CK (K – Q

1
) 

D1>Q
1
, D2≤K – Q

1
 (P1 – C1 – CK)Q

1
+ P2 – C2 – CK D2+(S

2
 – C2 – CK)(K – Q

1
 – D2) 

D1≤Q
1
, D2>K – Q

1
 (P1 – C1 – CK)D1+(S

1
 – C1 – CK) Q

1
 – D1 + P2 – C2 – CK (K – Q

1
) 

D1≤Q
1
, D2≤K – Q

1
 (P1 – C1 – CK)D1+(S

1
 – C1 – CK) Q

1
 – D1 + P2 – C2 – CK D2+(S

2
 – C2 – CK)(K – Q

1
 – D2) 

 

Hence, E Π =   (P1-C1)Q
1
+ P2-C2 (K-Q

1
) f d1,d2 dd1dd2

∞

Q1

∞

K-Q1

  

+    (P1-C1)Q
1
+ P2-C2 d2+(S

2
-C2)(K-Q

1
-d2) f d1,d2 dd1dd2

∞

Q1

K-Q1

0
  

+    (P1-C1)d1+(S
1
-C1) Q

1
-d1 + P2-C2 (K-Q

1
) f d1,d2 dd1dd2

Q1

0

∞

K-Q1

  

+    (P1-C1)d1+(S
1
-C1) Q

1
-d1 + P2-C2 d2+(S

2
-C2)(K-Q

1
-d2) f d1,d2 dd1dd2

Q1

0

K-Q1

0
-CKK      

……… (5) 
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Proposition 4: For independent demands, flexibility does not generate any extra profit compared 

to corresponding dedicated plants, as long as productions have not been postponed. 

Proof: Considering demands are independent, i.e. f d1,d2  = f d1 f d2 , the expression for 

expected profit works out as,  

E Π  =  P1– C1– CK Q
1
 +  P2– C2– CK  (K– Q

1
) 

 –  P1 – S1   Q
1
– d1 

Q1

0
f d1 dd1–  P2– S2   K– Q

1
– d2 

K – Q1

0
f d2 dd2  

Now, 
∂E Π 

∂K
 =  P2– C2– CK  −  P2– S2 F2(K– Q

1
)  = 0. 

Or, F2(K– Q
1
) =  

 P2– C2– CK 

 P2– S2 
 = F2(Q

2
). 

Similarly, 
∂E Π 

∂Q1

 =  

 P1– C1– CK  −  P2– C2– CK  −  P2– S2 F2(Q
1
) -  P2– S2 F2(K– Q

1
) 

∂(K– Q1)

∂Q1

  = 0. 

Or, F1(Q
1
) =  

 P1– C1– CK 

 P1– S1 
. ∎ 

3.1.4. Product Flexible Plant: 

Take, total capacity = K, where Q
1
+Q

2
 ≤ K 

Without the loss of generality, it has also been considered product 1 gives more contribution, i.e. 

 P1-C1    P2-C2 . Hence the firm will always try to meet the demand of product 1 first and 

after that it will go for product 2. 

Possible situations and the profit and opportunity cost values corresponding to those situations 

are: 

Situation Profit Opportunity loss 

D1+ D2 > K  (P1 – C1 – CK)D1+ P2 – C2 – CK (K – D1)  P2 – C2 – CK  D1 + D2 – K   

D1+ D2 ≤ K  (P1 – C1 – CK)D1+ P2 – C2 – CK D2  – CK(K – D1 – D2) CK(K – D1 – D2) 

E Π =   (P1-C1)d1+ P2-C2 (K-d1) f d1,d2 dd1dd2

∞

K-d1

∞

0
 

+    (P1-C1)d1+ P2-C2 d2 f d1,d2 dd1dd2

K-d1

0

∞

0
-CKK  
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Again considering demands are independent, i.e. f d1,d2  = f d1 f d2 , the expression for 

expected profit works out as, 

E Π =   P1– C1  –  P2– C2  μ1
  

+  P2– C2– CK  K –  P2 – C2     K– d1– d2 
K– d1

0
f d2 dd2 f d1 dd1

∞

0
……… (6)  

Where μ
1
 represents mean demand for product 1.     

Now, 
∂

∂K
     K– d1– d2 

K– d1

0
f d2 dd2 f d1 dd1

∞

0
  =   

∂

∂K
  K– d1– d2 

K– d1

0
f d2 dd2 f d1 dd1

∞

0
 

=   F2(K − d1) f1 d1 dd1

∞

0
 = 

 P2 – C2 – CK 

 P2 – C2 
    ……… (7)  

Proposition 5: For independent and normally distributed demands having negligible probability 

of having demand less than zero 

a) Flexible plant optimal capacity is less than corresponding dedicated plant total capacities. 

b) With the increase in demand variance, optimal capacity of the flexible plant increases, but the 

increase in optimal capacity is less than corresponding total increase in dedicated plant optimal 

capacity. 

Proof: Consider demand for product i follows normal distribution with mean μ
i
 and standard 

deviation σi. 

Now,   F2(K − d1) f1 d1 dd1

∞

0
 ≅   F2(K − d1) f1 d1 dd1

∞

−∞
 = Prob(D1+ D2 ≤ K) = Φ(

K– μ1- μ2

 σ1
2+σ2

2
) 

From eq. (7), K = μ
1
+ μ

2
 +  σ1

2+σ2
2  Φ-1  

 P2 – C2 – CK 

 P2 – C2 
   

For dedicated plants, total capacity = KD = μ
1
+ σ1Φ-1  

 P1 – C1 – CK 

 P1 – C1 
  + μ

2
+  σ2Φ-1  

 P2 – C2 – CK 

 P2 – C2 
  

KD − K = σ1Φ-1  
 P1 – C1 – CK 

 P1 – C1 
  + σ2Φ-1  

 P2 – C2 – CK 

 P2 – C2 
 −   σ1

2 + σ2
2   Φ−1  

 P2  – C2  – CK  

 P2  – C2 
   

As  P1-C1    P2-C2 , Φ-1  
 P1 – C1 – CK 

 P1 – C1 
   Φ-1  

 P1 – C1 – CK 

 P1 – C1 
  

Hence, KD − K   σ1 +  σ2 −  σ1
2+σ2

2 Φ-1  
 P1 – C1 – CK 

 P1 – C1 
   

As σ1 +  σ2   σ1
2+σ2

2, KD   K. This proves the first part. 
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With the increase in σi, KD and K both increases, but the increase in 

σ1+ σ2 is more compared to σ1
2+σ2

2. This proves the second part.  ∎ 

Although intuitive, however if one wants to establish the following, analytical difficulty happens 

in case of flexible plant profit. 

For independent and normally distributed demands having negligible probability of having 

demand less than zero 

a) Flexible plant optimal profit is more than corresponding dedicated plant total profits. 

b) With the increase in demand variance, optimal profit of the flexible plant decreases, but the 

decrease in optimal profit is less than corresponding total decrease in dedicated plant optimal 

profit. 

For this purpose one needs to show: E Π  E ΠD . 

Where, from eq. (6), 

E Π =   P1– C1  –  P2– C2  μ1
 +  P2– C2– CK  K  

–  P2 – C2     K– d1– d2 
K– d1

0
f d2 dd2 f d1 dd1

∞

0
  

From eq. (3), total profit for dedicated plants 

= E ΠD  =  P1– C1– CK K1–  P1– C1   (K1– d1) 
K1

0
f d1 dd1  

+ P2– C2– CK K2–  P2– C2   (K2– d2) 
K2

0
f d2 dd2  

The derivation of flexible plant profit, E Π  has not been tried. 

3.2. Simulated Data Based Optimization Procedure: 

3.2.1. Methodology: 

In the last section it has been observed that even for two product case with demands following 

independent distribution, finding a closed form solution for optimal profit and corresponding 

capacity is extremely difficult. The complexity increases if the demands are not independent. 

Only in some specific cases analytical calculation of stochastic programming is possible as the 

evaluation of expected value of demand involves calculation of multivariate integrals. A finite 

discretization of the random data allows writing the expectation in the form of summation and 

helps to solve the stochastic problem. In this sub-section this methodology has been developed. 

The model of flexible plant has been considered for this purpose. 
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The model for flexible plant: 

ΠFlexible Plant  =   (Pi − Ci)Min Di, Ki  
m
i=1 − CFlexible Plant K  

Take, Zi = Min Di, Ki  = Production quantity of product i, where,  Ki
m
i=1 = K. 

The deterministic version of the flexible plant model (where di values are known with certainty) 

can be written as: 

Maximize                (Pi − Ci)Zi 
m
i=1 − CFlexible Pl antK    

Subject to:    Zi≤ Di                   ∀ i 

     Zi
m
i=1 − K ≤ 0    

   Zi, K ≥ 0             ∀ i 

But in real life di values are not known. One has the idea of the distribution of the di values only 

and before the realization of these values one need to set the capacity K. To summarize this, time 

sequence is as follows (Wagner, 1993, Ch. 16, p. 667); 

a) First stage: Manufacturer selects level of K. 

b) Random event: Values of di are known and are independent of K. 

c) Second stage: Manufacturer selects the level of Zi, the production quantity. 

Given the time sequence, manufacturer selects K for which expected profit has been maximized. 

The problem can be formulated as stochastic programming with recourse in the following way: 

First stage problem: 

maxK≥0 Π(K) = E Π*(K, D) − CFlexible Plant K  

Second stage problem: 

Π* K, d = maxZ≥0 Π(K, d) = max   (Pi − Ci)Zi 
m
i=1   

Subject to:    Zi ≤ di            ∀ i 
     Zi

m
i=1 − K ≤ 0    

Here, D = (D1, D2,…, Dm), d = (d1, d2,…, dm) and Z = (Z1, Z2,…, Zm). Also E(.) is the 

expectation operator. 

Now, consider only three values of d are possible with known probability p
j
s where  p

j
3
j=1 =1.   

Hence the possible cases are (considering two product case): d11, d12 with probability p1; d21, d22 

with probability  p2 and d31, d32 with probability p3. Since K has been determined before the 

realization of the demand values, these variables will also come in stochastic programming 

formulation. The remaining decision variables Zi have been determined after the realization of 

the demand. Hence, they have been noted as Zij  for i = 1, 2 and j = 1, 2, 3. 
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As long as the decision variables in the first stage (here capacity K) do not depend on the 

realization of the random event, the two stage problem can be expressed as a single optimization 

model like below: 

Maximize                  (Pi − Ci)Zij 
2
i=1  p

j
3
j=1 − CFlexible Plant K    

Subject to:    Zij ≤ dij                 ∀ i, j 

     Zij
2
i=1 − K ≤ 0   ∀ j    

   Zij, K ≥ 0             ∀ i, j 

Here, the stochastic programming version of the problem has more number of constraints 

compared to its deterministic version. 

As the first stage variable K do not depend on the outcome of the j
th

 scenario, objective function 

can be rewritten as: 

Maximize              − CFlexible Plant K + E     (Pi − Ci)Zij 
2
i=1  p

j
    

Finally, the distribution of d has been approximated by taking large number of values generated 

from the distribution. So all pj values are equally likely and the model becomes: 

Maximize              
1

n
   (Pi − Ci)Zij 

2
i=1

n
j=1 − CFlexible Plant K    

Subject to:    Zij ≤ dij                 ∀ i, j 

     Zij
2
i=1 − K ≤ 0   ∀ j    

   Zij, K ≥ 0             ∀ i, j 

However, with this procedure one trade off has been necessary. On one side, with the increase in 

number of products sample sets needs to be increased, otherwise the gap between sample statistic 

and parameter value increases. On the other side, with the increase in sample values the 

complexity of the problem increases and with the increase in number of products the complexity 

increases exponentially. Hence, to keep the accuracy of the results high, too many products have 

not been considered.  

As discussed earlier in proposition 4, flexible plant without production postponement is not 

better option compared to multiple dedicated plants. So this strategy has been omitted in this 

section. The additional notations used in the models have been shown below: 

dij= Demand for product i at iteration j 

CStrategy  S= marginal cost of capacity for strategy S 
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3.2.2. Models: 

Two Product, Dedicated Plants, No Production Postponement: 

ΠStrategy  1 =   PiMin Di , Ki + SiMax Ki − Di , 0 − CiKi 
2
i=1 − CStrategy  1  Ki

2
i=1   

Take, Zi = Min Di , Ki  = Sales quantity of product i in the primary market 

Then, Max Ki − Di , 0 = −Min Di − Ki , 0 = −Min Di , Ki + Ki = −Zi + Ki  

Hence the simulated data based optimization model becomes, 

Maximize             
1

n
   (Pi − Si)Zij 

2
i=1

n
j=1 −  (CStrategy  1 + Ci − Si)Ki

2
i=1     

Subject to:    Zij ≤ dij               ∀ i, j     

    Zij − Ki ≤ 0      ∀ i, j    

   Zij , Ki ≥ 0          ∀ i, j 

Two Product, Dedicated Plants, Production Postponement: 

ΠStrategy  2 =   (Pi − Ci)Min Di , Ki  
2
i=1 − CStrategy  2  Ki

2
i=1   

Take, Mi = Min Di , Ki  = Production quantity of product i  

Hence the simulated data based optimization model becomes, 

Maximize              
1

n
   (Pi − Ci)Mij 

2
i=1

n
j=1 − CStrategy  2  Ki

2
i=1     

Subject to:    Mij ≤ dij               ∀ i, j     

    Mij − Ki ≤ 0      ∀ i, j    

   Mij , Ki ≥ 0          ∀ i, j 

 

Two Product, Flexible Plant: 

This strategy has been discussed already in the previous sub-section. 

 

3.3. Comparison between Analytical and Simulated Data Based Procedure: 

To find optimal capacity levels and maximum profit and corresponding optimal capacity values 

for the three strategies discussed above, working has been done on two different parameter sets. 

The values have been generated by both analytical (wherever possible) and simulated data based 

procedure. In both the examples demands have been considered to be followed independent 

normal distribution with given parameters. Using these parameters 10,000 demand scenarios has 

been generated. Percent deviation has been calculated using the following formula:  

Percent deviation = (Simulated data based result– Analytical result)×100/(Analytical result) 
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Example 1: Consider marginal cost of Capacity for any case = 4. 

Other Parameters are shown below: 

Data Price Cost Salvage Value Mean Demand Std. dev. of Demand 

Product 1 15 9 5 100 25 

Product 2 13 8 3 200 40 

 

Analytical 

based results 

Case 1 Case 2 Case 3 

Capacity Profit Capacity Profit Capacity Profit 

Product 1 78.96 130.0 89.23 145.5 260.3 -- 

Product 2 148.74 129.8 166.34 144.0 

 

Simulated data 

based results 

Case 1 Case 2 Case 3 

Capacity Profit Capacity Profit Capacity Profit 

Product 1 79.24 130.7 89.59 146.2 260.74 334.2 

Product 2 148.25 129.4 166.03 143.6 

 

Percent 

deviation 

Case 1 Case 2 Case 3 

Capacity Profit Capacity Profit Capacity Profit 

Product 1 0.35 0.54 0.40 0.48 0.17 

 

-- 

 Product 2 -0.33 -0.31 -0.19 -0.28 

Example 2: Consider marginal cost of Capacity for any case = 4. 

Other Parameters are shown below: 

Data Price Cost Salvage Value Mean Demand Std. dev. of Demand 

Product 1 15 9 5 200 40 

Product 2 13 8 3 100 25 

 

Analytical 

based results 

Case 1 Case 2 Case 3 

Capacity Profit Capacity Profit Capacity Profit 

Product 1 166.34 288 182.77 312.7 260.3 -- 

Product 2 67.96 56.2 78.96 65.0 

 

Simulated data 

based results 

Case 1 Case 2 Case 3 

Capacity Profit Capacity Profit Capacity Profit 

Product 1 166.05 288.2 182.79 312.6 260.32 434.6 

Product 2 68.06 56.5 78.9 65.2 

 

Percent 

deviation 

Case 1 Case 2 Case 3 

Capacity Profit Capacity Profit Capacity Profit 

Product 1 -0.17 0.07 0.01 -0.03 0.01 

 

-- 

 Product 2 0.15 0.53 -0.08 0.31 
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From the above examples one can conclude that the results found using simulated data based 

optimization procedures are very close to the results found using analytical procedures 

(deviations are less than 0.5% for most of the cases). Now, in the next sections, multivariate 

analysis and correlation will be introduced, and this becomes extremely difficult if not 

impossible to solve by analytical method and obtain closed form solution for optimum profit and 

capacity levels. Hence for the rest of the paper, whenever it has been required to maximize profit 

for the optimal capacity levels, simulated data based optimization has been used. 

4. Multi Product Cases: 

4.1. Methodology:  

In this section multivariate normal demand distribution has been considered, so that it can 

capture the effects of correlation on profit level. Normal numbers have been generated by using 

variance-covariance matrix. The demands of the products Di ∈ R+ are random draws from a 

multivariate normal distribution function. For product i, realization of demand is di, the mean of 

the marginal distribution is μ
i
, the variance is σi

2, and the covariance of the joint distribution 

is σik= ρ
ik

σiσk, where 1 ρ
ik

  - 1 for i ≠ k. 

For three products following correlated multivariate distribution, finite discretization of random 

parameter allows writing the expectation in the form of summation and makes the problem 

tractable. The random multivariate normal numbers have been produced by pre-multiplying a 

vector of random univariate normal numbers by the Cholesky decomposition of the Variance–

Covariance matrix (V) according to the formula:  

                    Z = µ +LX    …….. (8) 

Where, 

Z = a vector of random multivariate normal numbers  

µ = a vector of mean of the marginal distribution 

X = a vector of random univariate normal numbers  

L = the Cholesky decomposition of the covariance matrix.  

Here the values derived from the Cholesky decomposition have been stored in the lower triangle 

and main diagonal of a square matrix; elements in the upper triangle of the matrix are 0.  

If variance–covariance matrix is real, symmetric and positive definite, then Cholesky 

decomposition exists. 
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Positive-definiteness: 

An arbitrary matrix is positive definite if and only if all the principal sub-matrices have a positive 

determinant. 

 

4.1.1. Cholesky decomposition Algorithm: 

V=LL
T
 

Start with L=0 

for i=1… m do 

Subtract from vi,i, the dot product of the ith row of L with itself and set li,i to be the square 

root of this. 

for j=i+1,…,m  

Subtract from li,j, the dot product of the ith and jth rows of L and set lj,i to be this 

result divided by li,i. 

4.1.2. Example of Cholesky Decomposition: 

Consider V, a [3×3] matrix, as given below: 

V=  
10 2 – 4

2 15 1

– 4 1 6

  

Matrix is real, symmetric and positive definite. Hence Cholesky decomposition exists. The steps 

are shown below: 

L1=  
0 0 0

0 0 0

0 0 0

  ; 

For i = 1, v1,1 = 10 and 1
st
 row of L =  0 0 0 ; the dot product = 0×0 + 0×0 + 0×0 = 0; hence, 

l1,1 = √( v1,1 – dot product) = √(10 – 0) = 3.16. 

L2=  
3.16 0 0

0 0 0

0 0 0

  ; 

Given i = 1, for j = 2, 1
st
 row of L =  3.16 0 0  and 2

nd
 row of L =  0 0 0 ; the dot product 

= 3.16×0 + 0×0 + 0×0 = 0; hence l2,1 = (v2,1 – dot product)/ l1,1 = 2/3.16 = 0.63. 
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Given i = 1, for j = 3, 1
st
 row of L =  3.16 0 0  and 3

rd
 row of L =  0 0 0 ; the dot product 

= 3.16×0 + 0×0 + 0×0 = 0; hence l3,1 = (v3,1 – dot product)/ l1,1 = – 4/3.16 = – 1.26. 

L3=  

3.16 0 0

0.63 0 0

– 1.26 0 0

  ; 

For i = 2, v2,2 = 15 and 2
nd

 row of L =  0.63 0 0 ; the dot product = 0.63×0.63 + 0×0 + 0×0 = 

0.3969; hence, l2,2 = √( v2,2 – dot product) = √(15 – 0.3969) = 3.82. 

L4=  
3.16 0 0

0.63 3.82 0

– 1.26 0 0

  

Given i = 2, for j = 3, 2
nd

 row of L =  0.63 3.82 0  and 3
rd

 row of L =  -1.26 0 0 ; the dot 

product = 0.63× (–1.26) + 3.82×0 + 0×0 = 0; hence l3,2 = (v3,2 – dot product)/ l2,2 = (1 – (– 

0.79))/3.82 = 0.47. 

L5=  

3.16 0 0

0.63 3.82 0

– 1.26 0.47 0

  ; 

For i = 3, v3,3 = 6 and 3
rd

 row of L =  – 1.26 0.47 0 ; the dot product = (– 1.26)×(– 1.26) + 

0.47×0.47 + 0×0 = 1.8; hence, l3,3 = √( v3,3 – dot product) = √(6 – 1.8) = 2.04. 

Finally L=  

3.16 0 0

0.63 3.82 0

– 1.26 0.47 2.04

  

Now, as per eq. (1) one only needs to generate X, column vector of standard normal random 

numbers. Then by the use of eq. (1), each set of X has been used generates one set of random 

numbers from multivariate normal distribution. In this way, 10,000 sets of samples have 

generated for the purpose. It has been seen that, with this large number the samples, statistics 

follow original distribution parameters.  

Alike previous section, here also 10,000 demand data sets have been used for the optimization 

procedure. Models for simulated data based optimization are same as two product cases (section 

3.3), except total number of products in these cases are 3. Hence, in this sub-section opportunity 

loss models for the above-mentioned strategies have been introduced. 
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4.2. Opportunity Loss Models: 

Multi Product, Dedicated Plants, No Production Postponement: 

ΠStrategy  1 =    Pi − Ci Max Di − Ki , 0 + (Si − Ci)Max Ki − Di , 0  m
i=1 + CStrategy  1  Ki

m
i=1   

Hence the model becomes, 

Minimize      
1

n
    Pi − Ci Uij − (Si − Ci)Vij 

m
i=1

n
j=1 + CStrategy  1  Ki

m
i=1     

Subject to:    Dij − Ki = Uij − Vij      ∀ i, j 

   Uij , Vij , Ki ≥ 0                ∀ i, j 

Multi Product, Dedicated Plants, Production Postponement: 

ΠStrategy  2 =    Pi − Ci Max Di − Ki , 0  m
i=1 + CStrategy  2  Ki

m
i=1   

Hence the model becomes, 

Minimize      
1

n
    Pi − Ci Uij  

m
i=1

n
j=1 + CStrategy  2  Ki

m
i=1     

Subject to:    Dij − Ki = Uij − Vij      ∀ i, j 

   Uij , Vij , Ki ≥ 0                ∀ i, j 

Multi Product, Flexible Plant: 

ΠStrategy  3 =    Pi − Ci Max Di − Ki , 0  m
i=1 + CStrategy  3K  

Hence the model becomes, 

Minimize      
1

n
    Pi − Ci Uij  

m
i=1

n
j=1 + CStrategy  3K  

Subject to:     Dij
m
i=1 − K =   Uij − Vij 

m
i=1        ∀ j  

   Uij , Vij , Ki ≥ 0                ∀ i, j 

 

As intuitive, capacity values in case of profit models and opportunity loss models are same. 

 

4.3. Findings: 

Variance and coefficient of variation represent two common measures of individual level of 

demand uncertainty. On the other hand change in correlation changes aggregate level demand 

uncertainty keeping variance unchanged. In the numerical analysis, considering three-product 

environment, the effect of these uncertainties on optimal expected total profit and corresponding 

total capacity level has been tried to capture for all the strategies discussed above. μ
i
 = 500, Pi = 

80, Ci = 20, Si = 5 for all products and CStrategy S  = 10 for all strategies. However, incorporating 

differences in cost of capacities of dedicated and flexible plants can be easily done. To check the 
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effects of uncertainty following parameter sets have been considered: changes in coefficient of 

variation = {0.05, 0.1, 0.15, 0.2}, changes in variance = {2000, 4000, 6000, 8000, 10000}, 

changes in correlation = {0.99, 0.5, 0.25, 0, – 0.25, – 0.5} for all products. The results are 

tabulated in Appendix A.1. The graphs have been shown in Appendix E. The observations have 

been discussed below: 

1) Except when correlation is negative, the capacity of the flexible plant remains in between 

total capacity of the dedicated plants having no postponement and the same having 

production postponement, with last one giving the highest capacity. However, for highly 

positively correlated (0.99) demands, under postponement, the capacity of flexible plant 

becomes equal to aggregate capacity of dedicated plants. For negatively correlated demands, 

flexible plant optimal capacity is always the least. Intuitively, production postponement tends 

to increase the capacity as a result of elimination of overproduction, while the flexibility 

reduces the capacity due to pooling effect. For highly negatively correlated demands, 

aggregate demand variance almost reduces to zero and capacity approaches total mean 

demand value. For example in our case minimum possible correlation is – 0.5, as variance–

covariance matrix does not remain positive definite below this value. At this level of 

correlation, irrespective of variance, total demand realization becomes 1500. Hence there is 

no aggregate level of uncertainty at this value and flexible plant capacity also remains at 

1500. 

2) In terms of profit, flexible plant always remains the best choice, followed by dedicated plant 

with production postponement; dedicated plants having no postponement give the least 

profit. For negatively correlated demand benefit from flexible plant is intuitive as below 

average realized demand for one product has been compensated by the higher than average 

realized demand for another product. For example alike capacity, with correlation of – 0.5, 

profit remains unaffected by the variance level. However, for highly positively correlated 

(0.99) demands, under postponement, the profit from flexible plant becomes equal to that of 

dedicated plant.  

3) For dedicated plant strategies, profit and capacity remains unaffected with the change in 

correlation coefficient. However, with the reduction in correlation flexible plant optimal 

profit increases and capacity decreases. 
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Now the effects of uncertainties have been discussed on the strategies for a) change in demand 

differential, b) change in price differential, c) change in price and d) change in capacity cost. 

a) When the effects of change in demand differential have been examined, mean demands for 

the products have been considered as follows: {500, 500, 500}; {400, 500, 600} and {250, 

500, 750}. This helps to observe the effects on three levels of demand differential, {0, 200, 

500}, average mean demand unchanged, where first one corresponds to the base case. Other 

values remain same: Pi = 80, Ci = 20, Si = 5 and CStrategy S  = 10. The results have been 

tabulated in Appendix A.1. The graphs have been shown in Appendix E. it has been observed 

that, changes in demand differential, has no effect on optimal profit and capacity for any of 

the three strategies, but individual profits and capacities change.  

b) For examining the effects of change in price differential, prices for the products have been 

considered as follows: {80, 80, 80}; {60, 80, 100} and {40, 80, 120}. This helps to observe 

the effects on three levels of price differential, {0, 40, 80}, where first one corresponds to the 

base case and average product price remains unchanged. Other values remain same: μ
i
 = 500, 

Ci = 20, Si = 5 and CStrategy S  = 10. The results have been tabulated in Appendix A.2. The 

graphs have been shown in Appendix E. Increase in price differential decreases capacity for 

all three strategies. However, the effect of price differential on optimal total profit is not 

much. 

c) For observing the effects of change in price, three price levels, {40, 55, 80} have been 

considered, where all the products have same price. Other values remain same: μ
i
 = 500, Ci = 

20, Si = 5 and CStrategy S  = 10. The results have been tabulated in Appendix A.3. The graphs 

have been shown in Appendix E. The effects of no postponement and postponement on 

optimal total capacity and profit have been discussed below.  

1) In case of dedicated plant with no production postponement strategy when price of the 

product is low (40), capacity is less than the expected total demand and capacity 

decreases with the increase in variance. Similarly, when price of the product is high (80), 

capacity is greater than the expected total demand and capacity increases with the 

increase in variance. The reason is quite simple; when price is low, then cost of 

overstocking (20 + 10 – 5 = 25) exceeds the cost of understocking (40 – 20 – 10 = 10) 

and the capacity is maintained at a lower side. With the increase in variance, expected 

loss from overstocking increases more compared to expected loss from understocking. 
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Hence the capacity also reduces. When the price is high exactly opposite happens (cost of 

overstocking = 25 < cost of understocking = 50). When cost of overstocking and cost of 

understocking are almost same (at price 55 the value is 25), capacity has been maintained 

near to expected demand value and capacity remains indifferent with the change in 

variance. However optimal expected profit always reduces with the increase in variance 

or coefficient of variation as with the increase in individual uncertainty both the expected 

understocking and expected overstocking cost increases. These results are in line with the 

analytical findings in two product case.  

2) In case of production postponement, capacity increases and profit reduces with the 

increase in variance for both dedicated and flexible plants. However, when the cost of 

overcapacity and the cost of undercapacity both remain same, optimal total capacity level 

remains almost equal to total mean demand in both dedicated and flexible plants having 

production postponement and remains unaffected by the changes in variance and 

correlation. For example, when price is 55, cost of undercapacity = 55 – 20 – 10 =25; 

when price is 40, cost of undercapacity = 40 – 20 – 10 = 10, where the cost of 

overcapacity = capacity cost = 10. In the first case total capacity is higher than mean 

demand, 1500. However, in the second case total capacity approaches the mean demand 

and remains unaffected by variance. The reason is quite simple. In case of production 

postponement there is no chance of overproduction, but there is always cost of 

underproduction due to capacity constraint and is same as undercapacity cost. As long as 

the cost of overcapacity does not exceed the cost of undercapacity, firm always gains 

from higher realized demand by maintaining higher capacity. At the same time, there is 

no loss from low realized demand except having idle capacity. But if the overcapacity 

cost is higher, the firm only tries to maintain capacity at mean demand level. 

d) For looking into the effects of change in capacity cost, three levels, {5, 10, 15} have been 

considered, where all the strategies have same capacity costs. Other values remain same: μ
i
 = 

500, Pi = 80, Ci = 20 and Si = 5. The results have been tabulated in Appendix A.4. The 

graphs have been shown in Appendix E. Increase in cost of capacity reduces both capacity 

and profit in all cases. 

In all the cases discussed above, change in correlation has no effect on unmet demand percentage 

for dedicated as well as flexible plant. However, with highly negatively correlated demand, when 
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aggregate demand variance becomes negligible, flexible plant has no unmet demand (See 

Appendix C).  

As flexible plant is effective only if there is production postponement, an index called „PdPPF 

Index‟ has been introduced to check the effect of production postponement on flexible plant 

profit where „PdPPF‟ stands for „Production Postponement effect on Flexible plant‟. The index is 

calculated as below: 

PdPPF Index= 
ProfitDedicated Plant, Postponement – ProfitDedicated Plant,  No Postponement

ProfitFlexible Plant – ProfitDedicated Plant,  No Postponement

×100% 

A reduction in PdPPF index with the increase in a particular parameter indicates that the 

abovementioned effect reduces and suggests that manufacturer can invest more in product 

flexible technology. Hence, this PdPPF index can also be considered as the proxy of the value of 

product flexibility. Although, profit decreases with the increase in variance for all strategies, 

PdPPF index remains unaffected in variance or coefficient of variation; which means, the value 

of product flexibility has not been affected by the individual level demand uncertainty. However, 

PdPPF index decreases with the decrease in correlation. With the increase in negative 

correlation, manufacturer‟s incentive to invest in product flexibility increases. PdPPF index also 

decreases with the increase in price differential or with the decrease in marginal cost of capacity. 

So it can be concluded that the value of product flexibility increases in price differential. Product 

flexibility becomes more effective when higher price differential or lower marginal cost of 

capacity has been combined with lower correlation. With the increase in negative correlation, the 

price differential effect diminishes with increase in negative correlation, but the effect of 

marginal cost of capacity increases with the increase in negative correlation. The explanations 

have been given below (For PdPPF Index values see Appendix B.5): 

a) With the change in price differential, the total profits of dedicated plant (both 

postponement and no postponement) strategies have not been affected much. They also 

remain unaffected with the change in correlation. However, the profit of flexible plant 

increases with decrease in correlation due to pooling effect. With the increase in price 

differential, this additional gain from flexibility becomes less effective. In other words, 

correlation effect acts better in flexible plant when price differential is low. The 

explanation is simple. With the increase in price differential, the flexible firm increases 

the option to allocate more of it‟s resource to the high price product, so that it can always 
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meet the demand of high price product, even at the cost of low price product.  As a result 

in case of high correlation also, flexible firm profit is more compared to dedicated plant 

with postponement. As a result, for different price differentials, PdPPF Index converges 

with decrease in correlation. The same can be observed in graph also (See Appendix E, 

Graph 6(a)). 

b) With the reduction in correlation, PdPPF Index decreases irrespective of the price of the 

product. However, with very high correlation (0.99) they converge at value =1. The 

reason is quite intuitive. At 0.99 correlation value, there is no additional gain from 

flexible plant over dedicated plant with postponement. So the optimal profit in both cases 

remains same and the PdPPF Index value becomes unity. With the change in correlation 

the optimal profit in dedicated strategies do not change, but the profit of flexible plant 

increases due to pooling effect. Hence, PdPPF Index decreases. However, with the 

reduction in product price, this additional gain from flexibility becomes less effective 

(with low price product the flexible plant profit range reduces). In other words, 

correlation effect acts better in flexible plant when prices of the products are high. But, at 

the same time, with the decrease in price the extra benefit of postponement reduces as the 

cost of understocking reduces and capacity has been maintained at lower side. Hence, the 

difference between profits in dedicated plant strategies reduces. As a result with the 

decrease in correlation PdPPF Index diverges. The same can be observed in graph also 

(See Appendix E, Graph 6(b)). 

c) In case of change in capacity cost, the structure of the graph and explanation on PdPPF 

Index is same as the effect of change in price. The same can be observed in graph also 

(See Appendix E, Graph 6(c)). 

 

5. Service level constraint in multi product case: 

In today‟s customer oriented business, maximizing profit is not the only target for firms. They 

also need to consider the service level as a satisfying objective. Here, service level means the 

expected number of cases where the demand has been met. Maximizing expected profit being the 

main objective of the firm, service level objective has been taken as constraint to the models. The 

aggregate service level has been calculated by averaging individual service levels, based on the 

assumption that same cost of stock-out occasions for products. 
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5.1. Mixed Integer Models for Satisfying Aggregate Service Level: 

When constraints have been added for satisfying service level in models presented in section 

3.2.2 one can go for the following argument. Given A = a large number, I = binary variable, D = 

demand of product, Z = Sales level, if A*I ≥ D – Z, then 

D – Z > 0 I = 1 

D – Z = 0 I = 0, 1 

D – Z < 0 I = 0, 1 

Then, if “total I ≤ a given value” has been used as a constraint, it will try to assign zero to I 

values, whenever required. In other words, it will try to make D – Z ≤ 0. So unmet demand 

instances will be reduced upto the required level. 

Multi Product, Dedicated Plants, No Production Postponement (Service level  70%): 

Maximize             
1

n
   (Pi − Si)Zij 

m
i=1

n
j=1 −  (CStrategy  1 + Ci − Si)Ki

m
i=1     

Subject to:    Zij ≤ dij                             ∀ i, j 

   Zij − Ki ≤ 0                        ∀ i, j 

   dij − Zij − A × Iij ≤ 0      ∀ i, j 

     Iij ≤ 0.3mnm
i=1

n
j=1  

   Iij  binary                           ∀ i, j   

   Zij , Ki ≥ 0                            ∀ i, j 

   A = Big positive number 

Multi Product, Dedicated Plants, Production Postponement (Service level  90%): 

Maximize             
1

n
   (Pi − Ci)Mij 

m
i=1

n
j=1 − CStrategy  2  Ki

m
i=1     

Subject to:    Mij ≤ dij                             ∀ i, j 

   Mij − Ki ≤ 0                        ∀ i, j 

   dij − Mij − A × Iij ≤ 0       ∀ i, j 

     Iij ≤ 0.1mnm
i=1

n
j=1  

   Iij  binary                            ∀ i, j   

   Mij , Ki ≥ 0                            ∀ i, j 

   A = Big positive number 

Multi Product, Flexible Plant, Production Postponement (Service level  90%): 

Variable   Mij ≥ 0   ∀ i, j;          K ≥ 0;      Iij  binary  ∀ i, j          

Maximize               
1

n
   (Pi − Ci)Mij 

m
i=1

n
j=1 − CStrategy  3K    
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Subject to:    Mij ≤ dij                             ∀ i, j 

    Mij
m
i=1 − Ki ≤ 0               ∀ i, j 

   dij − Mij − A × Iij ≤ 0       ∀ i, j 

     Iij ≤ 0.1mnm
i=1

n
j=1  

   Iij  binary                            ∀ i, j   

   Mij , Ki ≥ 0                            ∀ i, j 

   A = Big positive number 

 

When one goes for satisfying individual service level only fourth constraint changes as below: 

    Iij
n
j=1 ≤ 0.3n                      ∀ i (When required service level ≥ 70%) and, 

    Iij
n
j=1 ≤ 0.1n                      ∀ i (When required service level ≥ 90%) 

The problem with MIP models discussed above is that in many cases it can not perform with 

more than 100 demand data sets. So alternate approach has been adopted, which has been 

discussed next. 

5.2. Simulation Diagram for Checking Required Service Level: 

 

 

5.3. Results and Findings: 

To compare the results with section 4.3 same parameter values have been kept. The observations 

have been discussed below (For PdPPF Index values with SLC see Appendix B.5): 

 

No 

Yes 

START 

Set K = K + S 

Find Optimal Profit, Capacity K, Unmet Demand 

Using Models from Section 3.2.2 

Generate 10000 Demand Data Sets from 

Multivariate Normal Distribution Input: Price, Cost, Salvage Value, 

Capacity Cost, Service Level, Capacity 

Incremental Value = S 

Output: Capacity K, Profit 

at Capacity K 

Is Unmet Demand % ≤ 

(1 – Service Level) % 

FINISH 

Find Profit, Unmet Demand for Capacity K Using 

Models from Section 3.2.2 
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1) Observations regarding PdPPF Index: PdPPF decreases with decrease in correlation in both 

SLC and without SLC. At same correlation level, with SLC, PdPPF increases with decrease in 

price differential, increase in price and decrease in capacity cost.  However, without SLC PdPPF 

values converges at highly negative correlation when change in price differential happens, and it 

converges at highly positive correlation when change in price or change in capacity cost 

happens. On the other hand, when service level constraint has been imposed, PdPPF Index 

diverges with decrease in correlation for different price differential levels as well as for different 

price levels. However, with different capacity cost PdPPF Index remains parallel. The 

explanations have been given below: 

a) As the service level constraints in any of the price differential levels are not violated 

much, the differences between profits in dedicated plant strategies are alike in this case 

compared to the cases without SLC. Hence, when operated under SLC, for different price 

differential levels, PdPPF Index converges with decrease in correlation. The same can be 

observed in graph also (See Appendix E, Graph 7(a)). 

b) With the decrease in the product price, rate of decrease in Unmet Demand Percentage 

(hence, UD %) is more in case of dedicated plant with postponement compared to 

flexible plant. On the other hand, dedicated plant with no postponement has been affected 

most with service level constraint. As a result, the less the product price, the more profit 

reduction happens for dedicated plant strategies to fulfill the service level requirement. 

When price values are 80 and 55, flexible plant service levels are not violated and, in case 

of price = 40, a small reduction in profit happens to maintain the service level. Hence, 

even with correlation = 0.99, the profits between dedicated plant with postponement and 

flexible plant differs and this difference increases with decrease in product price. 

However, with the decrease in correlation, dedicated plant (both postponement and no 

postponement) profits with SLC remain same as optimal profit (without SLC) and UD % 

do not change in correlation for dedicated plants. As with the reduction in product price, 

additional gain from flexibility becomes less effective, the denominator of the PdPPF 

Index shows less increase with the reduction in correlation when product price is low. On 

the other hand, the reduction in differences between profits in dedicated plant strategies 

are less compared to the cases without SLC. As a result, as product price decreases, the 

PdPPF Index decreases less with the reduction in correlation. In other words, when 
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operated under SLC, for different product prices, PdPPF Index diverges with increase in 

correlation. The same can be observed in graph also (See Appendix E, Graph 7(b)). 

c) In case of change in capacity cost, the reason for non convergence at correlation = 0.99 is 

same as the effect of price change. However, as the service level constraints in any of the 

capacity cost levels are not violated much, the reduction in differences between profits in 

dedicated plant strategies are alike in this case compared to the cases without SLC. 

Hence, when operated under SLC, for different capacity cost levels, PdPPF Index 

remains parallel with the change in correlation. The same can be observed in graph also 

(See Appendix E, Graph 7(c)). 

2) Observations regarding reduction in profit from imposing Service Level Constraint (SLC): 

Reduction in Profit Percentage = RP % = [(Profit with SLC – Profit without SLC) ×100/ Profit 

without SLC]. More negative value of reduction in profit means more decrease in profit with 

SLC (See Appendix D). 

a) In case of dedicated plant with postponement, correlation has no effect on RP %. The RP % 

decreases with correlation in case of flexible plant. 

b) With increase in variance and decrease in price of products, RP % decreases for both 

dedicated and flexible plant. However the effect is less in case of flexible plant. 

c) Change in price differential or change in capacity cost has little effect on the RP %. 

 

6. Conclusion: 

This paper deals with the optimal capacity planning under demand uncertainty. Simulated data 

based optimization procedure used in this paper helped to solve the multi-product two stage 

stochastic linear programming which is otherwise analytically intractable. The effect of 

production postponement increases profit, but flexible plant may generate higher profit compared 

to dedicated plants depending on the cost of flexible technology. For dedicated plant strategies, 

profit and capacity remains unaffected with the change in correlation coefficient. However, with 

the reduction in correlation flexible plant optimal profit increases and capacity decreases. On the 

other hand, change in demand differential or price differential has no effect on aggregate 

capacity or profit for any of the three strategies. But profit reduces with the reduction in price or 

increase in capacity cost. 
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The PdPPF index introduced in the paper is helpful in deciding on choice between dedicated and 

product flexible plant. The value of flexibility has not been affected by the change in individual 

demand uncertainty, but effectiveness of product flexibility increases with negatively correlated 

demands. The change in demand differential has no effect on aggregate capacity or aggregate 

profit level in any of the three strategies, however, increase in price differential or decrease in 

marginal cost of capacity increases the value of flexibility. 

Change in correlation has no effect on unmet demand percentage for dedicated as well as flexible 

plant. However, with highly negatively correlated demand, when aggregate demand variance 

becomes negligible, flexible plant has no unmet demand. On the other hand, when service level 

constraint has been imposed, PdPPF Index diverges with decrease in correlation for different 

price differential levels as well as for different price levels. However, with different capacity cost 

PdPPF Index remains parallel. 

The main contribution of this paper is threefold. First, the procedure of finding optimal profit and 

capacity has been developed for dedicated and flexible plant facing multivariate correlated 

demand distribution, which is otherwise analytically intractable. Second, PdPPF Index has been 

introduced as a proxy for value of product flexibility to find several meaningful insights based on 

the changes in various parameters. Third, the service level objective has been added to look into 

the problem from multi-objective angle. 

Several extensions to the models are possible. We are currently working on price dependent 

demand scenario to accommodate price postponement into our model and observe the effect of 

product substitutability. Another extension on which we are also working is to extend the models 

for multi-period scenario. 
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Appendix A: Results 
Appendix A.1: 

Parameter values: Price = 80, Cost = 20, Salvage value = 5 for each of the three products; 

Marginal cost of capacity = 10 for any type of plant 

σ/μ = {0.05, 0.1, 0.15, 0.2}, σ
2
 = {2000, 4000, 6000, 8000, 10000} 

 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 
 

Mean Demand = {500, 500, 500} 
 

Mean Demand = {400, 500, 600} 
 

Mean Demand = {250, 500, 750} 

Change in σ/μ,  = 0.99 

 

Change in σ/μ,  = 0.99 

 

Change in σ/μ,  = 0.99 

1532 1574 1573 72965 73891 73895 1532 1572 1571 72891 73822 73825 1531 1573 1573 72888 73823 73826 

1562 1642 1641 70828 72661 72668 1566 1648 1648 71000 72845 72853 1565 1643 1642 70911 72751 72758 

1599 1719 1719 68973 71741 71752 1597 1715 1714 68872 71621 71633 1601 1721 1720 69028 71794 71804 

1623 1779 1777 66731 70355 70370 1631 1791 1792 66986 70656 70671 1628 1789 1787 33779 70464 70476 

Change in σ
2
,  = 0.99 Change in σ

2
,  = 0.99 Change in σ

2
,  = 0.99 

1558 1631 1631 71387 73039 73045 1556 1628 1627 71335 72970 72977 1556 1630 1630 71349 72996 73304 

1581 1683 1682 69781 72106 72116 1579 1682 1682 69680 72019 72028 1580 1681 1681 69795 72103 72112 

1596 1726 1724 68551 71424 71437 1604 1731 1731 68678 71578 71590 1600 1726 1726 68722 71566 71577 

1619 1762 1761 67742 71054 71069 1618 1765 1766 67705 71032 71045 1614 1759 1759 67832 71083 71096 

1623 1783 1782 66686 70334 70349 1633 1793 1790 66828 70553 70569 1627 1789 1787 66778 70450 70465 

Change in σ/μ,  = 0.5 Change in σ/μ,  = 0.5 Change in σ/μ,  = 0.5 

1532 1573 1558 72979 73899 74108 1532 1572 1560 72918 73847 74046 1532 1571 1559 72965 73882 74068 

1565 1645 1621 70929 72771 73206 1566 1646 1619 71019 72856 73262 1567 1644 1622 70942 72788 73167 

1597 1716 1677 68923 71662 72269 1598 1716 1676 69039 71764 72374 1597 1716 1680 68950 71696 72249 

1629 1787 1734 66855 70522 71370 1633 1796 1743 66907 70625 71426 1631 1789 1743 66818 70519 71250 

Change in σ
2
,  = 0.5 Change in σ

2
,  = 0.5 Change in σ

2
,  = 0.5 

1557 1628 1606 71311 72950 73312 1558 1632 1608 71360 73026 73384 1558 1630 1606 71340 72991 73355 

1581 1685 1650 69785 72123 72648 1582 1683 1648 69934 72238 72764 1582 1684 1650 69872 72196 72720 

1598 1724 1681 68577 71428 72074 1596 1723 1681 68523 71377 72027 1600 1725 1684 68617 71485 72124 

1612 1754 1706 67670 70935 71658 1616 1761 1710 67684 70984 71709 1612 1756 1707 67619 70904 71643 

1629 1787 1734 66855 70522 71370 1631 1792 1735 66880 70571 71394 1629 1789 1736 66939 70598 71418 

Change in σ/μ,  = 0.25 Change in σ/μ,  = 0.25 Change in σ/μ,  = 0.25 

1532 1573 1551 72940 73868 74204 1531 1571 1550 72909 73826 74154 1533 1572 1554 73015 73933 74228 

1565 1646 1604 70925 72773 73433 1562 1642 1600 70826 72660 73314 1562 1642 1602 70831 72667 73269 

1597 1717 1653 68920 71671 72650 1593 1714 1650 68659 71429 72391 1595 1714 1657 68785 71545 72438 

1628 1793 1706 66824 70515 71858 1633 1793 1705 67033 70721 72038 1627 1792 1716 66763 70451 71643 

Change in σ
2
,  = 0.25 Change in σ

2
,  = 0.25 Change in σ

2
,  = 0.25 

1557 1629 1590 71290 72938 73530 1558 1631 1592 71379 73022 73621 1558 1629 1593 71366 73009 73584 

1583 1685 1631 69933 72261 73099 1582 1686 1630 69785 72131 72967 1580 1680 1629 69799 72111 72929 

1603 1726 1663 68722 71583 72599 1599 1722 1656 68658 71508 72534 1598 1722 1655 68712 71541 72600 

1617 1763 1687 67793 71094 72252 1617 1760 1686 67725 71027 72184 1615 1760 1685 67691 70989 72158 

1628 1793 1706 66824 70515 71858 1631 1792 1708 66842 70553 71858 1625 1786 1707 66660 70351 71649 

Change in σ/μ,  = 0 Change in σ/μ,  = 0 Change in σ/μ,  = 0 

1533 1573 1542 72979 73906 74383 1532 1572 1543 72973 73893 74355 1531 1573 1545 72953 73872 74294 

1566 1647 1587 70949 72804 73735 1563 1644 1583 70845 72691 73634 1562 1643 1586 70858 72700 73543 

1595 1718 1624 68838 71598 73043 1597 1718 1627 68915 71675 73091 1598 1719 1639 68856 71628 72883 

1626 1791 1666 66631 70340 72223 1631 1792 1670 66879 70575 72440 1631 1792 1685 66915 70595 72269 

Change in σ
2
,  = 0 Change in σ

2
,  = 0 Change in σ

2
,  = 0 

1557 1630 1575 71319 72964 73823 1559 1632 1577 71460 73108 73961 1557 1629 1575 71340 72982 73816 

1583 1684 1607 69872 72207 73389 1582 1684 1605 69845 72180 73388 1581 1684 1606 69827 72153 73331 

1596 1722 1627 68533 71380 72868 1599 1726 1629 68635 71499 72973 1600 1724 1630 68645 71509 72972 

1615 1760 1648 67688 70993 72706 1615 1760 1649 67706 70993 72685 1615 1762 1652 67707 71018 72734 

1626 1791 1666 66631 70340 72223 1626 1786 1663 66725 70395 72288 1627 1791 1665 66705 70407 72299 
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Change in σ/μ,  = – 0.25 Change in σ/μ,  = – 0.25 Change in σ/μ,  = – 0.25 

1531 1573 1529 72933 73858 74526 1532 1573 1531 72974 73897 74547 1532 1572 1535 72937 73864 74439 

1565 1646 1560 70958 72799 74145 1563 1645 1560 70893 72744 74047 1565 1645 1569 70982 72813 73961 

1595 1715 1587 68851 71608 73584 1597 1720 1591 68848 71634 73619 1596 1716 1602 68795 71577 73319 

1629 1788 1617 66910 70563 73195 1628 1788 1620 66751 70347 73032 1629 1788 1640 66845 70511 72779 

Change in σ
2
,  = – 0.25 Change in σ

2
,  = – 0.25 Change in σ

2
,  = – 0.25 

1557 1631 1553 71330 72988 74198 1557 1630 1553 71268 72940 74147 1558 1629 1553 71349 72996 74205 

1581 1683 1574 69810 72143 73832 1580 1683 1573 69801 72140 73819 1582 1684 1574 69855 72188 73868 

1598 1723 1589 68578 71434 73487 1602 1724 1592 68757 71606 73663 1601 1727 1592 68697 71556 73628 

1616 1759 1603 67666 70966 73390 1615 1758 1607 67734 71014 73376 1612 1757 1605 67680 70947 73305 

1629 1788 1617 66910 70563 73195 1632 1791 1618 66781 70494 73179 1628 1793 1619 66826 70504 73161 

Change in σ/μ,  = – 0.5 

 

Change in σ/μ,  = – 0.5 

 

Change in σ/μ,  = – 0.5 

1532 1573 1500 72941 73867 75000 1532 1572 1508 72949 73876 74871 1531 1572 1520 72931 73850 74649 

1565 1644 1500 70917 72765 75000 1565 1643 1516 70913 72755 74735 1563 1644 1541 70881 72720 74312 

1598 1717 1500 68840 71619 75000 1596 1718 1525 68868 71636 74614 1595 1717 1562 68919 71666 74046 

1628 1786 1500 66868 70523 75000 1630 1788 1533 66811 70485 74497 1627 1791 1584 66870 70536 73728 

Change in σ
2
,  = – 0.5 Change in σ

2
,  = – 0.5 Change in σ

2
,  = – 0.5 

1557 1629 1500 71339 72988 75000 1558 1630 1500 71335 72986 75000 1558 1630 1500 71324 72978 75000 

1581 1685 1500 69790 72135 75000 1582 1683 1500 69822 72163 75000 1580 1684 1500 69840 72158 75000 

1603 1724 1500 68645 71521 75000 1601 1725 1500 68688 71533 75000 1599 1722 1500 68711 71537 75000 

1615 1761 1500 67655 70961 75000 1614 1758 1500 67745 71015 75000 1616 1762 1500 67625 70957 75000 

1628 1786 1500 66868 70523 75000 1630 1790 1500 66795 70487 75000 1628 1790 1500 66839 70509 75000 

 

Appendix A.2: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5, σ
2
 = 10000 for each of the 

three products; Marginal cost of capacity = 10 for any type of plant;  = {0.99, 0.5, 0.25, 0, – 

0.25, – 0.5} 

 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 
 

Price = {80, 80, 80} 

 

Price = {60, 80, 100} 

 

Price = {40, 80, 120} 

Change in  Change in  Change in  

1623 1783 1782 66686 70334 70349 1614 1775 1699 66687 70314 70929 1563 1725 1500 67613 70869 72539 

1629 1787 1734 66855 70522 71370 1611 1772 1659 66897 70443 71727 1566 1726 1501 67807 71060 73160 

1628 1793 1706 66824 70515 71858 1617 1776 1640 66992 70580 72301 1566 1728 1502 67670 70938 73284 

1626 1791 1666 66631 70340 72223 1619 1779 1618 67088 70674 72894 1566 1723 1501 67700 70945 73619 

1629 1788 1617 66910 70563 73195 1616 1778 1580 66923 70511 73373 1565 1724 1500 67822 71077 74116 

1628 1786 1500 66868 70523 75000  1619 1782 1500 66965 70589 75031  1566 1727 1500 67596 70870 74970 

 

Appendix A.3: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5 for each of the three 

products; Marginal cost of capacity = 10 for any type of plant; σ
2
 = {2000, 4000, 6000, 8000, 

10000} 

 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 
 

Price = {80, 80, 80} 
 

Price = {55, 55, 55} 
 

Price = {40, 40, 40} 

Change in σ
2
,  = 0.99 

 

Change in σ
2
,  = 0.99 

 
Change in σ

2
,  = 0.99 

1558 1631 1631 71387 73039 73045 1501 1576 1576 34802 35898 35903 

 

1425 1501 1501 13401 13932 13935 

1581 1683 1682 69781 72106 72116 1500 1607 1607 33769 35288 35295 1391 1500 1500 12714 13465 13470 

1596 1726 1724 68551 71424 71437 1498 1630 1630 32894 34737 34747 1368 1496 1495 12226 13130 13136 

1619 1762 1761 67742 71054 71069 1500 1652 1652 32174 34325 34336 1349 1497 1498 11830 12867 12875 

1623 1783 1782 66686 70334 70349 1500 1672 1671 31474 33922 33934 1328 1499 1499 11431 12596 12603 
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Change in σ
2
,  = 0.5 

 

Change in σ
2
,  = 0.5 

 

Change in σ
2
,  = 0.5 

1557 1628 1606 71311 72950 73312 1502 1577 1563 34840 35930 36226 1424 1500 1500 13397 13925 14127 

1581 1685 1650 69785 72123 72648 1500 1608 1587 33718 35253 35668 1391 1497 1500 12733 13474 13753 

1598 1724 1681 68577 71428 72074 1502 1634 1610 32910 34783 35312 1366 1498 1498 12235 13139 13476 

1612 1754 1706 67670 70935 71658 1502 1653 1626 32234 34381 34962 1351 1502 1502 11825 12877 13275 

1629 1787 1734 66855 70522 71370 1502 1672 1641 31587 33996 34653 1334 1502 1499 11475 12647 13089 

Change in σ
2
,  = 0.25 Change in σ

2
,  = 0.25 Change in σ

2
,  = 0.25 

1557 1629 1590 71290 72938 73530 1500 1577 1554 34831 35915 36389 1422 1499 1499 13383 13915 14277 

1583 1685 1631 69933 72261 73099 1498 1606 1572 33637 35176 35830 1392 1499 1499 12769 13501 13945 

1603 1726 1663 68722 71583 72599 1501 1631 1593 32880 34754 35557 1372 1504 1502 12248 13170 13716 

1617 1763 1687 67793 71094 72252 1497 1650 1606 32097 34265 35195 1351 1503 1503 11821 12880 13504 

1628 1793 1706 66824 70515 71858 1500 1669 1622 31511 33929 34993 1335 1502 1502 11495 12654 13357 

Change in σ
2
,  = 0 Change in σ

2
,  = 0 Change in σ

2
,  = 0 

1557 1630 1575 71319 72964 73823 1500 1576 1544 34845 35927 36581 1424 1500 1499 13411 13934 14387 

1583 1684 1607 69872 72207 73389 1499 1607 1562 33686 35223 36173 1392 1499 1500 12742 13484 14128 

1596 1722 1627 68533 71380 72868 1498 1631 1575 32802 34681 35875 1365 1498 1497 12199 13116 13902 

1615 1760 1648 67688 70993 72706 1498 1653 1586 32099 34276 35634 1347 1499 1498 11786 12841 13744 

1626 1791 1666 66631 70340 72223 1503 1669 1601 31586 33993 35491 1334 1502 1501 11455 12626 13637 

Change in σ
2
,  = – 0.25 

 

Change in σ
2
,  = – 0.25 

 

Change in σ
2
,  = – 0.25 

1557 1631 1553 71330 72988 74198 1501 1576 1531 34841 35921 36863 1424 1500 1500 13407 13932 14563 

1581 1683 1574 69810 72143 73832 1498 1605 1543 33711 35233 36566 1391 1498 1498 12744 13481 14375 

1598 1723 1589 68578 71434 73487 1499 1631 1552 32852 34724 36375 1368 1499 1500 12238 13147 14241 

1616 1759 1603 67666 70966 73390 1499 1649 1560 32132 34285 36175 1350 1500 1500 11827 12876 14128 

1629 1788 1617 66910 70563 73195 1503 1671 1569 31589 34000 36104 1331 1500 1500 11412 12601 14016 

Change in σ
2
,  = – 0.5 Change in σ

2
,  = – 0.5 Change in σ

2
,  = – 0.5 

1557 1629 1500 71339 72988 75000 1500 1576 1500 34814 35898 37500 1424 1499 1500 13414 13935 15000 

1581 1685 1500 69790 72135 75000 1500 1607 1500 33724 35248 37500 1394 1499 1500 12756 13492 15000 

1603 1724 1500 68645 71521 75000 1500 1628 1500 32890 34745 37500 1370 1499 1500 12269 13169 15000 

1615 1761 1500 67655 70961 75000 1499 1648 1500 32194 34328 37500 1348 1499 1500 11788 12841 15000 

1628 1786 1500 66868 70523 75000 1502 1672 1500 31460 33910 37500 1330 1499 1500 11442 12608 15000 

 

Appendix A.4: 

Parameter values: Mean demand = 500, Price = 80, Cost = 20, Salvage value = 5, σ
2
 = 10000 for 

each of the three products;  = {0.99, 0.5, 0.25, 0, – 0.25, – 0.5} 

 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 

 
Capacity cost = 5 

 

Capacity cost = 10 

 

Capacity cost = 15 

Change in  Change in  Change in  

1681 1912 1911 74632 79291 79300 1623 1783 1782 66686 70334 70349 1579 1706 1706 58809 61816 61835 

1681 1912 1833 74808 79457 79951 1629 1787 1734 66855 70522 71370 1577 1704 1668 58916 61886 62920 

1690 1922 1795 75345 79997 80795 1628 1793 1706 66824 70515 71858 1575 1698 1642 58873 61819 63461 

1691 1917 1737 75171 79812 81000 1626 1791 1666 66631 70340 72223 1577 1701 1617 58839 61809 64244 

1687 1917 1661 75144 79784 81439 1629 1788 1617 66910 70563 73195 1574 1699 1579 58789 61747 65146 

1684 1907 1500 75203 79763 82500 1628 1786 1500 66868 70523 75000 1578 1701 1500 58783 61764 67500 

 

Appendix B: Results with Service Level Constraint 
 

Appendix B.1: 

Parameter values: Price = 80, Cost = 20, Salvage value = 5 for each of the three products; 

Marginal cost of capacity = 10 for any type of plant 

σ
2
 = {2000, 4000, 6000, 8000, 10000} 
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 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 

 
Demand = {500, 500, 500} 

 

Demand = {400, 500, 600} 

 

Demand = {250, 500, 750} 

Change in σ
2
,  = 0.99 Change in σ

2
,  = 0.99 Change in σ

2
,  = 0.99 

1589 1692 1661 71277 72848 72987 1587 1686 1656 71248 72794 72927 1588 1690 1630 71182 72759 72937 

1608 1742 1742 69797 72020 72030 1610 1742 1742 69609 71893 71903 1612 1760 1680 69827 71980 72207 

1625 1811 1779 68396 71059 71201 1633 1818 1787 68702 71387 71530 1628 1814 1723 68620 71292 71526 

1646 1845 1813 67799 70889 71013 1648 1851 1822 67517 70696 70821 1645 1856 1766 67536 70723 70938 

1658 1912 1851 66958 70342 70583 1660 1904 1843 66950 70293 70533 1659 1912 1792 66718 70146 70472 

Change in σ
2
,  = 0.5 Change in σ

2
,  = 0.5 Change in σ

2
,  = 0.5 

1588 1690 1637 71296 72855 73336 1589 1690 1638 71191 72781 73260 1587 1688 1604 71264 72806 73346 

1611 1750 1678 69666 71887 72543 1612 1752 1680 69746 71967 72623 1614 1764 1651 69788 71973 72712 

1629 1815 1746 68688 71344 72072 1629 1811 1711 68548 71222 72030 1633 1817 1686 68682 71367 72261 

1641 1844 1766 67399 70534 71363 1650 1852 1744 67814 70949 71858 1644 1845 1706 67451 70590 71516 

1652 1907 1791 66457 69868 70939 1661 1902 1770 66827 70273 71337 1663 1913 1738 67023 70408 71538 

Change in σ
2
,  = 0.25 Change in σ

2
,  = 0.25 Change in σ

2
,  = 0.25 

1587 1690 1621 71211 72777 73483 1590 1691 1622 71325 72887 73583 1586 1688 1590 71161 72720 73489 

1612 1754 1660 69708 71940 72898 1610 1773 1661 69725 71843 72888 1611 1752 1627 69653 71881 72892 

1632 1817 1688 68644 71325 72538 1629 1815 1689 68483 71176 72396 1632 1815 1662 68645 71329 72573 

1648 1851 1714 67783 70913 72269 1649 1852 1715 67669 70815 72168 1646 1848 1684 67668 70792 72157 

1654 1905 1761 66719 70096 71621 1667 1908 1734 66698 70136 71717 1656 1906 1704 66690 70095 71721 

Change in σ
2
,  = 0 Change in σ

2
,  = 0 Change in σ

2
,  = 0 

1587 1691 1606 71278 72839 73785 1589 1690 1606 71319 72877 73822 1588 1691 1576 71265 72823 73824 

1610 1755 1637 69692 71917 73263 1612 1761 1634 69716 71885 73242 1614 1767 1608 69841 72021 73454 

1631 1815 1661 68584 71269 72910 1629 1815 1659 68549 71235 72900 1630 1815 1628 68589 71269 72974 

1645 1846 1678 67615 70738 72599 1647 1849 1682 67686 70820 72681 1645 1859 1653 67691 70778 72724 

1661 1909 1699 66849 70256 72408 1658 1908 1697 66774 70191 72385 1669 1905 1669 66786 70271 72443 

Change in σ
2
,  = - 0.25 Change in σ

2
,  = - 0.25 Change in σ

2
,  = - 0.25 

1588 1690 1584 71271 72832 74097 1587 1690 1583 71196 72768 74025 1587 1690 1553 71224 72790 74174 

1611 1755 1604 69760 71980 73782 1612 1765 1605 69700 71892 73746 1612 1753 1575 69818 72016 73864 

1629 1814 1622 68626 71298 73528 1630 1816 1620 68599 71288 73528 1629 1814 1592 68566 71242 73535 

1643 1851 1635 67595 70732 73281 1645 1851 1637 67556 70719 73255 1645 1847 1604 67648 70775 73365 

1669 1899 1647 66791 70259 73122 1672 1912 1648 66942 70373 73294 1659 1914 1619 66754 70191 73200 

Change in σ
2
,  = - 0.5 

 
Change in σ

2
,  = - 0.5 

 
Change in σ

2
,  = - 0.5 

1588 1691 1500 71235 72809 75000  1588 1690 1500 71239 72809 75000  1588 1693 1500 71204 72790 75000 

1612 1755 1500 69772 71988 75000  1611 1756 1500 69743 71967 75000  1613 1744 1500 69762 72032 75000 

1630 1814 1500 68641 71298 75000  1630 1815 1500 68613 71283 75000  1631 1816 1500 68616 71291 75000 

1646 1859 1500 67620 70724 75000  1646 1852 1500 67631 70772 75000  1646 1849 1500 67651 70785 75000 

1648 1854 1500 67590 70753 75000  1660 1911 1500 66745 70168 75000  1661 1914 1500 66725 70174 75000 

Appendix B.2: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5, σ
2
 = 10000 for each of the 

three products; Marginal cost of capacity = 10 for any type of plant;  = {0.99, 0.5, 0.25, 0, – 

0.25, – 0.5} 

 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 
Price = {80, 80, 80} 

 

Price = {60, 80, 100} 

 

Price = {40, 80, 120} 

Change in , σ
2
 = 10000 Change in , σ

2
 = 10000 Change in , σ

2
 = 10000 

1658 1912 1851 66958 70342 70583 1685 1898 1703 66357 69971 70921 1684 1893 1676 66698 70098 72076 

1652 1907 1791 66457 69868 70939 1682 1914 1670 66737 70271 71943 1682 1894 1650 66789 70126 72569 

1654 1905 1761 66719 70096 71621 1679 1898 1642 66602 70141 72210 1689 1890 1625 66851 70297 73059 

1661 1909 1699 66849 70256 72408 1668 1906 1614 66759 70153 72734 1688 1899 1596 67132 70484 73677 

1669 1899 1647 66791 70259 73122 1687 1899 1583 66722 70288 73486 1702 1896 1589 66727 70244 73771 

1648 1854 1500 67590 70753 75000  1676 1908 1500 66721 70181 74975  1685 1886 1500 66940 70330 75006 
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Appendix B.3: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5 for each of the three 

products; Marginal cost of capacity = 10 for any type of plant; σ
2
 = {2000, 4000, 6000, 8000, 

10000} 

 

 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 

 
Price = {80, 80, 80} 

 

Price = {55, 55, 55} 

 

Price = {40, 40, 40} 

Change in σ
2
,  = 0.99 Change in σ

2
,  = 0.99 Change in σ

2
,  = 0.99 

1589 1692 1661 71277 72848 72987 1590 1698 1579 34246 35385 35911 1575 1680 1590 12286 13091 13703 

1608 1742 1742 69797 72020 72030 1618 1757 1607 32939 34615 35204 1623 1772 1621 10898 12173 13200 

1625 1811 1779 68396 71059 71201 1642 1812 1630 32049 34067 34766 1638 1810 1651 10145 11700 12761 

1646 1845 1813 67799 70889 71013 1650 1861 1651 31284 33485 34287 1653 1863 1653 9544 11190 12541 

1658 1912 1851 66958 70342 70583 1680 1899 1670 30568 33111 34010 1665 1888 1678 8942 10801 12194 

Change in σ
2
,  = 0.5 Change in σ

2
,  = 0.5 Change in σ

2
,  = 0.5 

1588 1690 1637 71296 72855 73336 1592 1698 1564 34295 35428 36245 1573 1680 1561 12274 13078 13980 

1611 1750 1678 69666 71887 72543 1619 1757 1588 32964 34630 35641 1604 1770 1590 11198 12169 13564 

1629 1815 1746 68688 71344 72072 1640 1811 1608 31985 34015 35204 1641 1801 1620 10156 11799 13207 

1641 1844 1766 67399 70534 71363 1650 1863 1629 31449 33581 34974 1646 1859 1617 9606 11171 12999 

1652 1907 1791 66457 69868 70939 1685 1900 1644 30567 33148 34663 1659 1890 1650 8974 10771 12652 

Change in σ
2
,  = 0.25 Change in σ

2
,  = 0.25 Change in σ

2
,  = 0.25 

1587 1690 1621 71211 72777 73483 1591 1698 1555 34262 35411 36405 1575 1680 1559 12290 13091 14101 

1612 1754 1660 69708 71940 72898 1622 1759 1579 33054 34714 35962 1602 1769 1589 11183 12161 13684 

1632 1817 1688 68644 71325 72538 1648 1809 1591 31911 34019 35515 1641 1810 1591 10128 11705 13491 

1648 1851 1714 67783 70913 72269 1652 1861 1610 31357 33531 35251 1646 1857 1616 9533 11141 13153 

1654 1905 1761 66719 70096 71621 1683 1904 1626 30553 33143 35052 1671 1901 1619 8886 10759 13064 

Change in σ
2
,  = 0 Change in σ

2
,  = 0 Change in σ

2
,  = 0 

1587 1691 1606 71278 72839 73785 1590 1695 1544 34230 35376 36565 1575 1680 1560 12286 13090 14205 

1610 1755 1637 69692 71917 73263 1622 1759 1565 33009 34696 36235 1601 1749 1558 11196 12320 13987 

1631 1815 1661 68584 71269 72910 1622 1810 1576 32270 34058 35912 1637 1807 1588 10136 11696 13688 

1645 1846 1678 67615 70738 72599 1651 1865 1588 31378 33526 35676 1648 1859 1586 9563 11156 13554 

1661 1909 1699 66849 70256 72408 1683 1911 1600 30528 33060 35495 1671 1901 1618 8881 10750 13315 

Change in σ
2
,  = - 0.25 Change in σ

2
,  = - 0.25 Change in σ

2
,  = - 0.25 

1588 1690 1584 71271 72832 74097 1590 1697 1531 34254 35399 36868 1575 1678 1530 12273 13095 14501 

1611 1755 1604 69760 71980 73782 1621 1757 1544 32984 34672 36598 1603 1770 1559 11199 12166 14201 

1629 1814 1622 68626 71298 73528 1650 1811 1555 31910 34041 36353 1638 1809 1558 10170 11713 14097 

1643 1851 1635 67595 70732 73281 1649 1863 1562 31393 33531 36238 1658 1860 1561 9467 11201 14011 

1669 1899 1647 66791 70259 73122 1680 1911 1572 30457 32974 36034 1661 1890 1590 9022 10832 13774 

Change in σ
2
,  = - 0.5 

 
Change in σ

2
,  = - 0.5 

 
Change in σ

2
,  = - 0.5 

1588 1691 1500 71235 72809 75000  1588 1695 1500 34270 35395 37500  1575 1680 1500 12294 13096 15000 

1612 1755 1500 69772 71988 75000  1620 1760 1500 32968 34646 37500  1603 1760 1530 11199 12252 14700 

1630 1814 1500 68641 71298 75000  1650 1812 1500 31938 34052 37500  1640 1810 1500 10126 11698 15000 

1646 1859 1500 67620 70724 75000  1649 1861 1500 31329 33500 37500  1646 1858 1500 9593 11187 15000 

1648 1854 1500 67590 70753 75000  1680 1910 1500 30437 32974 37500  1680 1889 1500 8757 10844 15000 

 

Appendix B.4: 

Parameter values: Mean demand = 500, Price = 80, Cost = 20, Salvage value = 5, σ
2
 = 10000 for 

each of the three products;  = {0.99, 0.5, 0.25, 0, – 0.25, – 0.5} 
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 Horizontally {Capacity 1, Capacity 2, Capacity 3, Profit 1, Profit 2, Profit 3} 
Capacity Cost = 5 

 

Capacity Cost = 10 

 

Capacity Cost = 15 

Change in , σ
2
 = 10000 Change in , σ

2
 = 10000 Change in , σ

2
 = 10000 

1686 1916 1912 74899 79572 79580 1658 1912 1851 66958 70342 70583 1671 1911 1700 58724 60900 62070 

1692 1919 1847 75387 80021 80537 1652 1907 1791 66457 69868 70939 1662 1890 1664 58198 60586 62618 

1686 1915 1792 74987 79636 80449 1654 1905 1761 66719 70096 71621 1661 1898 1640 58276 60552 63292 

1691 1919 1743 75288 79936 81091 1661 1909 1699 66849 70256 72408 1665 1914 1621 58372 60571 64140 

1686 1918 1670 75119 79761 81408 1669 1899 1647 66791 70259 73122 1666 1903 1584 58439 60735 65197 

1686 1916 1500 75099 79726 82500  1648 1854 1500 67590 70753 75000  1667 1910 1500 58453 60648 67500 

Appendix B.5: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5 for each of the three 

products; Marginal cost of capacity = 10 for any type of plant; σ
2
 = {2000, 4000, 6000, 8000, 

10000} 

 Horizontally  = {0.99, 0.5, 0.25, 0, – 0.25, – 0.5} 

 
PdPPF Index without Service Level Constraint 

Price = {80, 80, 80} 

 

Price = {55, 55, 55} 

 

Price = {40, 40, 40} 

Change in σ
2
 Change in σ

2
 Change in σ

2
 

99.64 81.91 73.57 65.69 57.81 45.04 99.55 78.64 69.58 62.33 53.41 40.36 99.44 72.33 59.51 53.59 45.42 32.85 

99.57 81.66 73.53 66.39 58.01 45.01 99.54 78.72 70.18 61.80 53.31 40.36 99.34 72.65 62.24 53.54 45.19 32.80 

99.55 81.53 73.79 65.67 58.18 45.26 99.46 77.98 70.00 61.15 53.14 40.24 99.34 72.84 62.81 53.85 45.38 32.95 

99.55 81.87 74.03 65.86 57.65 45.01 99.49 78.70 69.98 61.58 53.25 40.22 99.23 72.55 62.92 53.88 45.59 32.78 

99.59 81.22 73.32 66.33 58.12 44.95 99.51 78.57 69.44 61.64 53.40 40.56 99.40 72.61 62.24 53.67 45.66 32.77 

PdPPF Index with Service Level Constraint 

Price = {80, 80, 80} 
 

Price = {55, 55, 55} 
 

Price = {40, 40, 40} 

91.87 76.42 68.93 62.27 55.24 41.81 
 
68.41 58.10 53.62 49.08 43.80 34.83 

 
56.81 47.13 44.23 41.90 36.89 29.64 

99.55 77.20 69.97 62.31 55.20 42.39 
 
74.00 62.23 57.08 52.29 46.71 37.03 

 
55.39 41.04 39.10 40.27 32.21 30.08 

94.94 78.49 68.85 62.07 54.51 41.78 
 
74.27 63.06 58.49 49.09 47.96 38.01 

 
59.44 53.85 46.89 43.92 39.29 32.25 

96.14 79.09 69.77 62.66 55.17 42.06 
 
73.29 60.48 55.83 49.98 44.13 35.18 

 
54.92 46.12 44.42 39.91 38.16 29.48 

93.35 76.10 68.89 61.29 54.78 42.69 
 
73.88 63.01 57.57 50.98 45.13 35.91 

 
57.16 48.86 44.83 42.15 38.09 33.43 

 

Appendix C: Unmet Demand Percentage 
 

Appendix C.1: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5, σ
2
 = 10000 for each of the 

three products; Marginal cost of capacity = 10 for any type of plant;  = {0.99, 0.5, 0.25, 0, – 

0.25, – 0.5} 

 Horizontally {Unmet demand % for cases 1, 2 and 3} 
 

Price = {80, 80, 80}  Price = {60, 80, 100}  Price = {40, 80, 120} 

Change in  Change in  Change in  

33.01 16.4 5.53 34.69 17.76 8.29 41.82 25.25 16.64 

32.92 16.35 5.52 34.71 17.82 8.3 41.84 25.29 16.61 

33 16.39 5.52 34.65 17.78 8.27 41.82 25.31 16.58 

32.97 16.44 5.51 34.59 17.78 8.28 41.84 25.32 16.57 

33.03 16.38 5.49 34.64 17.79 8.26 41.77 25.25 16.48 

32.94 16.39 0 34.67 17.78 0 41.9 25.28 0 
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Appendix C.2: 

Parameter values: Mean demand = 500, Cost = 20, Salvage value = 5, σ
2
 = 10000 for each of the 

three products; Marginal cost of capacity = 10 for any type of plant;  = {0.99, 0.5, 0.25, 0, – 

0.25, – 0.5} 

 Horizontally {Unmet demand % for cases 1, 2 and 3} 
 

Price = {80, 80, 80}  Price = {55, 55, 55}  Price = {40, 40, 40} 

Change in  Change in  Change in  

33.01 16.4 5.53 49.55 28.26 9.5 71.1 49.63 16.62 

32.92 16.35 5.52 49.61 28.29 9.47 71.03 49.55 16.61 

33 16.39 5.52 49.64 28.29 9.48 71.04 49.6 16.6 

32.97 16.44 5.51 49.62 28.22 9.47 71.06 49.57 16.59 

33.03 16.38 5.49 49.65 28.18 9.44 71.1 49.61 16.52 

32.94 16.39 0 49.53 28.24 0 71.13 49.58 0 

Appendix C.3: 

Parameter values: Mean demand = 500, Price = 80, Cost = 20, Salvage value = 5, σ
2
 = 10000 for 

each of the three products;  = {0.99, 0.5, 0.25, 0, – 0.25, – 0.5} 

 Horizontally {Unmet demand % for cases 1, 2 and 3} 
 

Capacity cost = 5  Capacity cost = 10  Capacity cost = 15 

Change in  Change in  Change in  

26.28 8.17 2.76 33.01 16.4 5.53 39.61 24.68 8.29 

26.37 8.16 2.76 32.92 16.35 5.52 39.59 24.66 8.31 

26.31 8.18 2.76 33 16.39 5.52 39.6 24.64 8.28 

26.31 8.19 2.73 32.97 16.44 5.51 39.61 24.68 8.25 

26.3 8.22 2.73 33.03 16.38 5.49 39.59 24.68 8.25 

26.33 8.18 0 32.94 16.39 0 39.64 24.67 0 

 

Appendix D: Incremental Profit Value 
 

Price = {80, 80, 80} 

Dedicated Plant, Postponement Flexible Plant, Postponement 

-0.26 -0.13 -0.22 -0.17 -0.21 -0.25 -0.08 0.03 -0.06 -0.05 -0.14 0.00 

-0.12 -0.33 -0.44 -0.40 -0.23 -0.20 -0.12 -0.14 -0.27 -0.17 -0.07 0.00 

-0.51 -0.12 -0.36 -0.16 -0.19 -0.31 -0.33 0.00 -0.08 0.06 0.06 0.00 

-0.23 -0.57 -0.25 -0.36 -0.33 -0.33 -0.08 -0.41 0.02 -0.15 -0.15 0.00 

0.01 -0.93 -0.59 -0.12 -0.43 0.33 0.33 -0.60 -0.33 0.26 -0.10 0.00 

Price = {55, 55, 55} 

Dedicated Plant, Postponement Flexible Plant, Postponement 

-1.43 -1.40 -1.40 -1.53 -1.45 -1.40 0.02 0.05 0.04 -0.04 0.01 0.00 

-1.91 -1.77 -1.31 -1.50 -1.59 -1.71 -0.26 -0.08 0.37 0.17 0.09 0.00 

-1.93 -2.21 -2.11 -1.80 -1.97 -1.99 0.05 -0.31 -0.12 0.10 -0.06 0.00 

-2.45 -2.33 -2.14 -2.19 -2.20 -2.41 -0.14 0.03 0.16 0.12 0.17 0.00 

-2.39 -2.49 -2.32 -2.74 -3.02 -2.76 0.22 0.03 0.17 0.01 -0.19 0.00 

Price = {40, 40, 40} 

Dedicated Plant, Postponement Flexible Plant, Postponement 

-6.04 -6.08 -5.92 -6.06 -6.01 -6.02 -1.66 -1.04 -1.23 -1.27 -0.43 0.00 

-9.60 -9.69 -9.93 -8.63 -9.75 -9.19 -2.00 -1.37 -1.87 -1.00 -1.21 -2.00 

-10.89 -10.20 -11.12 -10.83 -10.91 -11.17 -2.85 -2.00 -1.64 -1.54 -1.01 0.00 

-13.03 -13.25 -13.50 -13.12 -13.01 -12.88 -2.59 -2.08 -2.60 -1.38 -0.83 0.00 

-14.25 -14.83 -14.98 -14.86 -14.04 -13.99 -3.25 -3.34 -2.19 -2.36 -1.73 0.00 
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Change in Price Differential = {0, 40, 80} Change in Capacity Cost = {5, 10, 15} 

Dedicated Plant, 

Postponement 

Flexible Plant, 

Postponement 

Dedicated Plant, 

Postponement 

Flexible Plant, 

Postponement 

0.01 -0.49 -1.09 0.33 -0.01 -0.64 0.35 0.01 -1.48 0.35 0.33 0.38 

-0.93 -0.24 -1.31 -0.60 0.30 -0.81 0.71 -0.93 -2.10 0.73 -0.60 -0.48 

-0.59 -0.62 -0.90 -0.33 -0.13 -0.31 -0.45 -0.59 -2.05 -0.43 -0.33 -0.27 

-0.12 -0.74 -0.65 0.26 -0.22 0.08 0.16 -0.12 -2.00 0.11 0.26 -0.16 

-0.43 -0.32 -1.17 -0.10 0.15 -0.47 -0.03 -0.43 -1.64 -0.04 -0.10 0.08 

0.33 -0.58 -0.76 0.00 -0.07 0.05 -0.05 0.33 -1.81 0.00 0.00 0.00 

 

Appendix E: Graphs 
 

    

                   
  (a)    (b)     (c) 

Fig 1: Optimal profit versus capacity for (a) dedicated plant no postponement, (b) dedicated plant postponement and 
(c) flexible plant 

             
  (a)    (b)     (c) 

Fig 2: Optimal capacity versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant 

postponement and (c) flexible plant for different variance levels 

 

             
  (a)    (b)     (c) 

Fig 3: Optimal profit versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant 

postponement and (c) flexible plant for different variance levels 
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  (a)    (b)     (c) 

Fig 4: Optimal capacity versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant 

postponement and (c) flexible plant for different coefficient of variation levels 

 

             
  (a)    (b)     (c) 

Fig 5: Optimal profit versus demand correlation for (a) dedicated plant no postponement, (b) dedicated plant 

postponement and (c) flexible plant for different coefficient of variation levels 
 

           

  (a)    (b)       (c) 

Fig 6: PdPPF Index vs. correlation for change in (a) Price differential (b) Price and (c) Capacity Cost 

 

            

  (a)    (b)     (c) 
Fig 7: Effect of Service Level Constraint (SLC) on PdPPF Index vs. correlation for change in (a) Price differential 

(b) Price and (c) Capacity Cost 
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