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Characterization of Vickrey auction with reserve price

for multiple objects

Ranojoy Basu∗1 and Conan Mukherjee†2

1Department of Economics and Finance, Indian Institute of Management Udaipur, India
2 Economics Group, Indian Institute of Management Calcutta, India

Abstract

This paper completely characterizes Vickrey auction with reserve price [VARP], in

single and multiple objects settings, using normative and strategic axioms. In particular,

it provides a topological interpretation of reserve price as the infimum of a particular set

of non-negative real numbers.

In the single object case, we find that a strategyproof mechanism satisfies anonymity

in welfare, agent sovereignty and non-bossiness in decision if and only if it has a VARP

allocation rule. To extend this result to the multiple objects setting, we introduce a con-

tinuity condition and show that any continuous and strategyproof mechanism satisfies the

aforementioned properties (and a mild regularity condition) if and only if it has a VARP

allocation rule.

JEL classification: C72; C78; D71; D63

Keywords: Anonymity in welfare, agent sovereignty, non-bossiness in decision, continuity,

strategyproof mechanism

1 Introduction

It is well known that reserve pricing at auctions is an important method of ensuring that

the seller revenue is not too low (Ausubel and Cramton [3]). Vickrey auctions, on other

hand, ensure that the objects are allocated efficiently and that agents have no incentive

to misreport irrespective of what other agents are reporting. Therefore, Vickrey auction

with reserve price [VARP]1 is a useful mechanism for accomplishing both objectives of

efficient allocation of objects and avoidance of low seller revenues. It is, therefore, no

∗Email: ranojoy.basu@iimu.ac.in
†Email: conanmukherjee@gmail.com
1Vickrey auction with reserve price is a mechanism with a special allocation rule where objects are

allocated only to agents whose bids are not less than the reserve price. Further, winners of object pay
the maximum of the reserve price and the greatest losing bid as price and non-winners pay nothing.
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surprise that auctioneers have been recorded to be using VARP as early as 1897.2 While

revenue generation properties of VARP have been well documented over time, there is a

dearth of literature on ethical properties of VARP. This is in contrast to a large literature

providing normative characterizations of Vickrey auction without reserve prices.3 This

paper attempts to fill this gap by completely characterizing VARP, both in single and

multiple objects settings (with unit demand), using normative axioms.

We present the idea of ethical mechanisms by invoking two popular notions of fairness:

anonymity in welfare and agent sovereignty.4 A mechanism is said to satisfy anonymity

in welfare if utility levels of any two agents get interchanged, when their valuations are

interchanged with all other agents’ valuations remaining unchanged. A mechanism is

said to satisfy agent sovereignty if it provides each agent with some opportunity to get

an object, irrespective of what the other agents are reporting.

Further, we describe the idea of mechanisms being immune to manipulation by in-

voking the concept of strategyproofness. A mechanism is said to be strategyproof if

truth-telling is a weakly dominant strategy for all agents in the direct revelation game

induced by it.

We use an additional axiom of non-bossiness which requires that no agent be able

to affect the allocation decision of another agent without affecting her own allocation

decision. Since this is a different version of the conventional non-bossiness axiom of

Satterthwaite and Sonnenschein [26], we call it non-bossiness in decision.5 As argued

by Thomson [29], non-bossiness of decision, in company of strategyproofness, embodies

strategic restrictions that discourage collusive practices where agents form groups to

misreport in a manner that changes the allotment decision to benefit one member of the

group while not making any other member worse off.

In the single object case, we show that a strategyproof mechanism satisfies anonymity,

agent sovereignty and non-bossiness in decision only if it has an allocation rule same as

that of a VARP.6 Then we completely characterize the class of mechanisms that satisfy

2Lucking-Reiley [12] note that VARP was found to be held as early as 1897 by pioneering stamp
dealer William P. Brown of New York. It must, however, be noted that in spite of its long history VARP
has not been a popular mode of auction over time (see Asubel and Milgrom [4]).

3Moulin [15], Ashlagi and Serizawa [1], Sakai [22], [24], Saitoh and Serizawa [21], Mukherjee [18] etc.
4These axioms have also been used in related literature. In particular, anonymity in welfare has

been used by Ashlagi and Serizawa [1], Hashimoto and Saitoh [7]; agent sovereignty has been used by
Marchant and Mishra [13], Moulin and Shenker [17].

5Similar notions of non-bossiness have been used by Satterthwaite and Sonnenschein [26], Svens-
son [28], Goswami, Mitra and Sen [6] etc. Note that our version of ‘non-bossiness in decision’ does not
impose any restriction on transfers of a mechanism unlike the conventional version of non-bossiness used
by Satterthwaite and Sonnenschein [26]. This version has also been used by Mishra and Quadir [14]. In
fact, we show in the appendix (please refer to subsection 7.4, page 26 ) that any strategyproof mechanism
violating non-bossiness in decision, would also violate the conventional Satterthwaite and Sonnenschein
[24] non-bossiness.

6In a single object setting where objects are never left unallocated at any profile, Ashlagi and Ser-
izawa [1] show that any mechanism satisfying anonymity, strategyproofness and individual rationality
must have a Vickrey auction allocation rule without any reserve price. Mukherjee [18] strengthens this
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anonymity, agent sovereignty, strategyproofness and non-bossiness in decision. Any mech-

anism in this class satisfies a mild zero-utility condition (requiring that any agent with

zero valuation for the object should get zero utility by participating in the mechanism),

if and only if it is a VARP.

Unfortunately, these characterizations fail to hold in the multiple homogeneous objects

case straightaway. That is because with multiple objects, any number of objects may be

withheld by the planner leading to a proliferation of the number of possible decisions

at any valuation profile. For example, when there are three objects to be allocated; at

any valuation profile, the planner must choose from four possible decisions of allocating

k ∈ {0, 1, 2, 3} objects. In contrast, with a single object to allocate; at any valuation

profile, the planner has only two possible choices of either allocating the object or not.

To address the subsequent technical complexities, we introduce a continuity condition,

and show that any continuous mechanism satisfies anonymity, agent sovereignty, non-

bossiness in decision, strategyproofness and zero-utility (and a mild regularity condition);

if and only if it is a VARP. Thus, our paper completely characterizes the class of VARP

in both single object and multiple objects settings.

1.1 Relation to literature

Perhaps the most popular paper on reserve pricing is Myerson [19]. Myerson [19], in an

independent private value setting for a single indivisible object, identifies a particular

VARP as one of the (Bayes-Nash incentive compatible) revenue maximizing mechanisms

under the assumptions of: (i) symmetric bidders, (ii) distribution of valuations satisfying

a regularity condition and (iii) the planner knowing this distribution with certainty. Fur-

ther, Myerson [19] obtains a revenue maximizing mechanism involving different reserve

prices for different agents if assumption (i) is violated. In contrast, for the single object

case, our paper uses the same independent private value setting, without making the

assumption (i) or any other distributional assumption, to show that any mechanism is an

ethical (anonymous, agent sovereign and non-bossy) and strategyproof mechanism, if and

only if it is a VARP. Thus, our result provides an interpretation of VARP (and hence,

use of single identical reserve price across all bidders) even when bidder valuations are

not symmetrically distributed. Additionally, unlike any other paper that we are aware

of, our paper presents a characterization of VARP for multiple objects.

Some other papers, particularly relevant to our analysis are, Mishra and Quadir [14],

Sakai [23], Klaus and Nichifor [10], and Tierney [30]. Mishra and Quadir [14] focus only

on the single object allocation problem with money, and characterize the class of strat-

result by showing that any anonymous and strategyproof mechanism, in such a setting, must have a
Vickrey auction allocation rule without reserve price. Mukherjee [18] further shows that this result con-
tinues to hold with multiple homogeneous objects, provided no object is left unallocated at any valuation
profile.
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egyproof and non-bossy (in decision) allocation rules. They show that for any reported

valuation: the utility vector generated by the chosen allocation must be consistent to

maximization of some ‘monotone’ binary relation on the set of all possible utility vectors

that may be realized. They also identify a continuity condition (in terms of allocations

generated by a rule), and show that all strategyproof and non-bossy allocation rules

which satisfy this condition, must consider a non-decreasing transformation of the re-

ported valuation numbers, to allocate the single object to the agent who has the highest

transformed valuation. In the first section of our paper, which deals with single object,

unlike them, we characterize the exact Vickrey auction rule with reserve price (instead of

large class of allocation rules), and identify the reserve price as an infimum of a specially

constructed set.

Sakai [23], too, focuses only on the single object allocation problem, and completely

characterizes the VARP mechanism as the only non-trivial mechanism that satisfies a

‘weak’ version of efficiency, strategyproofness and non-imposition. They also present some

relations between equity and efficiency axioms, and use them to obtain other characteri-

zations of VARP mechanism. However, all his characterizations require use of some “parts

of efficiency” as exogenously imposed restrictions. In contrast, all efficiency properties

of our results emanate from the interaction of axioms that are motivated by perspectives

unrelated to efficiency.7

Klaus and Nichifor [10], too, focus on only the single object allocation problem, and

provide a normative exposition of reserve prices without using any efficiency axiom. In

their paper, too, reserve prices appear as implication of suitable chosen axioms (which

are different to ours). However, their main characterization result presents a novel “serial

dictatorship with reservation prices” mechanism, which involves different reserve prices

for different agents arranged in a sequential order. In contrast, our paper focuses on

mechanisms that are anonymous in welfare, which eliminates the possibility of different

agents being treated as per different reserve prices.

Tierney [30] analyzes pairwise (weak) group strategyproof and continuous (in utility

space) mechanisms that are anonymous in welfare for allocation of heterogeneous objects

with unit demand in a quasi-linear environment, and characterizes a class of rules that

assign separate reserve prices to ‘real’ objects, and possibly multiple reserve prices to

the ‘null’ object (which denotes “consuming none of the real objects”).8 This result is

difficult to motivate in our setting of homogeneous objects; (i) where agents never derive

disutility from an object, and (ii) getting no object (that is, getting null object) is merely

7Sakai [23] shows in a single object setting that any mechanism satisfying ‘weak efficiency’, strat-
egyproofness, and ‘non-imposition’, is either a VARP mechanism or a trivial mechanism that never
allocates the object (or charges any price). While we use a zero-utility axiom that is logically equivalent
to the ‘non-imposition’ property of Sakai [23]; our single object characterization is logically independent
of all his characterizations, as, we use no axioms of efficiency, in “part” or otherwise.

8See fourth paragraph of page 6 in the working paper Tierney [30].
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an implication of failing to meet the single reserve price for the real objects.9 Further, the

mechanisms characterized by Tierney [30], when reduced to single object setting entail

a separate (possibly positive) reserve price for getting no object, which is contrary to

our findings. Hence, our results are of independent interest to theirs. Finally, instead of

treating reserve prices as a parameter, we present a topological interpretation of reserve

price where it gets endogenously determined as an infimum of a special set of real numbers

that follow from our axioms.

From a purely strategic perspective (without any normative axiomatic structure), a

few notable recent works on reserve prices and their welfare and revenue effects are: Hu,

Matthews and Zu [8], Kotowski [11], and Sano [25]. Unlike our paper, all these papers

adopt the strategic perspective of Bayes’ Nash incentive compatibility, under some chosen

prior distribution of private informations.

The paper proceeds as follows. Section 2 presents the model and definitions. Section 3

presents the results on single and multiple objects. Section 4 discusses the independence

of axioms. Section 5 discusses weakening of some of the axioms. Finally, Section 6

contains some of our concluding remarks. Proofs are relegated to the appendix (Section

7).

2 Model

We consider a situation where m homogeneous indivisible objects are available to be

allocated to agents in N = {1, 2, . . . , n} with unit demand and the restriction 1 ≤ m ≤
n− 1. Each agent i ∈ N has an independent private valuation vi ∈ R+. For any i ∈ N ,

a generic allocation of i is denoted by (di, t) where di represents the object allocation

decision taking values in {0, 1} with di = 1 if and only if i gets an object, and t represents

an amount of money. We assume that agents have quasilinear preferences over object

and money, that is, utility to i from the allocation (di, t) is divi + t.

A mechanism is a tuple of functions (dm, τm) such that at any reported profile of

valuations v ∈ RN
+ , each agent i is allocated a monetary transfer τmi (v) ∈ R and a

decision dmi (v) ∈ {0, 1}. For any reported valuation profile v ∈ RN
+ , define Wm(v) :=

{i ∈ N |dmi (v) = 1} to be the set of agents that are allocated an object. Note that at

any reported profile of valuations v ∈ RN
+ , |Wm(v)| ≤ m, that is, all objects need not get

allocated at all reported profiles. Also define Bm
0 := {v ∈ RN

+ : Wm(v) = ∅} to be the

set of profiles at which no object is allocated. Therefore, the utility to any agent i with

a true valuation of vi at any reported profile v′ ∈ RN
+ , from the mechanism (dm, τm) is

given by u((dmi (v′), τmi (v′)); vi) = vid
m
i (v′) + τmi (v′).

Let ∀ {i, j} ⊆ N , ∀ v ∈ RN
+ , v−i := (v1, . . . , vi−1, vi+1, . . . , vn) and v−i−j := (v−i)−j

.

9Given identical copies of an object being allocated, any agent expecting disutility from consuming
one would simply choose to not participate in the allocation exercise.
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Further, for all r = 1, 2 . . . , n, define v(r) to be the rth ranked valuation in a non-

increasing arrangement of coordinates of any v ∈ RN
+ . In case of ties while arranging the

coordinates in such manner, without loss of generality, we use the tie-breaking rule 1 �
. . . � n.10 Finally, define for any x ≥ 0, x̄t := (x, x, . . . , x) ∈ Rt

+ for all t = 1, 2, . . . , n.

Therefore, x̄n = (x, x, . . . , x) ∈ Rn
+ and x̄n−1 = (x, x, . . . , x) ∈ Rn−1

+ .

The following definition states Vickrey auction with reserve price r ≥ 0 to be a

mechanism with an allocation rule that gives out objects to the top (not more than m)

bidders that have bid amounts in excess of r; and charges a price, only to the winners,

that is equal to the greater value among r and the (m+ 1)th highest bid.

Definition 1. Any mechanism (dm
r
, τm

r
) is said to be a Vickrey auction with reserve

price r ≥ 0 (VARP) if for all i ∈ N and all v ∈ RN
+ ,

• vi < max{v−i(m), r} =⇒ dm
r

i (v) = 0

• vi > max{v−i(m), r} =⇒ dm
r

i (v) = 1

• τmr

i (v) =

{
0 if dm

r

i (v) = 0

−max{v−i(m), r} if dm
r

i (v) = 1

Define Γm := {dmr
, τm

r}r≥0 to be the class of VARP mechanisms.

A popular strategic axiom in independent private values setting, strategyproofness,

eliminates the incentive to misreport valuation for each agent. It is defined as follows.

Definition 2. A mechanism (dm, τm) satisfies strategyproofness (SP) if ∀ i ∈ N , ∀vi, v′i ∈
R+, ∀ v−i ∈ RN\{i}

+ ,

u(dmi (vi, v−i), τ
m
i (vi, v−i); vi) ≥ u(dmi (v′i, v−i), τ

m
i (v′i, v−i); vi)

Therefore, a strategyproof mechanism ensures that revealing the true valuation is a weakly

dominant strategy for each agent in the ensuing game.

The following axiom states the idea of ‘non-bossiness in decision’ which requires that

no agent be able to affect allocation decision of another agent without affecting her own

allocation decision.

Definition 3. A mechanism (dm, τm) satisfies non-bossiness in decision (NBD) if for all

i ∈ N , all v ∈ RN
+ and all v′i ∈ R+,

dmi (v) = dmi (v′i, v−i) =⇒ dmj (v) = dmj (v′i, v−i),∀ j 6= i

10For any i 6= j, i � j means that the tie is broken in favour of agent i. That is, for any v, if
v3 = v7 > vi for all i 6= 3, 7 and 3 � 7, then v(1) = v3.
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As mentioned earlier, NBD embodies a strategic barrier to collusive practices where agents

form groups to misreport in a manner that changes the allotment decision to benefit any

one member of the group while not making any other member worse off.11

The following two definitions pertain to two different notions of fairness. They de-

scribe ethically desirable behaviour that a mechanism should exhibit in an idealized state

of nature where there is no private information (that is, planner knows every agent’s

true valuation). The first definition states the fairness concept of anonymity in welfare

which requires that utility derived from an allocation by any agent be independent of her

identity. The second definition states the fairness idea that each agent should have an

opportunity to get an object, irrespective of what the other agents are reporting.12

Definition 4. A mechanism (dm, τm) satisfies anonymity in welfare (AN) if for all i ∈ N ,

all v ∈ RN
+ and all bijections π : N 7→ N ,

u(di(v), τi(v); vi) = u(dπi(πv), τπi(πv); πvπi)

where πv :=
(
vπ−1(k)

)n
k=1

.

Definition 5. A mechanism (dm, τm) satisfies agent sovereignty (AS) if for all i ∈ N and

all v ∈ RN
+ , there exists v′i ∈ R+ such that

dmi (v′i, v−i) = 1

Finally, the following axiom implies the fairness perception that if an agent has zero

valuation for the object, then the agent must not get a positive or negative utility by

merely participating in the mechanism.

Definition 6. A mechanism (dm, τm) satisfies zero-utility if for all i ∈ N and all v−i ∈
RN\{i}

+ ,

u(dmi (0, v−i), τ
m
i (0, v−i); 0) = 0.

Note that for our single object setting, this zero-utility condition is logically equivalent

to the non-imposition condition of Sakai [23].13

11See Thomson [29]. Also to see the kind of undesirable mechanisms that NBD excludes, consider
the following example. For any profile v: (i) if there exists an agent i such that vi ∈ [0, b(1)) and vi is
an irrational number, then for all j ∈ N , (dmj (v), τmj (v)) = (0, 0), and (ii) if not, then the allocations
are made according to a VARP with reserve price 10. Thus, NBD disallows an agent from generating
consequences that do not affect her own self, but affect the allocation decisions of other agents.

12Moulin [16] mentions the agent sovereignty axiom to be“reminiscent of the citizen sovereignty of
classical social choice.”

13The latter requires that τ1i (0, v−i) = 0 for all i and v−i ∈ RN\{i}
+ .
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3 Main results

For the sake of simplicity of notation, henceforth, we suppress the superscript m while

describing a mechanism (dm, τm) whenever the number of objects being allocated is clear

from the ambient context.

We begin by noting the following well known result which establishes that the deci-

sion rule implicit in any strategyproof mechanism must be non-decreasing in one’s own

reported value.14 In particular, for any agent i and any profile of valuations v−i, there

must exist a threshold price Ti(v−i) such that: i gets an object if vi strictly exceeds Ti(v−i)

and fails to get an object if vi is strictly less than Ti(v−i). Further, if a strategyproof

mechanism satisfies AS, then these threshold prices must be finite. Finally, SP and AS

imply that the transfer of agent i when getting the object, must exceed that when not

getting the object, by Ti(v−i).
15

Fact 1. Any mechanism (d, τ) satisfies SP and AS, if and only if ∀ i ∈ N and ∀ v−i ∈
RN\{i}

+ , there exist real valued functions Ki : RN\{i}
+ 7→ R and Ti : RN\{i}

+ 7→ R such that

di(v) =

{
1 if vi > Ti(v−i)

0 if vi < Ti(v−i)
and τi(v) =

{
Ki(v−i)− Ti(v−i) if di(v) = 1

Ki(v−i) if di(v) = 0

Remark 1. Note that Fact 1 allows for arbitrary tie breaking in strategyproof mecha-

nisms, for valuation profiles v ∈ RN
+ such that vi = Ti(v−i) for some i ∈ N . Thus, Fact

1 establishes that for any valuation profile v, di(v) = 1 implies that vi ≥ Ti(v−i) and

di(v) = 0 implies that vi ≤ Ti(v−i). In this paper, without loss of generality, we use the

following tie breaking rule:

For any profile v, define X(v) := {i ∈ N : vi > Ti(v−i)}, and Y (v) := {i ∈
N : vi = Ti(v−i)}. At any profile v, if |Y (v)| ≤ m− |X(v)| then all agents in

Y (v) are allocated an object each, or else the top m − |X(v)| agents in Y (v)

according to the order 1 � 2 � . . . � n are allocated an object each.16

3.1 Single object: m = 1

In this section we study the single object case. The following proposition states that any

mechanism satisfying AN, AS, NBD and SP, must have an allocation rule same as that

of a VARP. That is, any such mechanism must have an associated reserve price that is

common across all agents.

14This result can also be found as Proposition 9.27 in Nisan [20] and Lemma 1 in Mukherjee [18]
15AS ensures that the threshold functions have finite images.
16In light of Fact 1, at any valuation profile v, a tie-breaking rule is invoked only if there exists an

agent i such that vi = Ti(v−i). And so, no matter how this tie is broken, the transfer rule of Fact 1
implies that i is indifferent between getting and not getting the object (as her utility is Ki(v−i) in both
cases).

8



Theorem 1. A mechanism (d, τ) satisfies properties AN, AS, NBD and SP only if ∃ r ≥ 0

such that for all i ∈ N and all v ∈ RN
+ ,

di(v) =

{
1 if vi > max{v−i(1), r}
0 if vi < max{v−i(1), r}

Proof: We accomplish this proof in three stages.17 First, in Lemma 2 of Appendix, we

establish existence of a real η which is well defined with respect to a set of valuations

where at least one object is allocated. Then, in subsection 7.2 of Appendix, we show that

for all v and all i, (i) vi < max{v−i(1), η} implies di(v) = 0, and (ii) vi > max{v−i(1), η}
implies that di(v) = 1. This allows us to establish existence of a reserve price r := η such

that Ti(v−i) = max{v−i(1), r} for all v and all i.

Remark 2. Kazamura, Mishra and Serizawa [9], henceforth, referred to as KMS, show

that any mechanism satisfying AN, SP and ‘loser payment independence’ (requiring that

loser at any profile pay the same amount irrespective of her preference for the object),

must be an adjusted Vickrey auction with a variable reserve price. Theorem 1 comple-

ments this result by showing that: in a quasilinear setting, any mechanism satisfying AN,

AS, SP and NBD, must have an allocation rule same as that of a VARP (that is, uses a

common reserve price).

Note that, for the single object case, our tie breaking rule implies that for any v with

vi ≤ Ti(v−i),∀i ∈ N , the object is allocated to the top most agent in Y (v) according to the

order 1 � 2 � . . . � n. Therefore, Theorem 1 provides a novel topological interpretation

to the reserve price value of a VARP. That is, it establishes that the reserve price used

in a VARP mechanism, must also be the infimum of a set S consisting of non-negative

real numbers satisfying the following property: if all agents bid the same number from S,

then at least one object is allocated. As we shall see later, this interpretation continues

to hold (in Proposition 3) when there are more than one objects to allocate. This idea is

expressed in the following corollary.

Corollary 1. For any mechanism (d1
r
, τ 1

r
) ∈ Γ1,

r = inf{x ≥ 0 : x̄n /∈ B1
0}

Proof: It is easy to that any VARP satisfies AN, AS, NBD, and SP. Hence, from proof

of Theorem 1, the result follows.

Next, we define a special class of mechanisms that employ uniform reserve prices in

their allocation and transfer rules.

17See Appendix for full details.
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Definition 7. Let M1 be the class of mechanisms (d, τ) such that for all i ∈ N and all

v ∈ RN
+ ,

• di(v) =

{
1 if vi > max{v−i(1), r}
0 if vi < max{v−i(1), r}

• τi(v) =

{
K(v−i)−max{v−i(1), r} if dri (v) = 1

K(v−i) if dri (v) = 0

where K : Rn−1
+ 7→ R is a symmetric function.18

Thus,M1 is a special class of mechanisms with the VARP allocation rule. It contains an

interesting sub-class of mechanisms with this allocation rule but not the VARP transfer

rule. This is the class of maxmed mechanisms introduced by Sprumont [27]. These

mechanisms belong to M1 and can be obtained by setting

K(v−i) = med

{
0, v−i(1)− r, r

n− 1

}
,∀ v ∈ Rn

+,∀ i ∈ N,

where for any three real numbers x, y, z, med{x, y, z} denotes the median on the three

numbers.

The following theorem completely characterizes M1.

Theorem 2. Any mechanism (d, τ) satisfies AN, AS, NBD and SP if and only if (d, τ) ∈
M1.

Proof: See Appendix.

Note that all mechanisms inM1 which have a specialK(.) function such thatK(z) = 0

for all z ∈ Rn−1
+ , are VARP. That is, the class of VARP mechanisms for single object; Γ1

is a subset of M1, i.e., Γ1 ⊆ M1. We use this relation to obtain the following corollary

which completely characterizes Γ.

Corollary 2. A mechanism (d, τ) satisfies AN, AS, NBD, SP and zero-utility if and only

if (d, τ) ∈ Γ1.

Proof: The proof of sufficiency is easy to check. To see the necessity, fix any i ∈ N and

any v−i ∈ Rn−1
+ . Consider the profile (0, v−i). From Theorem 1 and zero-utility condition,

it follows that ui(di(0, v−i), τi(0, v−i); 0) = K(v−i) = 0. Hence, the result follows.

Remark 3. Corollary 2 also follows from KMS. As mentioned earlier, they show in this

discussion paper that in a single object setting with general (possibly non-quasilinear)

18A function of k ∈ N variables is said to be symmetric if the function value at any k-tuple of arguments
is the same as the function value at any permutation of that k-tuple.
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preferences, any mechanism satisfies AN, SP and loser payment independence, if and

only if it is an adjusted Vickrey auction with a variable reserve price. In our setting: (i)

SP and zero-utility condition imply the KMS axiom of loser payment independence, (ii)

NBD rules out Vickrey mechanisms where the reserve price may depend on preference of

other agents. Thus, their result implies our Corollary 2. Finally, dropping AS from the

statement of Corollary 2 would lead to an additional trivial mechanism that never gives

out the object and charges zero transfers.19

3.2 Multiple homogeneous objects: m > 1

In this section we study the case where number of objects/copies m can take any integer

value from 2 to n − 1. Ideally, the results in single object case should translate directly

to the multiple homogeneous objects (with unit demand) setting. However, that is not

the case. The reason for this are the following two complications that arise out of the

multiple objects setting.

The first complication is that, at any profile, it no longer follows from any one agent

getting an object, that other agents get no objects. Thus, the inherent externality of

the single object setting, becomes very weak when m > 1. The second complication is

that the planner, at any valuation profile, can now choose to allocate any k out of the m

available objects (where k ∈ {0, 1, . . . ,m}). Both these issues lead to a large expansion

of the class of mechanisms that satisfy our basic axioms of anonymity, agent sovereignty,

strategyproofness, and non-bossiness in decision. Thus, our basic axioms are no longer

enough to obtain a characterization like Theorem 1 in the multiple objects setting. To

arrive at such characterization result, we define the following two technical conditions:

Definition 8. A mechanism (d, τ) is said to be continuous if for any ζ ∈ {0, 1}, any

i ∈ N and any sequence of profiles {vk} that converges to ṽ, whenever di(v
k) = ζ for all

k,

di(ṽ) 6= ζ =⇒ u((1, τi(ṽ)); ṽi) = u((0, τi(ṽ)); ṽi)

Definition 9. A mechanism is said to be regular if for all m > m′ ∈ N, Bm
0 ⊆ Bm′

0 .

A mechanism is continuous if it satisfies the property that: whenever the allocation

decision of an agent i is not preserved in limit, the transfer assigned to i at the limit

profile is such that she is indifferent between getting or not getting the object.20 On the

19We thank an anonymous referee and the associate editor for pointing these logic out.
20For example, any VARP mechanism is continuous because at all profiles where all agents bid the

same value, everyone gets 0 utility irrespective of winning an object or not. To see the kind of peculiar
mechanisms ruled out by the restriction of continuity, consider w.l.o.g. a two object - three agent setting.
Consider a mechanism in the class characterized by Fact 1 such that at all bid profiles, it allocates both
objects to the first and second highest bidder whenever either of their bids is greater than or equal to
10, or else no objects are allocated. Further, any agent who is not allocated an object receives zero
transfer, while any agent who is allocated an object pays a price equal to: 10 if bids of all other agents
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other hand, the regularity of a mechanism requires that at any valuation profile: if no

objects are allocated when m ≥ 2 copies are available, then no objects must be allocated

when m − 1 copies are available. This property rules out strange mechanisms where

abundance of objects leads to scarcity in allocations.21

The following theorem states that any continuous regular mechanism satisfying AN,

AS, NBD and SP, must have an allocation rule same as that of a VARP (for m objects).

That is, any such mechanism must have an associated reserve price that is common across

all agents.

Theorem 3. A continuous regular mechanism (d, τ) satisfies properties AN, AS, NBD

and SP only if ∃ r ≥ 0 such that for all i ∈ N and all v ∈ RN
+ ,

di(v) =

{
1 if vi > max{v−i(m), r}
0 if vi < max{v−i(m), r}

Proof: The proof is presented in the subsection 7.4 in the Appendix. It consists of four

steps. Briefly, it shows that for any arbitrary continuous regular mechanism (d, τ) that

satisfies AN, AS, NBD, SP: (i) the associated threshold function T (.) is continuous, (ii) at

least one object is allocated at a profile η̄n where η := inf
{
x ≥ 0 : 0 <

∑
i∈N di(x̄

n) ≤ m
}

,

(iii) for any i and any v, v−i(1) = η =⇒ T (v−i) = η, and (iv) for any i and any v,{
T (v−i) = η v−i(m) ≤ η

T (v−i) = v−i(m) otherwise

As mentioned earlier in the single object case, any VARP mechanism for allocation

of m > 1 objects, must employ a uniform reserve price that is an infimum of special set

of non-negative real numbers. This is described in below in the following corollary.22

Corollary 3. For any mechanism (dm
r
, τm

r
) ∈ Γm,

r = inf{x ≥ 0 : x̄n /∈ Bm
0 }

are strictly less than 10, or else the third highest bid. To see that this mechanism is discontinuous,
consider a sequence of profiles {(10− 1

k , 9, 8)}k. Note that for all k, the agent 2 does not get an object,
but she gets an object at the limit profile (10, 9, 8). However, 2 is charged a price 8 at the limit, which
makes her prefer getting the object to not getting the object, that is, u2((1,−8); 9) > u2((0, 0); 9).

21To further motivate this regularity condition, consider an auction house about to commit to certain
rules of sale procedure for a period of time in future; during which this procedure may be invoked to
allocate different batches (containing varying number) of similar or identical objects. This regularity
condition rules out counter-intuitive sale procedures, where chance of winning an object for a bidder
decreases when the number of available objects increases.

22Note that there may be mechanisms that employ VARP mechanism to allocate m objects even when
there is a greater number m′ of objects available to be allocated. However, we do not consider them as
they do not conform to our tie-breaking rule (described in Remark 1).
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Proof: It is easy to check that any VARP mechanism is continuous and satisfies AN,

AS, NBD, SP. Hence, from proof of Theorem 3, the result follows.

Now, as in the single object case, we define special class of mechanisms Mm, which

employ reserve prices in their allocation of m > 1 objects and corresponding transfer

rules.

Definition 10. Let Mm be the class of mechanisms (d, τ) such that for all i ∈ N and

all v ∈ RN
+ ,

• di(v) =

{
1 if vi > max{v−i(m), r}
0 if vi < max{v−i(m), r}

• τi(v) =

{
K(v−i)−max{v−i(m), r} if di(v) = 1

K(v−i) if di(v) = 0

where K : Rn−1
+ 7→ R is a symmetric function.

Similar to the single object case, we present the following proposition, which com-

pletely characterizes Mm.

Theorem 4. Any continuous regular mechanism (d, τ) satisfies AN, AS, NBD and SP if

and only if (d, τ) ∈Mm.

Proof: See Appendix.

Again as observed in the single object case, all mechanisms in Mm which have a

special K(.) function such that K(z) = 0 for all z ∈ Rn−1
+ , are VARP. Hence, we get the

following theorem which completely characterizes Γm.

Corollary 4. A continuous regular mechanism (d, τ) satisfies AN, AS, NBD, SP and

zero-utility if and only if (d, τ) ∈ Γm.

Proof: The proof of sufficiency is easy to check. To see the necessity, fix any i ∈ N and

any v−i ∈ Rn−1
+ . Consider the profile (0, v−i). From Theorem 4 and zero-utility condition,

it follows that ui(di(0, v−i), τi(0, v−i); 0) = K(v−i) = 0. Hence, the result follows.

4 Independence of Axioms

In this section we establish independence of axioms in our VARP characterization results.

We begin with the single object case of Corollary 2 below, and the follow it up with the

multiple object case of Corollary 4.
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4.1 Corollary 2

This theorem uses the axioms of AN, AS, NBD, SP and zero-utility to characterize the

class of VARP mechanism in the single object case. To show independence of axioms,

we fix any axiom P ∈ {AN,AS,NBD, SP, zero-utility}, and construct a mechanism that

satisfies all of the aforementioned axioms other than P in the following manner:

(i) SP To see an example of mechanism that satisfies AN, AS, NBD and zero-utility, but

not SP: consider the standard First Price Auction (FPA) where the highest bidder

is allocated the object and is asked to pay her own bid as price, while all other

agents pay (or receive) no money. It is well known that bidding true valuation is

not a weakly dominant strategy at FPA, and so, it violates SP.

Note that this mechanism satisfies zero-utility as any agent with zero valuation, will

either not get the object or get it at zero price. It also satisfies AS as every agent

can theoretically get the object by outbidding others. It satisfies NBD because

no agent change her bid in a manner such that her own object allocation decision

remains unchanged but some else’ allocation decision changes. Finally, note that for

an FPA, at any valuation profile, utilities of any two agents would get interchanged

if their valuations are interchanged. As mentioned in proof of Proposition 1, this

feature is well known to imply AN as defined in Definition 4, and hence, we can see

that FPA satisfies AN.

(ii) Zero-utility Consider a mechanism (d, τ) belonging to the class described by Fact

1. Suppose that for all z ∈ Rn−1
+ ,

K(z) = K̄ > 0 and T (z) = z(1)

By Fact 1, (d, τ) satisfies SP and AS. Further, note that (d, τ) is essentially a

Vickrey auction with a peculiar modification where agents get a positive monetary

transfer K̄ irrespective of being allocated the object or not. Hence, it does not

satisfy zero-utility. Further, since an agent gets the object only if she is the highest

bidder, it is easy to see that (d, τ) satisfies NBD. Finally, it is easy to see that at

any valuation profile, interchanging valuations of any two agents would interchange

their utilities, and so, (d, τ) satisfies AN.

(iii) AS Consider a mechanism which never allocates any good at any profile, and always

pays zero transfers to agents. It trivially satisfies SP, AN, NBD, and zero-utility.

However, it violates AS because at all valuation profiles, each agent is consigned to

not getting the object irrespective of what value others report.

(iv) AN Consider a mechanism (d, τ) belonging to the class described by Fact 1 for two
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agents {1, 2}. Suppose that for all x ≥ 0,

K1(x) = x, K2(x) = max{0, x− ε}, and T1(x) = x+ ε, T2(x) = max{0, x− ε}

where ε > 0. Recall that, as argued in section 5, (d, τ) satisfies NBD, SP, AS and

zero-utility. By Proposition 1, (d, τ) does not satisfy AN as the Ti(.) functions

depend on agent identities.

(v) NBD Consider a mechanism (d, τ) belonging to the class described by Fact 1 such

that for all i ∈ N and z ∈ Rn−1
+

Ki(z) = 0 and Ti(z) =

{
max{z(1), 20} if z(1) > 10

z(1) if z(1) ≤ 10

Note that by Fact 1, (d, τ) satisfies SP and AS. Also, it can be easily seen that

it satisfies zero-utility. Further, at any valuation profile, if valuations of any pair

of agents are changed, their utilities get interchanged. Hence, (d, τ) satisfies AN.

To see that this mechanism violates NBD, consider a three agent setting where

the valuation profile (v1, v2, v3) = (15, 8, 7). Note that according our decision rule

d(15, 8, 7) = (1, 0, 0). But if agent 2 unilaterally changes her reported valuation to

11, the decision changes to d(15, 11, 7) = (0, 0, 0), where agent 2 continues to not

get the object but agent 1’s decision outcome is affected as she no longer gets the

object. Thus, (d, τ) does not satisfy NBD.

4.2 Corollary 4

Note that a major part of the complexity of analysis in this paper, particularly in the

multiple objects case, arises from the fact that all objects may not be allocated at all

valuation profiles. However, this feature also allows us to use some of the aforementioned

mechanisms (used for the single object case) to show independence of axioms in Corollary

4. Recall that Corollary 4 invoked seven axioms: continuity, regularity, AN, AS, NBD,

SP and zero-utility. We show independence between them in the following manner:

(i) SP As before, we consider the FPA, where the highest bidder gets an object and pays

her own bid her price, while all other agents get no objects or non-zero transfers,

irrespective of the objects available. As argued earlier in the single object case, this

mechanism violates SP. It can easily be checked that this mechanism satisfies AS,

and regularity. Arguing as in the single object case, we can see that it satisfies AN

and NBD.

To check that FPA satisfies continuity, we use the idealized state of nature men-

tioned earlier (needed to evaluate axioms) where we suppose that there is no private
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information. Now, fix any ζ ∈ {0, 1}, any agent i ∈ N , and consider any sequence

{vn} such that (i) vn ≥ 0, (ii) converges to some v′ ≥ 0, and (iii) for all n, di(v
n) = ζ.

Now if ζ = 1 and di(v
′) 6= ζ, we can infer that i is indifferent in terms of utility be-

tween winning and losing the object at profile v′. That is because, by construction,

when not getting the object i gets zero utility, which is same as what she would

have got had she won the object and paid her own bid v′i. Arguing similarly when

ζ = 0 and di(v
′) 6= ζ, we can see that i is indifferent in terms of utility between

winning and losing the object at profile v′. Hence, continuity of FPA follows.

(ii) AS As before, consider a mechanism which never allocates any good at any profile,

and always pays zero transfers to agents. It trivially satisfies continuity, regularity

AN, NBD, SP and zero-utility. However, it violates AS because at all valuation

profiles, each agent is consigned to not getting the object irrespective of what value

others report.

(iii) Zero-utility Consider a mechanism (d, τ) belonging to the class described by Fact

1. Suppose that there are m > 1 objects to be allocated, and for all i ∈ N , z ∈ Rn−1
+ ,

Ki(z) = K̄ > 0 and Ti(z) = z(m)

As argued in the single object case, this mechanism satisfies AN, SP and AS but

does not satisfy zero-utility. Note that at any valuation profile, the top m valuation

agents get the objects, and all objects are allocated. Thus, the winners cannot affect

anybody else’ allocation decision without changing their own, and the same goes for

the losers. Hence, this mechanism satisfies NBD. Further, this mechanism trivially

satisfies regularity since it allocates all objects at all profiles (irrespective of the

number of objects). To see how this mechanism satisfies continuity, note that its

threshold function is continuous. So, as earlier, we can fix any ζ ∈ {0, 1}, any agent

i ∈ N , and consider any sequence {vn} such that (i) vn ≥ 0, (ii) converges to some

v′ ≥ 0, and (iii) for all n, di(v
n) = ζ. Now, if ζ = 0, then vni ≤ Ti(v

n
−i), for all n.

Therefore, (ii) implies that {vn−i} converges to v′−i, and so, by continuity of Ti(.), we

get that in limit, v′i ≤ Ti(v
′
−i) implying that either v′i < Ti(v

′
−i) =⇒ di(v

′) = 0 = ζ

or else v′ = Ti(v
′
−i) =⇒ u((1, K̄ − Ti(v′−i)); v′i) = u((0, K̄); v′i) = K̄ (by Fact 1).

Now, if ζ = 1, arguing as above, we can infer that (ii) implies that v′i ≥ Ti(v
′
−i),

and so, either v′i > Ti(v
′
−i) =⇒ di(v

′) = 1 = ζ or else v′ = Ti(v
′
−i) =⇒ u((1, K̄ −

Ti(v
′
−i)); v

′
i) = u((0, K̄); v′i) = K̄ (by Fact 1). Thus, continuity of the mechanism

follows.

(iv) NBD Consider a mechanism (d, τ) belonging to the class described by Fact 1 such
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that for all i ∈ N , z ∈ Rn−1
+ ,

Ki(z) = 0 and Ti(z) = z(1) + z(n− 1)

As before, this mechanism satisfies SP and AS and zero-utility. Since the T (.) is

continuous, arguing as above, we can show that (d, τ) satisfies continuity. Also,

since T (.) is independent of agent identity, arguing as earlier instances, we can infer

that (d, τ) satisfies AN. Also, by construction: (i) (d, τ) allocates at most one object

at any valuation profile irrespective of the value m takes in {2 . . . , n− 1}, and (ii)

the T (.) function does not depend on value of m. Hence, (i) and (ii) imply that

(d, τ) satisfies regularity. Finally, to see that this mechanism does not satisfy NBD,

consider a three agent setting, and two valuation profiles (15, 10, 2) and (15, 10, 6).

Note that: d(15, 10, 2) = (1, 0, 0) 6= (0, 0, 0) = d(15, 10, 6), and thus, as before, we

have a violation of NBD.

(v) AN Consider a 2 object setting with 3 agents {1, 2, 3}. Consider the mechanism

(d, τ) such that for all z ∈ R2
+,

Ti(z) =

{
z(1) + 1 if i = 1

max{0, z(1)− 1} otherwise
and Ki(z) = 0

As argued in the single object case, this mechanism violates AN but satisfies AS,

NBD, SP, and zero-utility. It can easily be seen that the T (.) function is continuous.

Finally, as in the previous case, the Ti(.) functions do not depend on whether m = 1

or m = 2, and so, (d, τ) satisfies regularity.

(vi) Regularity Consider a mechanism (d, τ) in a three agent setting such that for all

i ∈ N , z ∈ Rn−1
+ ,

Ki(z) = 0 and Ti(z) =

{
max{z(1), 11} if m = 2

z(1) if m = 1

To see that (d, τ) does not satisfy regularity: note that if there is one object to be

allocated, then d(10, 5, 2) = (1, 0, 0), and so, (10, 5, 2) /∈ B1
0 . However, when there

are two objects to be allocated, d(10, 5, 2) = (0, 0, 0), that is, (10, 5, 2) ∈ B2
0 .

On the other hand, it is easy to see, using earlier arguments, that (d, τ) satisfies

AN, AS, continuity, SP, and zero-utility.

(vii) Continuity Consider a mechanism (d, τ) in a 2 object-3 agent setting, such that
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for all i ∈ N , z ∈ Rn−1
+ ,

Ki(z) = 0 and Ti(z) =

{
10 if z(1) ∈ [0, 10)

z(m) if z(1) ≥ 10

Note that, as argued in Step 1 of section 7.4, if a mechanism satisfying SP and

AN satisfies continuity, then the associate threshold T (.) function must also be

continuous. Here, T (.) can be seen to be not continuous as {T (10− 1
n
, 5, 5)} → 10

but T (10, 5, 5) = 5. Hence, (d, τ) is not continuous.

Further, as argued earlier, it can be easily seen that this mechanism satisfies AS,

AN, NBD, SP and zero-utility. Also, note that any profile v ∈ B2
0 , it must be

that v(1) < 10, which implies that v ∈ B1
0 . Hence, B2

0 ⊆ B1
0 , and so, regularity is

satisfied.

5 Discussion

In this section, we discuss the possibility of weakening the fairness axiom AN to the

axiom of equal treatment of equals, which is defined as following:

Definition 11. A mechanism (dm, τm) satisfies equal treatment of equals (ETE) if ∀ i 6=
j ∈ N , ∀ v ∈ RN

+ ,

[vi = vj] =⇒ [u(dmi (v), τmi (v); vi) = u(dmi (v), τmi (v); vj)].

It is easy to see that AN implies ETE, but not the other way around.

Note that our characterization results Theorem 1 and Theorem 2 would fail to hold

if we replace AN by ETE. We show this below by presenting a simple strategyproof

mechanism (d1, τ 1) to be applied in a setting where there is one indivisible object and

two agents {1, 2}. Recall that, by Fact 1, such a strategyproof mechanism is determined

by the Ki(.) and Ti(.) functions associated with it. Suppose that for all i and all v,

K1(v2) = v2 and K2(v1) = max{0, v1 − ε}

and

T1(v2) = v2 + ε and T2(v1) = max{0, v1 − ε}, ε > 0

By Proposition 1, (d1, τ 1) does not satisfy AN as Ti(.) functions depend on the identity i.

Further, it is easy to check that this mechanism satisfies AS and NBD. Also, note that for

any x ≥ 0, at any profile v = (x, x), d1(v) = 0, which implies that u((d1(v), τ1(v));x) =

K1(x) = x. Note that, irrespective of whether d2(v) = 1 or not, then u((d2(v), τ2(v));x) =
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x. Hence, (d1, τ 1) is a mechanism, which does not employ a VARP allocation rule, and

satisfies AS, ETE, NBD, SP - but not AN. Thus, our characterization of VARP allocation

rule crucially depends on stronger implications of AN.

6 Conclusion

This paper provides a justification to reserve pricing at auctions using normative and

strategic axioms unrelated to revenue considerations. In particular, it provides a topo-

logical interpretation of a reserve price as the infimum of the set of non-negative real

numbers satisfying the following property: if all agents bid the same number from this

set, then at least one object is allocated. Finally, it provides complete characterizations

of VARP in single and multiple objects settings. Whether these results continue to hold

in a multiple heterogeneous objects setting would be an interesting question for future

research.

7 Appendix

7.1 Preliminary Results for m ≥ 1 objects

Recall that for all v ∈ RN
+ , W (v) is the set of agents who get an object at the profile v.

Since there are m objects to be allocated and not all objects are allocated at all profiles,

|W (v)| ≤ m, ∀ v ∈ RN
+ . The following proposition establishes for any anonymous, agent

sovereign and strategyproof mechanism; that the threshold functions discussed in Fact 1

must be independent of respective agent labels.

Proposition 1. Any mechanism (d, τ) that satisfies AN, AS and SP must satisfy the

following properties

1. Ti(z) = T (z) for all z ∈ Rn−1
+ and all i ∈ N .

2. Ki(z) = K(z) for all z ∈ Rn−1
+ and all i ∈ N .

Proof: Fix any mechanism (d, τ) that satisfies AN and SP. It is well known (see footnote

11 of Ashlagi and Serizawa [1]) that any mechanism (d, τ) satisfying the notion of AN

defined in Definition 4 is equivalent to the requirement that: for all i 6= j ∈ N and any

two profiles v, v′ such that vi = v′j, vj = v′i, v−i−j = v′−i−j;

u((di(v), τi(v)); vi) = u((dj(v
′), τj(v

′)); v′j).

We use this result to establish our proof.23

23This can be proven from Definition 4 by applying a simple bijection πij : N 7→ N on any profile v,
where πij(i) = j, πij(j) = i and for all k 6= i, j, πij(k) = k.
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Suppose there exists some z ∈ Rn−1
+ such that T1(z) 6= T2(z). W. l. o. g. suppose

that T1(z) > T2(z). Construct the profile v such that v−1 = z and v1 ∈ (T2(z), T1(z)).

Then, from Fact 1 it follows that d1(v) = 0 since v1 < T1(v−1) = T1(z) by construction.

Now, consider the profile v′ = (v′1, v
′
2, v−1−2) where v′1 = v2 and v′2 = v1. Note that

v′−2 = v−1 = z. Therefore, d2(v
′) = 1 since v′2 = v1 > T2(z) = T2(v

′
−2). Further, AN

requires that u(d1(v), τ1(v); v1) = u(d2(v
′), τ2(v

′); v′2). Then, from Fact 1 it follows that

v1 +K2(z)− T2(z) = K1(z) for all v1 ∈ (T2(z), T1(z)). This leads to contradiction as for

the supposed value of z, only one possible value of v1 can satisfy this equality. Thus,

arguing in this manner we can show that Ti(z) = Ti+1(z) for all i = 1, . . . , n− 1 and all

z ∈ Rn−1
+ . Therefore, statement (1) follows.

To prove statement 2, we fix any z′ ∈ Rn−1
+ and show that K1(z

′) = K2(z
′). Consider

the profile v such that v1 = v2 and v−1 = v−2 = z′. If d1(v) = d2(v) = 0 then by

AN, u(d1(v), τ1(v); v1) = u(d2(v), τ2(v); v2) implying K1(z
′) = K2(z

′). If d1(v) = 1 and

d2(v) = 0 then AN, Remark 1 and statement (1), imply that v1 +K1(z
′)−T (z′) = K2(z

′)

and T (z′) = v1 leading to the conclusion K1(z
′) = K2(z

′). Similarly, if d1(v) = 0 and

d2(v) = 1,we can show that K1(z
′) = K2(z

′). Finally, if d1(v) = d2(v) = 1, then by AN

and statement (1), v1 + K1(z
′)− T (z′) = v2 + K2(z

′)− T (z′) implying K1(z
′) = K2(z

′).

Thus, arguing in this manner we can show that Ki(z
′) = Ki+1(z

′) for all i = 1, . . . , n− 1

and all z′ ∈ Rn−1
+ . Therefore, statement (2) follows.

Proposition 2. For any mechanism (d, τ) that satisfies AN, AS and SP, the K(.) and

the T (.) functions must be symmetric.

Proof: Fix any mechanism (d, τ) that satisfies AN, AS and SP. Suppose that there exists

a z ∈ Rn−1
+ , an i ∈ N and a bijection π : N \ {i} 7→ N \ {i} such that T (z) 6= T (πz). W.

l. o. g. assume that T (z) < T (πz) and fix any x ∈ (T (z), T (πz)). Consider a bijection

π′ : N 7→ N such that π′i = i and π′j = πj for all j 6= i and the profile v such that

vi = x and v−i = z. By Fact 1, di(v) = 1 and di(π
′v) = 0 because (π′v)−i = πz. By AN,

u(di(v), τi(v);x) = u(di(π
′v), τi(π

′v);x) implying that x+K(z)−T (z) = K(πz). Since x

was chosen arbitrarily from the interval (T (z), T (πz)), we get a contradiction.

To show the K(.) function to be symmetric, consider any i ∈ N , any profile v ∈ Rn
+ and

any bijection π̂ : N 7→ N such that π̂(i) = i. Since T (.) function has already shown to

be symmetric above, T (v−i) = T ((π̂v)−i) and so, either vi = T (v−i) or di(v) = di(π̂v).

By AN, u(di(v), τi(v); vi) = u(di(π̂v), τi(π̂v); vi), which implies that K(v−i) = K((π̂v)−i).

Hence, the result follows.

The following lemma states that any mechanism satisfying AN, AS, NBD, and SP,

must also satisfy a weaker form of efficiency which requires that whenever objects are

allocated, the allocation must be efficient.
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Lemma 1. A mechanism (d, τ) satisfies AN, AS, NBD, and SP only if ∀ v ∈ Rn
+, i 6= j ∈

N ,

di(v) = 1 and dj(v) = 0 =⇒ vi ≥ vj

Proof: Fix any mechanism satisfying AN, AS, NBD, and SP and any profile v ∈ Rn
+.

Suppose w. l. o. g. that d1(v) = 0, d2(v) = 1, v1 > v2. Consider the profile ṽ := (ṽ2, v−2)

where ṽ2 = v1. By SP, d2(v) = 1 =⇒ d2(ṽ) = 1, and so, by NBD, d1(v) = 0 =⇒ d1(ṽ) =

0. Therefore, by Remark 1, T (v−2) = v1. Arguing as before, by SP, d1(v2, ṽ−1) = 0

and so, by AN, u(d1(v2, ṽ−1), τ1(v2, ṽ−1); v2) = u(d2(v), τ2(v); v2). Therefore, K(v−2) =

v2 +K(v−2)− T (v−2) =⇒ T (v−2) = v2 6= v1 and hence, contradiction. Thus, the result

follows.

Observation 1. From Lemma 1 it follows that for any mechanism satisfying AN, AS,

NBD and SP, at any valuation profile v ∈ Rn
+, if di(v) = 0 for some i ∈ N , then dj(v) = 0

for all agents j such that vj < vi. Similarly, if there exists an i ∈ N with di(v) = 1, then

dj(v) = 1 for all agents j such that vj > vi. Athanasiou [2] and Sprumont [27] show the

same result in the single object setting without the use of NBD axiom. They accomplish

this by exploiting a restriction implicit in single object setting, which implies that, at any

profile, an agent getting the object implies that all other agents do not get any object.

However, in multiple homogeneous objects setting, no such restriction is implicit. And

so, we need the NBD axiom to tackle this additional complexity.24

The following lemma states the restriction imposed by NBD and SP axioms on the

decision rule at profiles where all agents have bid the same value. It establishes the

existence of a non-negative real number η such that no objects are allocated at any

profile where (i) all agents have bid the same value and (ii) this value is less than η.

Also, if all agents bid the same value that is greater than η, at least one object must be

allocated.

24To see that Lemma 1 cannot hold without NBD, consider the following example. Suppose that
m = 2, N = {1, 2, 3}, and consider a mechanism (d, τ) belonging to the class described by Fact 1 such
that for all i ∈ N and z ∈ Rn−1

+ ,

Ki(z) = 0 and Ti(z) =

{
max{z(2), 20} if z(1) < 10
z(2) if z(1) ≥ 10

Note that by Fact 1, (d, τ) satisfies SP and AS. Further, at any valuation profile, if valuations of any
pair of agents are changed, their utilities get interchanged. Hence, (d, τ) satisfies AN. To see that this
mechanism violates NBD, consider the valuation profile (15, 10, 5). Note that according our decision
rule d(15, 10, 5) = (1, 1, 0). But if agent 2 unilaterally changes her reported valuation to 8, the decision
changes to d(15, 8, 5) = (0, 1, 0), and so, agent 2 continues to get the object but agent 1’s decision outcome
is affected as she no longer gets the object. Thus, (d, τ) does not satisfy NBD. Also, note that at profile
(15, 8, 5); the highest bidder does not get an object but the second highest bidder gets an object, which
is a violation Lemma 1.
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Lemma 2. A mechanism (d, τ) satisfies NBD and SP only if ∃ η ≥ 0 such that ∀ x ≥ 0,

x < η =⇒ x̄n ∈ Bm
0 and x > η =⇒ x̄n /∈ Bm

0

Proof: Fix any mechanism (d, τ) satisfying NBD and SP. Suppose that there exist

0 ≤ x < y such that x̄n /∈ Bm
0 and ȳn ∈ Bm

0 . W. l. o. g. suppose that di(x̄
n) = 1 for all

i = 1, . . . , l where l ∈ {1, . . . ,m} (that is, l objects are allocated at profile x̄n). Define the

sequence of profiles (pk)lk=1 where p1 = (y, x̄n−1) and for all 2 ≤ k ≤ l, pk = (y, pk−1−k ). By

NBD and SP, for all 1 ≤ i ≤ l, di(x̄
n) = 1 =⇒ di(p

1) = 1 =⇒ di(p
2) = 1 =⇒ . . . =⇒

di(p
l) = 1 and so, pl /∈ Bm

0 . Similarly construct another sequence of profiles (qk)nk=l+1

such that ql+1 = (x, ȳn−{l+1}) and for all l + 2 ≤ k ≤ n, qk = (x, qk−1−k ). By SP and NBD,

yn ∈ Bm
0 =⇒ ql+1 ∈ Bm

0 =⇒ ql+2 ∈ Bm
0 =⇒ . . . =⇒ qn ∈ Bm

0 . By construction,

qn = pl and hence, contradiction. Therefore, for any x ≥ 0, if x̄n /∈ Bm
0 and then ∀ y > x

it must be that ȳn /∈ Bm
0 . Thus, if the set {x ≥ 0 : x̄n /∈ Bm

0 } is non-empty, then the

result follows from the choice of η := inf{x ≥ 0 : x̄n /∈ Bm
0 } . If {x ≥ 0 : x̄n /∈ Bm

0 } = ∅
then no objects are allocated at any profile where all agents have bid the same value. In

this case the result follows by assigning η :=∞.

The following lemma shows that if η > 0 then no object is allocated at any profile

where the highest valuation is strictly less than η.

Lemma 3. A mechanism (d, τ) satisfies AN, NBD and SP only if ∀ v ∈ [0, η)n, v ∈ Bm
0 .

Proof: Fix any mechanism (d, τ) satisfying AN, NBD and SP and any v ∈ [0, η)n. W. l. o.

g. assume that v1 ≥ v2 ≥ . . . ≥ vn. By definition v1 < η, and so, by Lemma 2, v̄n1 ∈ Bm
0 .

Construct a sequence of profiles (pk)n−1k=1 such that p1 = (v2, v̄
n
1−2

) and for all 2 ≤ k ≤ n−1,

pk = (vk+1, p
k−1
−{k+1}). By SP and NBD, v̄n1 ∈ Bm

0 =⇒ p1 ∈ Bm
0 =⇒ . . . =⇒ pn−1 ∈ Bm

0 .

Note that by construction, pn−1 = v and hence, the result follows.

7.2 Proof of Theorem 1

Fix any mechanism (d, τ) satisfies AN, AS, NBD and SP. By Lemma 2, there exists an

η := inf{x ≥ 0 : x̄n /∈ B1
0}. Given Proposition 1 and Fact 1; the result would follow if we

show that the threshold function T (.) associated with (d, τ) is of the following form:

(i) T (v−i) = max{v−i(1), η},∀ i ∈ N,∀ v ∈ RN
+ .

We establish the equality (i) in the following two steps.

Step 1

In this step we establish that vi < max{v−i(1), η} =⇒ di(v) = 0, for all v and all i. In

fact, this can easily be seen to follow from Lemma 2, Lemma 3, and Observation 1.
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Step 2

In this step, we establish that vi > max{v−i(1), η} =⇒ di(v) = 1, for all v and i.

To see this, fix any i ∈ N and any profile v ∈ Rn
+ such that vi > max{v−i(1), η}. Note

that, either vi = v(1) > v(2) > η or vi = v(1) > η ≥ v(2). We analyze each of the two

cases below, and show that in each case: di(v) = 1

Case 1: vi = v(1) > v(2) > η

By Lemma 2, v(2)
n
/∈ B1

0 and so, from Remark 1 and Proposition 1, it follows that

T (v(2)
n−1

) = v(2). Construct a sequence of profiles {pk}nk=1 such that p1 = v(2)
n
,

p2 = (vi, p
1
−i) and ∀ 3 ≤ k ≤ n, pk = (vtk , p

k−1
−tk ) where tk ∈ {j ∈ N |vj = v(k)} (by the

tie-breaking rule, this set is a singleton set). Further, T (p1−i) = T (v(2)
n−1

) = v(2) and so

under the supposition vi = v(1) > v(2), di(p
2) = 1. Since m = 1 it follows that dj(p

2) =

0,∀ j 6= i. Moreover, by SP and NBD, for all j ∈ N , dj(p
2) = dj(p

3) = . . . = dj(p
n).

Since, by construction, pn = v, we get that di(v) = 1 and dj(v) = 0 for all j 6= i.

Case 2: vi = v(1) > η ≥ v(2)

Consider the sequence of profiles {pk}nk=0 where p0 = η + ε
n

and ε ∈ (0, vi − η). For all

1 ≤ k ≤ n, pk = (vtk , p
k−1
−tk ) where tk ∈ {j ∈ N |vj = v(k)} (as mentioned before, this

set is a singleton set by the tie-breaking rule). Together with Remark 1, Lemma 2 and

Proposition 1, we get that p0 /∈ B1
0 which implies that T (p0−j) = η + ε for all j ∈ N .

Further, by construction, p1i = vi and p0−i = p1−i. Therefore, p1i > T (p1−i) = η + ε and so,

from Fact 1 it follows that di(p
1) = 1. Since m = 1, we can then claim that dj(p

1) = 0

for all j 6= i. Hence, by SP and NBD, for all j ∈ N , dj(p
1) = dj(p

2) = . . . = dj(p
n). By

construction, pn = v which implies that di(v) = 1.

7.3 Proof of Theorem 2

The sufficiency is easy to check. The necessity follows from Proposition 2 (in subsection

7.1 of Appendix) and Theorem 1.

7.4 Proof of Theorem 3

Fix any continuous regular mechanism (d, τ) that satisfies AN, AS, NBD, SP. Given

Proposition 1 and Fact 1; the result would follow if we show that the threshold function

T (.) associated with (d, τ) is of the following form:

(a) T (v−i) = max{v−i(m), η},∀ i ∈ N, ∀ v ∈ RN
+ ,

where, as in proof of Theorem 1, η := inf{x ≥ 0 : x̄n /∈ Bm
0 } and, as defined earlier,

Bm
0 = {v ∈ RN

+ : Wm(v) = ∅}. We establish (a) in the following four steps:
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Step 1

In this step we establish that the T (.) function associated with mechanism (d, τ) is con-

tinuous.

Fix any sequence {zk} such that zk ∈ Rn−1
+ for all k, {zk} → z∗. Suppose that

the sequence {T (zk)} does not converge to T (z∗). Now, if there exists a zk such that

T (zk) < 0, then for all x > 0, Lemma 1 implies that all agents be given objects at

profile (x, zk) leading to a contradiction as m < n. Also, if there exists a zk such that

T (zk) = ∞, then for all values x ≥ 0, d1(x, v−1) = 0 when v−1 = zk which violates AS.

Therefore, we can infer that {T (zk)} is a bounded sequence.25 And so, it must have

a convergent subsequence. Therefore, to simplify notation, we can assume without loss

of generality that {T (zk)} is a convergent sequence that has limit at some β ≥ 0. By

supposition, β 6= T (z∗).26

If β > T (z∗) then fix any x ∈ (T (z∗), β). Note that there exists a subsequence

{T (zk
l
)} ⊆ (β − ε, β + ε) for some particular ε ∈ (0, β − x), such that {T (zk

l
)} → β.

Therefore, we can construct a sequence of profiles {vl} such that for all l, vl1 = x and

vl−1 = zk
l
. Now, since {zk} converges to z∗, the subsequence {zkl} must also converge

to z∗, and so, {vl} converges to (x, z∗). Therefore, for all l, vl1 = x < T (vl−1) which

implies that d1(v
l) = 0; but in limit x > T (z∗) which implies that d1(x, z

∗) = 1. Further,

by construction, x 6= T (z∗) implying that agent is not indifferent between getting or not

getting an object, at the limit profile (x, z∗). This contradicts the continuity of mechanism

(d, τ). Arguing similarly, if β < T (z∗), we arrive at a contradiction to continuity of (d, τ).

Step 2

In this step, we establish that by continuity of T (.) functions, η̄n /∈ Bm
0 .

Note that by construction, for all x > η, x̄n /∈ Bm
0 , which implies that x = T (x̄n−1).

Therefore, for any sequence {xk} such that {xk} → η and xk > η, ∀ k; we get that

{T (xk, xk, . . . , xk)} → η. And so, by continuity of T (.) function, we get that T (η̄n−1) = η.

Hence, it follows from our tie-breaking rule that η̄n /∈ Bm
0 .

25In case the sequence {T (zk)} is unbounded, by AS, it would be unbounded above. Hence, there
would exist a monotone increasing subsequence {T (zkl )}∞l=1 such that it is properly divergent, or with
some abuse of notation, {T (zkl )} → ∞. Therefore, there exists an M∗ ∈ N such that for all l > M∗,
T (zkl ) > T (z∗) + 1. Hence, for any sequence of profiles {vt} where for all t, vti = T (z∗) + 1 and
vt−i = zkM∗+t, by Fact 1, di(v

t) = 0. Further, by construction, {vt} converges to v∗ where v∗i = T (z∗)+1,
and v∗−i = z∗; and so, by Fact 1, di(v

∗) = 1. Thus, by continuity, u((1, τ(v∗)); v∗i ) = u((0, τ(v∗)); v∗i )
implying that T (z∗) + 1 = T (z∗), which is a contradiction.

26Here our objective is to show that any arbitrary convergent subsequence of {T (zk)} must converge to
T (z∗); and then invoke Theorem 3.4.9 of Bartle and Sherbert [5] which states that any bounded sequence
of real numbers, all of whose convergent subsequences converge to the same limit L, must also converge
to L.

So, instead of introducing complicated new notations to denote a convergent subsequence of {T (zk)},
we assume without loss of generality that the original sequence {T (zk)} converges to some real β, and
then show below that β = T (z∗).
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Step 3

In this step we show that for any z ∈ Rn−1 with z(1) = η > z(n−1), T (z) = η.27 Fix any

such z. Since Proposition 2 has established T (.) as a symmetric function, we can assume

w.l.o.g. that zk = z(k) for all k = 1, . . . , n − 1. Fix the number h ∈ {1, . . . , n − 1} such

that zh ≥ η > zh+1. For any x ∈ [0, η], define

z̃x := (η − x, η − x, . . . , η − x︸ ︷︷ ︸
h coordinates

, zh+1, zh+2, . . . , zn).

Now, consider the first possibility that T (z) < η. By continuity of T (.) function,

there exists an ε > 0 such that for all x ∈ (0, ε), T (z̃x) < η and η − x ≥ zh+1. Now,

if for all x ∈ (0, ε), η − x ≤ T (z̃x), then we can construct a sequence {xk} such that

for all k, 0 < xk < ε and {xk} → 0. Therefore, {η − xk} → η, and so, by continuity

of T (.), {T (z̃x
k
)} → T (z) which implies that T (z) ≥ η. However, by our supposition,

T (z) < η and so, we get a contradiction. Thus, there must exist an x′ ∈ (0, ε) such that

η − x′ > T (z̃x
′
). Therefore, the profile v′ where v′1 = η − x′ and v′−1 = z̃x

′
must have at

least one object allocated to agent 1, implying that v′ /∈ Bm
0 . However, v′ ∈ [0, η)n and

so, v′ /∈ Bm
0 contradicts Lemma 3. Therefore we can infer that T (z) ≥ η.

Now, consider the possibility that T (z) > η. Then a profile v with v1 ∈ (η, T (z)) and

v−1 = z will have d1(v) = 0. By Lemma 1, we get that di(v) = 0 for all i > 1 implying

that v ∈ Bm
0 . By the regularity condition, no objects must be given out at this profile v

when m = 1 which would contradict Theorem 1.

Step 4

In this step, we show that for all i and all v, Ti(v−i) = max{v−i(m), η}.
Fix any i ∈ N and any v ∈ Rn

+. Consider the two possible cases v−i(m) ≥ η and

v−i(m) < η. We accomplish the proof that T (v−i) = max{v−i(m), η} by showing that

T (v−i) = v−i(m) in the former case and T (v−i) = η in the latter case. For economy of

notation, henceforth, we denote vector v−i by z in the proof. By Proposition 2, T (.) is

symmetric and so, w.l.o.g. assume that zk = z(k) for all k = 1, . . . , n− 1. For simplicity

of notation, define θ := zm.

Case 1: θ ≥ η

By Step 2 and construction, θ ≥ η =⇒ θ̄n /∈ Bm
0 , and so, by our tie-breaking rule

W (θ̄n) = {1, 2, . . . ,m}. Consider the sequence of profiles (qk)n−2k=0 such that q0 = θ̄n, for

all 1 ≤ k ≤ m − 1, qk = (zk, q
k−1
−{k}) and for all m ≤ k ≤ n − 2, qk = (zk+1, q

k−1
−{k+2}).

From SP and NBD it follows that ∀ j ∈ N , dj(q
0) = dj(q

1) = . . . = dj(q
n−2). Therefore,

we get that dj(q
n−2) = 1, ∀ j = 1, . . . ,m and dj(q

n−2) = 0, ∀ j = m + 1, . . . , n. Also,

27Recall that for any vector x ∈ Rk where k ∈ N, x(i) is the ith greatest coordinate in x. To make
this notation well defined, w.l.o.g., we break ties using the order 1 � 2 � . . . � n.
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by construction, qn−2m = qn−2m+1 = θ and qn−2−{m} = qn−2−{m+1} = z. Thus, arguing as

in Remark 1, the fact that dm(qn−2) = 1, dm+1(q
n−2) = 0 can be used to infer that

θ ≥ T (qn−2−{m}) = T (qn−2−{m+1}) ≥ θ implying that T (z) = θ = zm.

Case 2: θ < η

Fix any x ≥ 0, define the profile px such that px1 = x and px−1 = z and construct the

profile p such that pk = px(k) for all k ∈ {1, 2, . . . , n}. Therefore, by construction,

p1 ≥ p2 ≥ . . . ≥ pn. We consider two subcases: x ≥ η and x < η. In the following

paragraphs, we show that d1(p
x) = 1 in the former case while d1(p

x) = 0 in the latter

case. By Fact 1, this inference to imply that T (px−1) = T (z) = η.

Subcase 1. x ≥ η

Define the agent g := {j ∈ N : pj ≥ η and pj+1 < η}. Since θ < η and x > η, agent g

is well defined and g ∈ {1, . . . ,m}. Therefore, pg is the smallest coordinate of p greater

than or equal to η while pg+1 is the largest coordinate of p strictly less that η. Consider a

sequence of profiles {uk}nk=0 such that u0 = η̄n, for all 1 ≤ k ≤ n−g, uk = (pg+k, u
k−1
−(g+k)),

and for all n − g + 1 ≤ k ≤ n, uk = (pn+1−k, u
k−1
−(n+1−k)). Note that by Step 3, for

k ∈ {1, . . . , n − g}, T (uk−i) = η for all i ∈ N . So, if i ∈ {1, . . . , g} then di(u
n−g) = 1, or

else di(u
n−g) = 0. Arguing as before, by NBD and SP, di(u

n−g) = di(u
n) for all i ∈ N .

Since by construction, un = p and so we have established that

di(p) =

{
1 ∀ i = 1, . . . , g

0 ∀ i = g + 1, . . . , n
(1)

Now, by supposition x ≥ η and so, x ∈ {p1, . . . , pg} which implies that the agent bidding

x at profile p gets an object. Since, the T (.) function is symmetric, we can infer that

d1(p
x) = 1.

Subcase 2. x < η

If x < η, there arise two cases: p1 < η and p1 ≥ η. If p1 < η then, by construction,

px ∈ [0, η)n and so, from Lemma 3, px ∈ Bm
0 implying that d1(p

x) = 0. If η ≤ p1 then

agent g is well defined as in the subcase 1 above. And so, we can argue as above to obtain

equation (1). Note that x < η =⇒ x ∈ {pg+1, . . . , pn} which implies that the agent

bidding x at profile p does not get an object. Therefore, as before, from symmetry of

T (.) function it follows that d1(p
x) = 0.

7.5 Proof of Theorem 4

The proof of sufficiency is easy to check. The proof of necessity follows from Proposition

2 (in subsection 7.1 of Appendix) and Theorem 3.
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7.6 Relation between non bossiness in decision (NBD) and Sat-

terthwaite and Sonnenschein [26] version of non-bossiness

(SSNB).

Lemma 4. If a strategyproof mechanism (d, t) violates NBD then it violates SSNB.

Proof: Fix any mechanism (d, t) that violates NBD. Therefore, there exists i ∈ N ,

v−i ∈ RN\{i}, and x′ 6= y′ ≥ 0 such that

di(x
′, v−i) = di(y

′, v−i) and ∃ j ∈ N \ {i} such that dj(x
′, v−i) 6= dj(y

′, v−i).

Now it is well known that in a discrete object allocation problem with unit demand,

a strategyproofness mechanism exhibits the property that di(a, v−i) = di(b, v−i) =⇒
ti(a, v−i) = ti(b, v−i) for all a, b ≥ 0, all i, and all v−i (because definition of strategyproof-

ness requires that a{di(b, v−i) − di(a, v−i)} ≤ {τi(a, v−i) − τi(b, v−i)} ≤ b{(di(b, v−i) −
di(a, b−i)} for all a, b ≥ 0, all i, and all v−i). Therefore, it must be that ti(x

′, v−i) =

ti(y
′, v−i). But now we have a pair of agents i, j such that when i changes her reported

valuation unilaterally from x′ to y′ (with all others reporting v−i), her consumption bundle

remains unchanged (as (di(x
′, v−i), ti(x

′, v−i)) = (di(x
′, v−i), ti(x

′, v−i))) - but j’ consump-

tion bundle changes as her object assignments dj(x
′, v−i) 6= dj(y

′, v−i). Thus, we get a

violation of SSNB.

Hence, within the class of strategyproof mechanisms, NBD is weaker than SSNB.
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