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This thesis is in the area of unconstrained Global Optimization (GO). Specifically,

the problem is to find a global minimum for an unconstrained continuous function

(Dixon & Szegö, 1978; Törn & Žilinskas, 1989; Kan & Timmer, 1989; Horst &

Tuy, 1990). Such problems are ubiquitous in many fields of science, engineering

and management domains. Data fitting problems across disciplines, including

regression, multidimensional scaling, clustering, etc. (Goffe, Ferrier, & Rogers,

1994; Groenen & Heiser, 1996; Goffe, 1997; Jerrell & Campione, 2001), neural

network learning (Hassoun, 1995), molecular cluster problems in computational

chemistry (Wales, Doye, Miller, Mortenson, & Walsh, 2000), and finding the

equilibrium point in an economy (Wu & Wang, 1998) are some of the examples of

GO problems. Since the GO problem is NP-Hard (Vavasis, 1995), most prevalent

methods involve the use of stochastic techniques1.

1Hence the phrase “Stochastic Global Optimization” (SGO) is popular in this field.
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Funnel functions2 are an important class of such unconstrained GO problems.

Of late, there is growing interest on funnel functions among the optimization

community, especially in fields such as computational biology and chemistry.

These functions were conjectured while studying protein folding (Leopold, Montal,

& Onuchic, 1992; Bryngelson, Onuchic, Socci, & Wolynes, 1995). It is understood

now that the objective function in many optimization problems are funnel-like in

nature (Wales, 2003). Molecular clustering problems like Lennard-Jones (LJ) and

Morse (Locatelli & Schoen, 2002; Doye, Leary, Locatelli, & Schoen, 2004; Wales

et al., 2006), densely packing geometrical objects (Addis, Locatelli, & Schoen,

2005b; Specht, 2006) and virus capsids (Wales, 2005) are few examples. Similar

functions are found in discrete domain too, where they are called “globally convex”

functions (Hu, Klee, & Larman, 1989; Boese, Kahng, & Muddu, 1994).

Multistart local search (Dixon & Szegö, 1978), a theoretically sound global

optimization methodology which is also found to work well for various kinds of

GO problems, fails to detect the global minimum, even for benchmark funnel

functions (Locatelli, 2005). This has led to development of many heuristics in the

recent times. Some of the prominent heuristics here work with the local minimum

mapping of the objective function instead of the actual objective function. Basin

Hopping (BH) algorithm (Wales & Doye, 1997), Monotonic Basin Hopping (MBH)

algorithm (Leary, 2000), Local Optimum Smoothing (LOS) algorithm (Addis,

2004; Addis, Locatelli, & Schoen, 2005a), Two-Phase MBH (Locatelli & Schoen,

2003), and Population set based Basin Hopping (Grosso, Locatelli, & Schoen,

2005) are some of the important heuristics under this category. A number of

variants of the BH algorithm have also appeared in recent literature (Goedecker,

2also called “funnel-like” functions
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2004; Iwamatsu & Okabe, 2004; Cheng, Cai, & Shao, 2005).

This thesis proposes efficient metaheuristics for stochastic global optimization

of unconstrained funnel functions. We explore the possibility of using simplex

based search procedure for funnel functions. Specifically, we use the Nelder-Mead

(NM) algorithm (Nelder & Mead, 1965; Olsson & Nelson, 1975), which is still a

popular direct search method. It was invented for function minimization as an

alternative to descent-based local minimization. In this thesis, we use NM on the

local minima mapping of the given objective function, and we call this hybrid

Nelder-Mead Local Search (NMLS) algorithm. Towards this end, each vertex of

NM would be replaced by its nearest local minimum. It is shown that NMLS

does not always converge to the funnel bottom of single funnel functions in one

dimension. To overcome this, we propose NMLS-S, which is a simpler variant of

NMLS. In NMLS-S outside and inside contraction steps of NMLS are replaced by

a shrink step. Convergence to the funnel bottom in the case of one-dimensional

single funnel functions is obtained for NMLS-S. Preliminary observations about

the case with dimensions more than one are made. It is to be mentioned here

that the literature so far has a very poor record of theoretical proofs: be it for

NM, MBH or LOS - old and modern algorithms alike (Lagarias, Reeds, Wright, &

Wright, 1998; McKinnon, 1998; Kelley, 1999; Leary, 2000; Addis, 2004; Addis et

al., 2005a). Neither does this minimize the practical utility of these algorithms nor

does it minimize the importance of theoretical results. This is similar to the case

with other popular class of algorithms like Genetic Algorithms and Tabu Search.

Obtaining theoretical results on the convergence of NMLS and NMLS-S, for both

single and multiple funnels, for dimensions more than one, should therefore be an

important area of future research.
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Algorithms (Ω) NMLS (N1), NMLS-S (N2), MBH (MB) and LOS (LO)
Objective function
(f)

Rastrigin (8 variants), Ackley, and Levy

Complexity of f

• Dimensions (n = 20, 50 and 100)

• Amplitude (A) (three levels)*

• Perturbation (P) (four leves)*

• Asymmetry in size of level sets*

• Asymmetry in function values of local minima*

Unit of experiment
〈Ω, f, n, ∆〉**
1000 runs per experiment (some cases 100)

Primary metrics
for 〈Ω, f, n, ∆〉

• Success rate, Success

• Local searches per success with and without stopping
criteria, LSWOS/S and LSWS/S

• Smoothing per success for LOS with and without
stopping criteria, Sm/S − wos and Sm/S − ws

• Remediation per success for NMLS and NMLS-S
with and without stopping criteria, R/S − wos and
R/S − ws

Selection of ∆ Manual (depends on nonlinear behaviour of Ω)

Secondary metrics
for 〈Ω, f, n〉

• Expected succes rate, E(Success)

• Expected number of local searches per success,
with and without stopping, E(LSWOS/S) and
E(LSWS/S)

• Range of 95% confidence interval, I−95, (normalized
with 1 for MB and LO and with

√
n for N1 and N2)

Optimistic (O) and Pessimistic (P) estimates for each
Performance profile Each Ω Vs the best Ω (for each secondary metric)
Ratios (R1 and R2) of
secondary metrics***

Lower Estimate (LE) and Upper Estimate (UE)

* Variants for Rastrigin function only

** ∆ denotes Radius of the neighbourhood hypersphere for MBH and LOS, and side-length
of the simplex for NMLS and NMLS-S, normalized w.r.t. the side-length of the searching
hypercube

*** R1 for NMLS Vs MBH & LOS, and R2 for NMLS-S Vs MBH & LOS

Table 1: Schema of Experiments on the Systematic Set
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Extensive empirical investigations were carried out on the four algorithms: NMLS,

NMLS-S, MBH and LOS. The experiments were categorized as systematic and

exploratory sets. Detailed experiments on popular benchmark functions are

presented under the systematic set3. Scoping experiments on problems of special

interest are categorized under the exploratory set.

Results of the systematic set have clearly demonstrated the superiority of the

NMLS and NMLS-S algorithms over the competing (or existing) algorithms MBH

and LOS for low level functions. The strengths of the proposed algorithms have

been observed in their robustness in finding the global minima as well as in the

efficiency of the search. NMLS and NMLS-S uniformly outperformed MBH and

LOS with respect to all performance metrics, across various complexities of each

benchmark function tested. All these algorithms deteriorate in their performance

with increasing complexity of the objective function4. However, the deterioration

is slower for NMLS and NMLS-S compared to MBH and LOS, as asymmetries are

introduced in the size of the level sets. Further, NMLS and NMLS-S are found to

be much less sensitive to the choice of tunable parameters5. Between NMLS and

NMLS-S, the latter has been found to work better.

The exploratory set of experiments are still in a preliminary stage to make

any conclusive observations. We have tried to explore in a few directions and

documented the initial findings. Cases of mixing of complexities of the objective

function, multifunnel functions6 and Lennard-Jones clusters were the problems

tried. The algorithms proposed in the thesis were able to find the putative global

3Refer Table 1 for the experimental setup of systematic experiments.
4Complexities considered are dimensions, amplitude, perturbation, asymmetry in level sets

and asymmetry in the function values of local minima.
5Two key parameters were studied: Neighbourhood size and stopping number of iterations
6A two level nested algorithm was tried.
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optimum for many configurations of LJ clusters. This fact is encouraging, but the

probe need to be made much deeper.

Efforts to make NMLS and NMLS-S more efficient on multifunnel functions,

performance of these algorithms on real life problems, finding new applications

of funnel functions, especially in the broad discipline of management, work on

the theoretical characterizations of funnel functions and study of the relation of

the funnel functions to the “globally convex” functions are some of the natural

extensions of the thesis work.

Contributions

Literature survey: Funnel functions and multilevel funnels in unconstrained

global optimization have been discussed with the help of a directed graph

representation since no clear definition of funnel or funnel-like functions

has been found in the literature which is widely accepted. However, one

definition of funnel found in the literature has been used to argue that there

could be multiple categories (some not so trivial) of single funnel functions

in dimensions more than one.

Nelder Mead based hybrids: Two simple hybrids based on Nelder Mead

algorithm and local optimization called the Nelder Mead Local Search

(NMLS) and NMLS-Shrink variant (NMLS-S) are proposed.

Convergence issues: Non-convergence of NMLS and convergence of NMLS-S

to the funnel bottom in one dimension are demonstrated. Convergence issues

of NMLS and NMLS-S vis-à-vis MBH for multiple dimensions are discussed.

It is argued that NMLS and NMLS-S would perform better than MBH and
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LOS for funnel functions (which is subsequently substantiated by empirical

study).

Empirical analysis on systematic set: Based on the results on a systematic

set of experiments the following observations were made on the performance

of NMLS and NMLS-S with respect to MBH and LOS. Note that

observations 2 and 3 involve the following complexities of objective function

− amplitude, perturbation, asymmetry in local searches and function values

of local minima7. For studying these complexities, only Rastrigin

function was used with different variants in our experiments.

Observation 1: Performance of NMLS & NMLS-S are uniformly better

than that of MBH & LOS.

Observation 2: Performance of each of the four algorithms generally

deteriorates with increasing complexity of the objective function.

Observation 3: NMLS & NMLS-S are less sensitive to asymmetry in the

size of the local minimum basins compared to MBH & LOS. For other

complexities of the objective function the relative behaviour is in favour

of NMLS & NMLS-S.

Observation 4: NMLS & NMLS-S are robust to side-length (of the

simplex) whereas MBH & LOS are too sensitive to radius (of the

neighbourhood hypersphere). Both NMLS and NMLS-S work for any

side-length above a minimum threshold.

Observation 5: NMLS & NMLS-S are robust to the number of iterations

in the stopping phase, whereas MBH & LOS are not so.

Observation 6: Performance of NMLS-S is better than that of NMLS.

7Dimension is another
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Empirical analysis on exploratory set: An exploratory set of experiments

were conducted to study the performance of the algorithms on problems

of special interest. These experiments are still in a preliminary stage to

make any conclusive observations. We have tried to explore in the following

directions and documented the initial findings:

• Mixing of complexities of the objective function.

• Multifunnel functions

• LJ cluster

Keywords: Unconstrained function minimization, Funnel functions, Local

minimum mapping, Monotonic Basin Hopping, Local Optima Smoothing, Simplex

Based Search, Nelder Mead Local Search, NMLS-Shrink variant
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